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Background: This study aimed to identify potential genes and transcription factors involved in 
postradiation cognitive dysfunction using bioinformatics analysis.
Methods: Bioinformatics tools were used to identify differentially expressed mRNAs between postradiation 
cognitive dysfunctional and control tissue. The GSE115735 dataset containing mRNA expression profiles 
was downloaded from the Gene Expression Omnibus database. The mRNA expression data corresponded 
to three hippocampus and three brain lateral ventricles from postradiation cognitive dysfunctional mice and 
controls. The differentially expressed mRNAs between the two groups were identified, and protein-protein 
interaction network was constructed. This was followed by functional enrichment and pathway analysis with 
further prediction of transcription factors that targeted differentially expressed mRNAs. Network analysis 
was conducted between the differentially expressed mRNAs and these potential transcription factors.
Results: A total of 134 differentially expressed mRNAs were obtained, including 64 mRNAs in the 
hippocampus and 84 in the posterior lateral ventricles. Fourteen mRNAs were expressed differentially in 
both tissues. Furthermore, genes in the network were strongly enriched in neuroactive ligand-receptor 
interactions, regulation of calcium ion transport, mitotic spindle associated pathway, and TGF-beta signaling 
pathways. Six transcription factors associated with the regulation of target genes were identified.
Conclusions: Most of the genes identified were involved in transcriptional regulation, including TFAP4, 
RUNX1, and CUX2, which may play important roles in the development of postradiation cognitive 
dysfunction.
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Introduction

Brain radiotherapy has been an indispensable mainstay 
treatment for patients with primary brain tumors or brain 
metastases originating from extracranial tumors (1-5). 
Long-term tumor control or cure, slowing tumor growth, 
and killing metastatic cells palliatively or prophylactically 
are achieved by various modes of brain radiotherapy (6,7). 
However, radiotherapy has been shown to cause adverse 
effects on the central nervous system (CNS), including 
both acute and delayed complications. Furthermore, 
cancer patients may experience a wide range of neurotoxic 
symptoms, including problems in learning and memory, 
executive function impairment, loss of motor coordination, 
and intellectual decline, which have been long recognized 
as major problems in long-term survivors in the pediatric 
population (8,9). Radiotherapy-induced cognitive decline 
drastically reduces the patients’ quality of life, which draws 
oncologists’ close attention (10). Despite rapidly growing 
concerns about radiation-induced cognitive disability, the 
metabolic and cellular mechanisms underlying such damage 
remain poorly understood. Moreover, there are neither 
effective preventive measures nor long-term treatments 
available (11). Recent studies in brain cancer patients 
and rodent models on radiation-related neurofunctional 
sequelae showed that various anatomical changes occurred 
in the non-tumor tissue during irradiation. The affected 
zones included the hippocampus (Hipp) and subventricular 
zone (SVZ) of the brain lateral ventricles (12). A hypothesis 
has been proposed that early changes that are not detectable 
on the gross anatomical level, including vascular damages, 
oligodendrocyte loss, demyelination, neuroinflammation, 
and radiation-induced brain injury, could synergize 
over time to generate long-term macrostructural and 
microstructural abnormalities that in turn could result in 
permanent cognitive decline (13-15). Although several 
markers have been identified to predict the damage and 
cognitive decline in delayed complications, few markers 
of acute complications have been found (5,9). Therefore, 
there is a strong need to study the molecular mechanisms of 
these complications and identify novel therapeutic targets 
that would help delay or ameliorate postradiation cognitive 
dysfunction. Moreover, the early identification of potential 
biomarkers and understanding their molecular mechanisms 
of action in postradiation cognitive dysfunction continues 
to be debated and requires further exploration and research. 
In our study, we aimed to analyze potential genes and 
transcription factors to explore the possible mechanisms of 

cognitive dysfunction in the early postradiation period using 
bioinformatics analysis.

Methods 

Microarray data

Published microarray data on mRNA expression profiles 
were reanalyzed to explore possible mechanisms of 
cognitive dysfunction in the early postradiation period. 
The GSE115735 mRNA microarray dataset was retrieved 
and downloaded from Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/), a public functional 
genomics data repository. Microarray data were obtained 
from GPL23038 Clariom S Assay Platform (Affymetrix, 
Inc., Santa Clara, CA, USA) and included gene expression 
data corresponding to three Hipp and three brain posterior 
lateral ventricle (pLV) tissues from mice with postradiation 
cognitive dysfunction and control mice, respectively. 
Previous studies showed that neurogenesis mainly occurs 
in two brain regions: the subgranular zone (SGZ) in the 
hippocampal dentate gyrus and the SVZ (16,17). The 
three Hipp and three pLV tissues included the SGZ and 
SVZ samples, respectively, which enabled us to analyze the 
abnormal transcriptional activity related to postradiation 
cognitive dysfunction. These mice received a total dose of 
10 Gy in 2 fractions (2 × 5 Gy). The control animals were 
littermates who were handled similarly but did not receive 
radiation. Cognition in mice was assessed through their 
performance in the novel object recognition task with a 
long habituation phase using odorless objects that do not 
retain any olfactory cues on days 40–44. A discrimination 
index was used to assess the difference between the two 
groups quantitatively. Then, brain tissue was collected at 
day 50 post radiation (18,19). 

