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Introduction

Glioma is the most common intracranial tumor, which 
accounts for approximately 50% of primary intracranial 
tumors in adults (1). High-grade gliomas (HGGs, WHO 
grade III–IV) include anaplastic astrocytoma, anaplastic 
oligodendrocytoma and glioblastoma (GBM). The annual 
incidence of HGGs in the world is 6/100,000 (2), these 
tumors progress, and overall outcomes have not changed 
much in the past decade. The two most common subtypes 
of HGGs are anaplastic astrocytoma and GBM, which 
account for more than 80% of HGGs (3), and the 5-year 
survival rate is 27% and 5% (4), respectively. Complete 

surgical resection and comprehensive treatment with 
postoperative radiotherapy and chemotherapy is the 
recommended treatment for HGGs at present. The 
European Organisation for Research and Treatment of 
Cancer-National Cancer Institute of Canada (EORTC-
NCIC) randomized phase III trial published in 2005 
confirmed the role of the concomitant and adjuvant addition 
of temozolomide (TMZ) to radiotherapy (5,6). Radiation 
therapy occupies an important role in treating gliomas, 
with the development of new technologies, combination of 
radiotherapy and multiple imaging modalities will increase 
the diagnostic accuracy and treatment efficiency of the area 
at a high-risk of relapse. However, the current situation of 
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HGGs therapy faced a choice between efficacy and toxicity. 
In recent years, researchers have made some progress 
on different radiotherapy technologies and dose fraction 
schemes. The present review summarizes the research 
progress of radiotherapy technology and the dose fraction 
scheme for HGGs. The details are reported, as follows.

The development and application of radiotherapy 
technology

Radiotherapy is one of the important treatment methods 
for HGGs. Radiotherapy performed within 6 weeks 
after the operation can significantly reduce the local 
recurrence rate, and prolong the survival of patients (7). 
With the continuous development of modern radiotherapy 
technology, radiotherapy regimens for HGG patients have 
become increasingly accurate, and the clinical effect has also 
been significantly improved. 

Importance of intensity-modulated radiation therapy 
(IMRT)

With the development of radiotherapy technology, a 
therapy plan can significantly reduce the radiation dose for 
normal brain tissues (8,9). At present, IMRT and volumetric 
modulated arc therapy (VMAT) are the most commonly 
used radiotherapy technologies for HGGs. IMRT can 
adjust the output of a standard linear accelerator (LINAC) 
according to the software, in order to change the radiation 
intensity across each treatment field. Compared with three-
dimensional conformal radiation therapy (3D-CRT), IMRT 
can increase the target coverage and conformability, reduce 
the dose of organs at risk, and accordingly reduce adverse 
reactions (10). Previous studies have revealed that (11-13) 
patients with HGGs undergoing IMRT presented with low 
doses in the brain, brainstem and optic chiasm, and a high 
target coverage, while IMRT did not increase the survival 
of these patients. 

VMAT is one of the IMRTs, in which the radiation 
source arc rotates around the patient, and emits rays for the 
radiotherapy. Previous studies have revealed that (14,15) 
compared with IMRT, VMAT is better in terms of delivery, 
and the coverage of the target areas of these two are equal. 
Furthermore, it reduces the machine monitor unit and 
radiotherapy time, improves the effect and comfort of the 
treatment. However, there is presently no consensus on 

which is more advantageous in protecting organs at risk 
between VMAT and IMRT. 

Proton radiotherapy

Proton therapy is a commonly used form of particle 
therapy. Protons have unique physical properties. The 
application results of proton therapy for different tumors 
have been confirmed in phase I and phase II clinical trials 
(16-18). Compared with photon radiotherapy, the proton 
has a Bragg peak, a better dose distribution in tumors, a 
higher biological effect, and a lower dose to normal tissues. 
Local recurrence is the main failure model of HGGs after 
treatment, and local treatment, which mainly include 
a secondary operation and re-radiotherapy, is the main 
treatment for recurrent patients. However, the treatment 
effect is poor. Furthermore, it induces many complications 
after treatment, which affects the quality of life of patients, 
thereby preventing most patients with postoperative 
recurrence from obtaining an effective treatment. Verma  
et al. (19) investigated the safety and effectiveness of proton 
radiotherapy for recurrent patients, and it was suggested 
that proton radiotherapy can be used as an effective rescue 
treatment for recurrent patients. However, the late toxicity 
remains to be investigated. Adeberg et al. (20) conducted 
a study on 66 HGG patients, who were treated with 
conventional postoperative radiotherapy (50 Gy, 2 Gy/f), 
and subsequently treated with an added proton dose (an 
equivalent biological dose of 10 Gy, 2 Gy/f). Compared 
with the conventional treatment group (60 Gy, 2 Gy/f), the 
progression-free survival (PFS) and overall survival (OS) 
were similar. Furthermore, in the proton dosage group, the 
planning target volume (PTV) was significantly decreased 
(P<0.001), and the third-grade side effect was milder. A 
study on six centers was conducted by Vora et al. (21), which 
had the largest population on HGG proton radiotherapy. 
In this study, 63 patients were treated from 2009 to 2017, 
and these patients were followed up (73% of patients were 
at WHO grade IV, and 27% of patients were at WHO 
grade III), with a median follow-up duration of 15 months. 
Among these patients, 89% of these patients received TMZ 
chemotherapy during the proton therapy, and the mean 
dose of the proton radiotherapy was 59.4 GyE (40–66 GyE/ 
15–33 f). Furthermore, the median OS was 18.3 months, 
the 2-year OS was 39%, and >3 levels of toxicity reaction 
occurred in three patients. These results reveal that proton 
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radiotherapy has good tolerance, and its prognosis is similar 
to that of traditional therapy. 

