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Introduction

Aplastic anemia (AA) is characterized by marrow failure 
due to several reasons. Although the exact pathogenesis 
is unclear, it is speculated to be caused by immunological 

relevance (1). The abnormal activation of T lymphocytes 

and the excess secretion of interferon-γ (IFN-γ) are major 

factors, resulting in subsequent apoptosis of hematopoietic 

cells (1,2). The expression of IFN-γ is regulated by IFN-γ 
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gene polymorphism and is influenced by interferon 
regulatory factor-1 (IRF-1) gene; also, the residual 
expression of IRF-1 might inhibit the cell proliferation (3-6). 
Under the condition of downregulated expression of IRF-
1, the pro-apoptotic role of IFN-γ can be reversed. Our 
previous study showed that activated Akt can significantly 
promote the proliferation and inhibit apoptosis of mouse 
myeloid progenitor cell line (32D cells) and IFN-γ can 
regulate cell proliferation and apoptosis by regulating 
Akt (7). To date, the article associated with the reversal 
of IFN-γ on the hematopoietic stem/progenitor cells has 
not reported. Jak-Stat and PI3K/Akt signaling pathways 
play critical roles in cell proliferation and apoptosis 
(8,9); however, the pathway underlying the reversal of 
IFN-γ is not yet clarified. Herein, with the effects of 
IFN-γ on 32D cells expressing wild-type Akt after IRF-1  
gene silencing, we explored the mechanisms of IFN-γ-
mediated conversion from inhibition to promotion of 
hematopoiesis and our findings might contribute to a better 
understanding of the bidirectional regulation of interferon 
on hematopoiesis. We present the following article in 
accordance with the MDAR checklist (available at http://
dx.doi.org/10.21037/tcr-20-1866).

Methods

Cell culture

Murine myeloid precursor 32D cells were stably transfected 
with the wild-type Akt and inactive-type Akt (Inactive Akt 
mutant plasmids were transfected into 32D cells using 
Lipofectamine 2000 according to the manufacturer’s 
manual), respectively. The cells were provided by F. Dong 
(Toledo University, OH, USA) as a generous gift. The 
cells were maintained in Roswell Park Memorial Institute 
(RPMI) 1640 medium supplemented with 10% fetal bovine 
serum (FBS), 10% WEHI-3B cell-conditioned reagent 
including IL-3 (essential nutrition cytokine), 100 µg/mL 
penicillin, and 100 µg/mL streptomycin.

Reagents

Antibodies against IRF-1, Stat3, phospho-Stat3, Stat5, 
phospho-Stat5 were purchased from Cell Signaling 
Technology. Recombinant murine IFN-γ was purchased 
from PeproTech. Interference vector of the IRF-1 gene was 
constructed and packaged by GeneChem (Shanghai, China). 
The apoptosis detection kit and Lipofectamine 2000 reagent 

were obtained from Invitrogen. Super ECL Plus Detection 
Reagent was procured from Pierce Biotechnology.

siRNA vector construction and transfection

Short interfering RNA (siRNA) eukaryotic expression 
vector to reduce the expression of IRF-1 was constructed 
and transfected into 32D cells expressing wild-type Akt 
and inactive-type Akt. According to the requirements of 
different groups, the cells were grown to the logarithmic 
growth phase in 24-well plates and transfected with siRNAs 
according to the instructions of Lipofectamine 2000. Then, 
the silencing effect of the IRF-1 gene was detected by real-
time quantitative polymerase chain reaction (RT-qPCR) 
and Western blotting.

Detection of silencing effect through RT-PCR assays

Total RNA was extracted by TRIzol, and cDNA was 
synthesized through reverse transcription according 
to the instructions of the reverse transcriptase kit in a 
two-step RT-PCR. The forward primer sequence of 
IRF-1  was GGGACATTGGGATAGGCA and that 
of  reverse  was  CTCAGGAGGGCAAGAACG. In 
addition, the forward primer sequence of GAPDH was 
TGGTGAAGGTCGGTGTGAAC and that of reverse 
was GCTCCTGGAAGATGGTGATGG. The reaction 
conditions were as follows: pre-denaturation at 95 ℃ for 
15 s, followed by 45 cycles of denaturation at 95 ℃ for 5 s,  
annealing and extension at 60 ℃ for 30 s. The Ct values 
were analyzed to obtain the relative expression of the target 
gene.