Differential expression analysis 

Differentially expressed mRNAs (DEMs) between 
postradiation cognitive dysfunction and normal control 
samples were identified using bioinformatics analysis. 
Normalized gene expression data were downloaded as 
original raw data to be used for further analysis, and this 
dataset contained the expression information of 28,847 
mRNAs. The differential expression analysis was performed 
using a Student’s t-test in the Limma R package (20). Only 
mRNAs with false discovery rate (FDR)-values of <0.05 and 
logFC > |mean (abs [logFC]) + 2*sd (abs [logFC])| were 
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considered as DEMs. Venn diagrams were plotted using an 
online tool, VENNY 2.1.0 (http://bioinfogp.cnb.csic.es/
tools/venny/index.html).

Protein-protein interaction network construction

Protein-protein interaction (PPI) network construction 
was performed to screen for potential biomarkers. We 
used Search Tool for the Retrieval of Interacting Genes 
(STRING) database (http://string-db.org/) (21-23), which is 
an online software tool that provides critical assessment and 
integration of PPIs, including direct (physical) and indirect 
(functional) interactions derived from computational 
predictions, knowledge transfer between organisms, 
and interactions aggregated from additional (primary) 
databases. Based on the STRING analysis, only the known 
interactions that were proven by biological experiments 
with a combined score of >0.15 were retrieved as significant 
items for further analysis. To visualize PPI networks, the 
Cytoscape software, which is a powerful analytical tool for 
providing a unified conceptual framework by the integration 
of biomolecular interaction networks, was used (24). The 
top three hub genes were predicted using cytoHubba.

Functional enrichment pathway analysis 

Gene Ontology (GO) analysis was conducted to assess 
differentially expressed genes between the irradiated 
mouse brain and control brain tissues at the functional 
level (25). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis was performed to 
further explore the cellular and molecular functions of 
the differentially expressed genes (26). ClusterProfiler R 
package was used to carry out the analysis and visualization 
of GO and KEGG (27). We selected the top significantly 
enriched items and confirmed their correlations with 
genomic differences by a thorough search in PubMed.

Prediction of transcription factors and construction of 
Protein-Transcription Factor (P-TF) Network 

Transcription factors (TFs) involved in the regulation 
of potential target genes were identified. The iRegulon, 
Cytoscape plugin (http://iregulon.aertslab.org) was used to 
predict TF-target genes. Normalized Enrichment Score 
(NES) is the maximum enrichment score of the TF. NES > 2  
was set as the cutoff criterion to screen for potential TFs. 
Network analysis was conducted between the DEMs and 

these potential TFs.

Statistical analysis

Part of the statistical analysis has been done by the 
bioinformatic tools mentioned above. The R software (version 
3.4.1) was used for all the rest of statistical analyses. Differential 
expression levels of mRNA were estimated by a two-tailed 
Student’s t-test. Fisher’s test was used to identify the significant 
GO terms and KEGG pathways. Spearman correlation 
coefficients were calculated to evaluate the correlations. A 
P-value <0.05 was considered statistically significant. 

Results

Identification of DEMs

Based on the Limma R package, a total of 64 and 84 
mRNAs were identified as differentially expressed between 
the irradiated mice brain and control brain tissues in the 
Hipp and pLV regions, respectively. Fourteen genes were 
differentially expressed in both tissues: AGPAT2, STOM, 
CD53, UBE2C, OIP5, GPD2, DEPDC1, CTSS, CD40, 
PTPN22, SIGLEC11, OTUD7B, EPHX1, and RBL1. 
Thresholds of FDR < 0.05 and 0.65 (due to the limited 
DEMs) served as the cutoff values of log2FC (Figure 1). 

PPI network construction

With the help of the STRING online tool, a total of 24 
PPI pairs were identified with the combined score of >0.15. 
Among these, the top three hub nodes were CTSS, CD53, 
and CD40 (Figure 2).

Functional and pathway enrichment analysis

GO functional analysis of potential target genes revealed 
415 categories associated with biological processes, 175 
cell component-associated categories, and 437 functional 
GO molecular function-associated categories forming top 
10, 9, and 10 categories, respectively (Figure 3A). A total of 
257 signaling pathways were identified (P<0.05). KEGG 
functional analysis revealed 39 categories, and the top three 
categories are shown in Figure 3B.