Detection of the cell viability and inhibition rate

The logarithmic growth phase cells were seeded in 96-well 
plates and incubated at 37 ℃ in 5% CO2 incubator, followed 
by addition of the drug on the next day according to the 
experimental groups. After 24, 48, and 72 h incubation, 20 
μL of middle-time-spray (MTS) reagent was added. The 
reaction was terminated at 3 h, and OD value was measured 
at 490 nm by a microplate reader.

Detection of cell apoptosis

Cells (1×105 cells/mL) were incubated with various 
concentrations of IFN-γ for 24 h and 48 h, respectively. 
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Then, the cells were collected after serum starvation of 4 h 
(yet with IL-3), and the apoptotic rate was determined by 
flow cytometry.

Western blot analysis

The cells were cultured in the presence of various 
concentrations of IFN-γ after transfection with siRNA 
vector and negative control (NC) and serum starvation for 
4 h. The cell extracts were prepared and separated by SDS-
PAGE, followed by transfer to a PVDF membrane. The 
membranes were blocked at room temperature for 2 h and 
probed with appropriate antibodies. The immunoreactive 
proteins were detected by ECL following the manufacturer’s 
protocol.

Statistical analysis

Statistical significance in our results were calculated using 
GraphPad software. In this paper, CCK8 and real-time 
PCR data were analyzed using the two-tailed Student’s 
t-test. In general, n.s. indicates not significant, and *, **, 
and *** indicate P values less than 0.05, 0.01, and 0.001, 
respectively. All statistical significance was calculated using 
“knockdown group (KD)” vs. “blank control (Ctrl)”, or 
“negative control (NC)” vs. “blank control (Ctrl)”.

Results

IRF-1 gene silencing through siRNA

To verify the silencing effect of the IRF-1 gene, fluorescence 
microscopy was used to observe the effect of transfection 
(Figure 1A). The results from RT-PCR assays suggested 
that the relative expression level of IRF-1-mRNA in the 
knockdown group (KD) was less than that of in the NC and 
blank control (Ctrl) (Figure 1B). In addition, the silencing 
efficiency was >70%, which was further validated by 
Western blotting. The expression level of IRF-1 protein in 
the IRF-1-siRNA group was significantly lower than that of 
in the NC and Ctrl groups (Figure 1C).

Detection of the cell viability and apoptotic rate after  
IRF-1 gene silencing

Cell viability and inhibition rate were assayed by MTS after 
incubation with IFN-γ for up to 6 days, and the apoptotic 
rate was determined by flow cytometry after incubation 

for 24 h and 48 h and after serum starvation for 4 h. After 
treatment with IFN-γ for 24 h, the low concentration 
of IFN-γ in the IRF-1 downregulated group promoted 
proliferation and inhibited apoptosis, whereas the high 
concentration suppressed the proliferation and induced 
apoptosis. Moreover, at 72 h, the IRF-1 silent group with 
different concentration all promoted proliferation and 
inhibited apoptosis (P<0.05) (Figure 2). These results 
suggested that the negative regulatory role of IFN-γ 
in hematopoiesis may be completely reversed with the 
prolonged duration after silencing the expression of the 
IRF-1 gene. In this study, the proliferation ratio of the two 
cells at different time points was compared. The rate of 
proliferation of 32D cells of wild-type Akt was significantly 
higher (P<0.01) than that of inactive-type Akt. On the 
other hand, the apoptosis rate in wild-type was significantly 
less (P<0.01) than that of inactive Akt at all time points, 
especially at 48 h (Figure 3). This suggested that the 
expression of active Akt promotes the proliferation of cells 
and inhibition of apoptosis, and the Akt signal pathway 
might play a critical role in the IFN-γ-mediated reversal of 
promoting cell proliferation. 

Levels of p-Stat3 and p-Stat5 were investigated by  
Western blot

The result suggested that Akt can promote the p-Stat3 
level, which might be critical in the reversal of IFN-γ. 
Moreover, it was a key gene in the reversal of IFN-γ effect 
after IRF-1 silencing. Compared to the control group, 32D 
cells with inactive-type Akt or wild-type Akt, the p-Stat5 
level was not significantly different before the IRF-1 
silencing in each group. The p-Stat5 level was significantly 
inhibited after IRF-1 silencing at the high concentration 
of IFN-γ. These observations revealed that IFN-γ did not 
affect the p-Stat5 level before IRF-1 silencing. Nevertheless, 
IFN-γ significantly reduced the p-Stat5 level at a specific 
concentration, thereby indicating that the reversal effect of 
high concentration of IFN-γ might be achieved by reducing 
the p-Stat5 level after IRF-1 gene was silenced (Figure 4).

Discussion

The role of IRF-1 gene in promoting apoptosis of IFN-γ

Previous studies had shown that the excessive apoptosis of 
hematopoietic cells was caused by a high concentration of 
IFN-γ in AA patients, the primary cause of AA incidence 
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Figure 1 Transfection of IRF-1-siRNA plasmid and verification of IRF-1 gene silencing effect. (A) Modified-cell morphology observed with 
fluorescence microscope. 32D cells transfected with IRF-1-siRNA expressing wild-type Akt or inactive Akt. The transfection efficiency was >80%. 
(B) The expression levels of IRF-1 protein in 32D cells. The expression levels of IRF-1 protein in IRF-1-siRNA plasmid transfection group were 
significantly lower than that in the negative control and blank control groups in 32D cells expressing wild-type Akt (P<0.05). In the other 32D 
cells expressing the inactive-type Akt, the expression levels of IRF-1 protein in the IRF-1-siRNA plasmid transfection group were significantly 
lower than that in the negative control and blank control groups (P<0.05). (C) The relative expression levels of IRF-1-mRNA in the knockdown 
group were less than that in the empty vector negative control and blank control groups. The relative expression levels of IRF-1 mRNA in the 
knockdown group of 32D cells expressing wild-type Akt was 0.247±0.051 that was significantly lower than the negative control and blank control 
groups (P<0.05). Moreover, in the case of 32D cells with inactive-type Akt, the IRF-1 mRNA expression levels in the knockdown group were 
0.283±0.060 that were markedly lower than the negative control and the blank control groups (P<0.05). **, P<0.01; n.s., no significance; Ctrl, the 
blank control group; NC, the empty vector negative control; KD, the knockdown group transfected with IRF-1-siRNA plasmid; Akt, protein 
kinase B; IRF-1, interferon regulatory factor 1; mRNA, messenger RNA; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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(1,2,10,11). The mechanism underlying IFN-γ-inhibited 
hematopoiesis was complex, involving several ways for the 
occurrence of AA. Several investigations indicated that  
IRF-1 gene could activate not only the expression of IFNs 
but also show the activity of tumor suppressor, which can 
inhibit cell proliferation as an anti-cancer effect (11-13);  
also, the micro-expression of IRF-1 inhibited the cell 
proliferation (3). These studies showed that IRF-1 gene 
plays a major role in the IFN-γ-inhibited cell proliferation. 
Sato et al. found that IFN-γ promoted cell proliferation 
in leukemia when the expression of the IRF-1 protein was 

suppressed, and the proliferation efficiency was associated 
with the degree of IRF-1 gene inhibition (14-16). Herein, 
siRNA technology was employed to silence the IRF-1 gene, 
and the results suggested that the pro-apoptotic role of 
IFN-γ reversed the cell proliferation and effectuated anti-
apoptosis after IRF-1 gene silencing. Thus, the critical role 
of IRF-1 gene in promoting apoptosis of IFN-γ was evident.

The role of Akt in promoting cell proliferation

Akt is a downstream critical target protein of PI3K family. 