Prediction of TFs and P-TF network construction

Six TFs associated with the regulation of target genes were 
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identified (NES > 2): TFAP4, RUNX1, CUX2, ZBTB14, 
NF1, and HESX1. The P-TF network was constructed as 
shown in Figure 4. 

Discussion

Our analysis identified 14 differentially expressed genes 

between the irradiated mouse brain and control brain 
tissues. Based on the PPI network analysis, the top three 
hub genes were CTSS, CD40, and CD53. The top three 
TFs predicted to be associated with target gene regulation 
were TFAP4, RUNX1, and CUX2. Functional and pathway 
enrichment analysis (GO and KEGG) revealed that these 
genes might play a role in the pathogenesis of postradiation 

Figure 1 Identification of differentially expressed mRNAs between post-radiation cognitive dysfunctional mice and controls in GSE115735. 
(A) Volcano plot showing the fold change and statistical significance (−log10 P values) of mRNA expression in the hippocampus between 
cognitive dysfunctional mice and controls. The blue dots and red dots represent the significantly downregulated and upregulated genes, 
respectively. The black dots represent genes with no significant difference. (B) Volcano plot showing the fold change and statistical 
significance (−log10 P values) of mRNA expression in the posterior lateral ventricles between cognitive dysfunctional mice and controls. The 
blue dots and red dots represent the significantly downregulated and upregulated genes, respectively. The black dots represent genes with 
no significant difference. (C) Heat map depicting relative expression level of significantly modulated mRNAs in post-radiation cognitive 
dysfunctional mice compared to controls in the hippocampus and posterior lateral ventricles. (D) Venn diagrams showing the number and 
percentage of mRNA expression in the different tissues (hippocampus and posterior lateral ventricles) and the different experimental groups 
(post-radiation cognitive dysfunctional mice and controls). 
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Figure 2 Protein-protein interaction network of targeting 
genes. The green dots and yellow dots represent the significantly 
downregulated and upregulated genes, respectively.

Figure 4 Protein-Transcription Factor network. Network analysis 
results of the top 6 transcription factors and the DEMs of targeted 
genes. The green dots and green dots represent the transcription 
factor and genes, respectively.

Figure 3 Functional analysis for the intersected differentially expressed mRNAs. (A) The Gene Ontology annotation of differentially 
expressed genes. Canonical pathways significantly altered after irradiation are shown: top 10 related biological processes (BP), top 9 related 
cell component (CC) and top 10 related molecular function (MF). (B) Pathway enrichment results for differentially expressed genes. Top 3 
canonical pathways significantly altered are shown.

cognitive dysfunction in the early period (<1 month) after 
brain radiotherapy.

Cognitive dysfunction has become an increasingly 
important issue for patients with brain tumors and brain 
metastases due to the wide use of brain radiotherapy, 
especially the whole-brain radiation therapy (28). Brain 
radiotherapy has harmful effects on multiple organ 
systems, such as the CNS, which lead to neurotoxic adverse 
reactions, including acute and delayed complications. A 

phase III trial was terminated early because the patients 
assigned to brain radiotherapy were more likely to 
have a deterioration in learning and memory function 
despite an improved intracranial control (29). An analysis 
of long-term survivors found that radiation-induced 
neurocognitive decline started at approximately four 
months after treatment initiation, which was followed 
by an improvement and then a progressive irreversible 
deterioration in neurocognitive function at 12 months or 
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later after irradiation (30). However, it is important to note 
that tumor progression during this time period could also 
adversely affect cognition. Therefore, research in the subtle 
early manifestations of irradiation damage to the CNS 
during the early period (<1 month) is essential. Several 
studies demonstrated that permanent cognitive disability 
may result from the early synergism of CNS damages 
leading to macrostructural and microstructural alterations 
(5,9,13). In the current study, 14 differentially-expressed 
genes associated with postradiation cognitive dysfunction 
during the early period after irradiation were identified 
in both the Hipp and pLV brain areas: AGPAT2, STOM, 
CD53, UBE2C, OIP5, GPD2, DEPDC1, CTSS, CD40, 
PTPN22, SIGLEC11, OTUD7B, EPHX1, and RBL1. These 
genes were obtained to identify the functional significance 
of DEMs. Furthermore, the PPI network analysis showed 
that CTSS, CD53, and CD4 were the hub nodes in the PPI 
network built in this study. 