Figure 2 Effect of IFN-γ on the proliferation and survival of 32D cells in the presence of various drug concentrations in transfection 
groups at different time points. The OD values of 32D cells of wild-type Akt (A,B) and inactive-type Akt (C,D) were measured and a 
linear correlation was identified between the OD value and the cell number. NC represents the empty vector negative control, and KD 
represents the knockdown group transfected with IRF-1-siRNA plasmid. The cell viability was tested at the indicated times using an MTS 
cell proliferation assay. The data represent the mean ± SD of three independent experiments. ***, P<0.001; **, P<0.01; n.s., no significance; 
NC, the empty vector negative control; KD, the knockdown group transfected with IRF-1-siRNA plasmid; OD, optical density; IFN-γ, 
interferon-gamma; Akt, protein kinase B.
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It is commonly associated with in vivo signal transduction 
and is closely related to the cellular activity, metabolism 
regulation, and the inhibition of apoptosis (17-19). Our 
previous study suggested that Akt is involved in IFN-γ-
mediated cell proliferation (20). To further confirm that 
the vital role of Akt in the effect of IFN-γ before and 
after silencing the IRF-1 gene, the mechanism underlying 
IFN-γ in the reversal of the effect was explored. 32D cells 
expressing wild-type of Akt as target cells and inactive Akt 
as control cells were used for comparing the diverse roles 
of IFN-γ. These results implied that the proliferation ratio 
of groups expressing wild-type Akt cells was greater than 
the corresponding groups expressing inactive the Akt cells 
at different time points and different concentrations of 

IFN-γ. Consequently, the apoptosis rate was less than the 
corresponding cells, thereby indicating that the expression 
of active Akt promoted cell proliferation, and Akt signaling 
pathways played a key role in IFN-γ-promoted cell 
proliferation.

The role of p-Stat3 after IRF-1 gene silencing with and 
without IFN-γ

IFN-γ plays a role through multiple signal transduction 
pathways, and Jak-Stat is one of the classical signaling 
pathways (21-23). Signal transducers and activators of 
transcription (Stats) are transcription factors, composed 
of Stat1-4, Stat5a, Stat5b, and Stat6 in the cytoplasm and 

Figure 3 Flow cytometric analysis of apoptosis induced by IFN-γ in 32D cells with wild-type Akt and inactive-type Akt. These cells were 
cultured in medium containing various concentrations of IFN-γ for 48 h, respectively, followed by analysis of apoptosis. The data shown are 
representative of three independent and statistically reproducible experiments. NC, the empty vector negative control; KD, the knockdown 
group transfected with IRF-1-siRNA plasmid; PI, propidium iodide; IFN-γ, interferon-gamma; Akt, protein kinase B.
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Figure 4 The expression of proteins from 32D cells in different plasmid-transfected groups and concentrations of IFN-γ. (A) The levels 
of Stat3, Stat5, p-Stat3 and p-Stat5 in 32D cells expressing inactive Akt. The phosphorylated Stat3 was up-regulated by IFN-γ in a dose-
dependent manner. Blocking IRF-1 also stimulated the phosphorylated Stat3, and IFN-γ further increased the p-Stat3 level. (B) The levels 
of Stat3, Stat5, p-Stat3 and p-Stat5 in 32D cells expressing wild-type Akt and the phosphorylated Stat5 in each group was similar before 
IRF-1 silencing. Only the high concentration of IFN-γ significantly inhibited the phosphorylated Stat5 after IRF-1 silencing. Moreover, 
32D cells with inactive Akt showed that the p-Stat3 level was less than that of the wild-type Akt. Ctrl, the blank control group; NC, the 
empty vector negative control; KD, the knockdown group transfected with IRF-1-siRNA plasmid; IFN-γ, interferon-gamma; Akt, protein 
kinase B; Stat3, the signal transducer and activator of transcription 3; Stat5, the signal transducer and activator of transcription 5; p-Stat3, 
phosphorylated Stat3; p-Stat5, phosphorylated Stat5; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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two with the signal pathway for tyrosine phosphorylation. 
Stat3 is an essential member of the Stats family that is 
activated by phosphorylation. Also, it regulates the gene 
transcription when activated in the nucleus, followed by 
regulating cell proliferation, apoptosis, and angiogenesis 
(24-27). In this study, Western blotting was used to detect 
the p-Stat3 level after IRF-1 gene silencing with and 
without IFN-γ. The results suggested that IFN-γ promoted 
the phosphorylated Stat3, irrespective of IRF-1 silencing. In 
addition, the p-Stat3 level was enhanced with an increase in 
the concentration of IFN-γ. The phosphorylated Stat3 was 
raised in the reversal effect of IFN-γ, which played a critical 
role in reversing the effect of IFN-γ after IRF-1 gene 
silencing.

The level and role of p-Stat5 after IRF-1 gene silencing

Furthermore, some studies demonstrated that Stat5-
specific binding sequence existed in the promoter of Bcl-XL, 
cyclin D1, c-myc, and IGF-I genes, and activated Stat5 was 
imported to the nucleus, thereby inducing the expression 
of these genes to effectuate anti-apoptosis and promote cell 
proliferation (28-32). In addition, the study by Schepers 
et al. silenced Stat5 by RNAi and found that colony 
formation ability of hematopoietic stem and progenitor 
cells was significantly decreased (33). Interestingly, 
p-Stat5 exerted an anti-apoptosis role. To identify whether 
p-Stat5 was related to the reversal role of IFN-γ after 
IRF-1 silencing, we detected the expression of p-Stat5 
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by Western blotting pre- and post-silencing of IRF-1.  
These results suggested that the phosphorylated Stat5 was 
reduced at high concentrations of IFN-γ when IRF-1 was 
silenced, while the experimental results of proliferation 
and apoptosis indicated that the high concentration of 
IFN-γ promotes cell proliferation and inhibits apoptosis 
after IRF-1 silencing. Conversely, the decreased level 
of pStat5 inhibited apoptosis, which suggested its pro-
apoptotic role, and the high concentration of IFN-γ-
reversal effect might be achieved by downregulating the 
p-Stat5 level. In addition, IRF-1 silencing might reverse 
some of the functions of IFN-γ, such that it would cause 
the other signaling pathways to decrease the p-Stat5 level, 
thereby promoting the cell growth. Strikingly, the groups 
of IRF-1 RNAi at low concentration of IFN-γ indicate the 
healthy state of cells with a low rate of apoptosis rate and no 
reduction in the p-Stat5 level. Thus, we speculated that the 
effect of proliferation in the presence of low concentration 
of IFN-γ might not affect p-Stat5. Meanwhile, we found 
that the level of p-Stat5 decreased, but Stat5 did not change, 
so IFN-γ might induce a specific decrease in the process of 
Stat5 dephosphorylation. The previous experimental results 
and the growth-promoting effect of low concentrations 
of IFN-γ together may be implemented through the 
Akt signaling pathway (20,33). Furthermore, p-Stat5 is 
speculated to exert a double modulatory role, and the effect 
of IFN-γ is closely related to IRF-1 (34-37). Finally, the 
reversal mechanisms of the high and low concentrations of 
IFN-γ were not found to be consistent, and p-Stat3, Akt, 
and p-Stat5 were involved in the reversal effect of IFN-γ. 
However, there are some limitations in our present study. 
We did not detect proteins related to Akt signaling pathway 
regulation, such as PRAS40, 4EBP and S6K. PRAS40 
participates in regulating many signaling pathways such as 
mTORC1, Akt, NF-κB and RPL11 (38). Also, we didn’t 
identify the isoform of the Akt involved in IFN-γ-mediated 
cell proliferation due to the limitations of the study, and we 
speculated that Akt 1 may be involved in IFN-γ-mediated 
cell proliferation based on literature reports (39). Owing 
to the complexity of the regulation of cytokine interactions 
and signal network, the mechanisms underlying the reversal 
of IFN-γ necessitate further investigation, especially to 
identify whether the decrease in p-Stat5 is necessary for the 
function involved in the mechanism or it is independent.
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