Several researchers have speculated that the early 
dysfunction of the surviving neuronal cells alters the 
signaling microenvironment, thus influencing progenitor 
cell differentiation and cognitive capacity over the long term 
(9,31,32). KEGG pathway analysis in our study suggested 
that the neuroactive ligand-receptor interaction pathways 
may play important roles in early CNS damages caused by 
radiation. A recent study indicated that α-synuclein could 
cause miRNA deregulation, which targeted neuroactive 
ligand-receptor interaction pathways in the early stage 
of Parkinson's disease in the drosophila model (33).  
GO classification and enrichment analysis showed that 
the regulation of calcium-ion transport and mitotic 
spindle associated pathway may play an important role. 
The regulation of calcium-ion transport is closely related 
to mitochondrial energy metabolism, and recent studies 
demonstrated that alterations in calcium homeostasis 
were at the basis of increased vulnerability of neurons 
during aging-related processes, such as cognitive decline 
and synaptic dysfunctions (34). Radiation is now known 
to suppress both the proliferation of hippocampal SGZ 
progenitor cells and their differentiation into neurons (9). 
Neurogenesis in the murine hippocampus was reduced after 
5 Gy or 10 Gy of intracranial X-ray irradiation, which was 
associated with impaired spatial learning (35,36).

In our study, TFs were predicted to establish biological 
mechanisms that contributed to postradiation cognitive 
dysfunction. The top three TFs including TFAP4, RUNX1, 
and CUX2 were involved in potential target gene regulation. 
TFAP4, TF activating enhancer binding protein 4, is a TF 

that is selectively expressed in the brain, and it may play an 
important role in cellular damage compensation through 
neurobehavioral recovery and neurovascular remodeling 
after brain injury (37,38). The potential biological 
mechanisms of TFAP4 involve endothelial cell proliferation, 
cell survival and migration, as well as neuroprotection or 
improved neurovascular coupling through the regulation of 
kinase insert domain receptor, a vascular endothelial growth 
factor receptor (39,40). Furthermore, TFAP4 was shown 
to be involved in transcriptional repression in Alzheimer's 
disease and postoperative cognitive dysfunction (41,42). 
In recent years, the role of runt-related TF 1 (RUNX1) 
in neural development has been studied in different 
models. These studies suggested that RUNX1 played an 
important role in the proliferation and differentiation of 
neural progenitor cells (NPCs), the control of neurite 
outgrowth, and in the axonal pathfinding (43,44). In the 
hippocampus, which is a major site of postnatal/adult 
neurogenesis, NPCs generate newborn dentate gyrus 
granule cell neurons throughout life, and this process of 
hippocampal neurogenesis is thought to be critical for 
the normal hippocampal function (45). Animal studies 
have elucidated the pathological effects of radiation on 
hippocampal progenitor cell biology. Research using these 
models has demonstrated that exposure to therapeutic doses 
of irradiation resulted in increased apoptosis, decreased 
cell proliferation, and decreased neuronal differentiation 
in the neurogenic region of the hippocampus (46).  
Moreover, RUNX1 has been suggested to play a role in 
peripheral and CNS development, in defining different 
brain compartments, and in consolidation of the specific 
neuronal identity in the developing mouse nervous system 
(47,48). CUX2 is a member of the homeodomain TF 
family containing cut repeat DNA-binding sequences and 
is primarily expressed in nervous tissues. Reports have 
shown that CUX2 might act as a trigger to end expansion 
and exit the cell cycle (49,50). However, further studies are 
required to understand how CUX2 influences the balance 
between the decision to reenter or exit the cell cycle and to 
fully evaluate how these CUX2 functions might play a role 
in early postradiation cognitive dysfunction. These TFs 
have close associations with neurovascular repair, nerve 
cell proliferation, differentiation, and neural development 
and may be key regulators during postradiation cognitive 
dysfunction development, which confirms that the current 
study method is effective in identifying key TFs. Results 
of key TF predictions suggest that AP4 and RUNX1 play 
pivotal roles in the regulation of potentially important 
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key genes, such as CTSS, that contribute to postradiation 
cognitive dysfunction.

Conclusions

Multifactorial origins contribute to the irreversible cognitive 
deterioration after intracranial radiotherapy because the 
CNS contains many structures that are potentially sensitive 
to radiation (51). In our study, 14 DEMs were identified 
as gene products involved in postradiation cognitive 
dysfunction based on bioinformatics analysis. CTSS, 
CD40, and CD53 were the top three hub genes based 
on the PPI network construction, and TFAP4, RUNX1, 
CUX2 were the top three TFs predicted. GO enrichment, 
KEGG pathway analysis, and previous studies indicated 
that these genes might be associated with the pathogenesis 
of postradiation cognitive dysfunction in the early period. 
All these conclusions provide new insights into the roles 
of crucial TFs associated with postradiation cognitive 
dysfunction in mouse models. However, no other reports at 
present have shown that these TFs were linked with early 
postradiation cognitive dysfunction. Therefore, additional 
studies on the association of these potential biomarkers with 
postradiation cognitive dysfunction are required to further 
substantiate the results obtained in our research.
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