The development of imaging technology and 
HGG radiotherapy

Malignant glioma has no capsule, and infiltrative growth 
is one of its characteristics. The growth characteristics 
of HGGs make it difficult to determine the boundary 
between the tumor and the normal tissue. Pathology has 
also confirmed that scattered tumor cells infiltrating along 
the new blood vessel can be found in the peripheral edema 
area (22). Magnetic resonance imaging (MRI) is the most 
commonly used examination method for HGGs. In recent 
years, MRI technologies, including diffusion-weighted 
imaging (DWI), diffusion tensor imaging (DTI) and 
magnetic resonance spectroscopy (MRS), have been widely 
used in HGG radiotherapy. The development of other 
new examination technologies, such as positron emission 
tomography (PET), has also brought new progress to the 
radiotherapy of HGGs. 

DWI

DWI reveals lesions by detecting the diffusion of water 
molecules and the apparent diffusion coefficient (ADC). 
A literature (23) considered that the lower the ADC value 
is, the higher the cell density and proliferation activity are. 
Therefore, areas with a low ADC value have high tumor 
density and obvious infiltration. Another study (24) revealed 
that DWI can help to define the boundary of glioma and 
its surrounding infiltration, and the accuracy of the HGG 
target delineation can be improved by increasing the dose 
of the high-risk area, according to the changes in the 
DWI image and ADC value. Park et al. (25) delineated the 
target areas of HGG patients according to the ADC and 
MRI-T1. They reported that the dose to the optic nerve 
and brainstem in the ADC-IMRT plan was reduced by 10% 
and 16%, respectively. 

DTI is one of the DWIs, which can evaluate the 
structure and physiological state of tissues by detecting 
the diffusion of water molecules. Anisotropic fraction 
(FA) is the most commonly used index of DTI. The 
decrease in FA value reflects the abnormality of white 
matter tracts. DTI can be used to distinguish between 
low-grade gliomas and HGGs, and it can also be used to 
distinguish between gliomas and brain metastasis (26). 
Jena et al. conducted a study (27), in which conventional 

radiotherapy and a radiotherapy plan with reference to the 
DTI were compared in HGG patients. The mean PTV 
of the target area in the DTI radiotherapy plan decreased 
by 35% (18–46%), and the toxicity in the two groups was 
similar during the treatment. Therefore, they considered 
that the application of DTI technology is expected to 
achieve individualized radiotherapy, and that the curative 
effect may be more significant. However, further studies 
are needed to determine how to make it play a better role. 
In a study conducted by Bian et al. (28), the DTI and FA 
measurement of the bilateral hippocampus were performed 
on 23 HGG patients before and after the radiotherapy, 
and the results revealed that after radiotherapy, the FA 
values of the bilateral hippocampus decreased, and this 
decrease in FA was prior to the occurrence of cognitive 
impairment. Therefore, DTI and FA value measurement of 
the hippocampus may be an effective examination method 
for radiation-induced neurocognitive impairment. 

MRS

MRS is an MRI technology that can reflect the disease 
situation by detecting the concentration of metabolites in 
the body. The substances detected by MRS mainly include 
creatine (Cr), choline (CHO), lipid (LIP), lactic acid (LAC), 
acetyl aspartic acid (NAA), etc. The CHO signal reflects 
the formation and change of the cell membrane. NAA is a 
neural marker, which reflects the integrity of neurons (29). 
A previous study (30) revealed that compared with normal 
brain tissues, for HGGs, the CHO value was elevated, 
but the NAA and Cr values decreased. Furthermore, the 
sensitivity of MRS to tumor invasion was better, when 
compared to traditional enhanced MRI. MRS can also 
be used to distinguish between brain injury and tumor 
recurrence caused by radiotherapy. A study reported  
that (31) the sensitivity and specificity of CHO/NAA and 
NAA/Cr for tumor recurrence were 86% and 90%, and 
93% and 70%, respectively. However, further studies are 
needed to determine how MRS guides radiotherapy and 
target delineation.

PET/computed tomography (CT)

PET can remedy the shortcomings of MRI and other 
anatomical images by reflecting the HGG situation from 
molecular and metabolic aspects. The most commonly 
used contrast in PET is 18F-fluorodeoxyglucose (18F-FDG). 
However, due to the high intake of glucose by the brain, 
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18F-FDG is not sensitive enough to produce the imaging 
picture of glioma. Other contrasts include amino acids, 
choline, acetic acid, nucleic acid, neuroreceptors, and 
amino acids is more commonly used than others. Compared 
with 18F-FDG, amino acids, including 11C-methionine 
(11C-MET), O-(2-[18F] fluoroethyl)-L-tyrosine (18F-FET), 
can show the proliferation and metabolism of the tumors at 
the metabolic and receptor level, and it’s absorbed more in 
the tumor than normal tissues, thus is better in the imaging 
of glioma (32). 18F-FET has longer half-life (109.8 min) 
than 11C-MET, so it’s more used in clinic (33-35). Munck 
et al. (36) performed 18F-FET PET and MRI scans on  
54 HGG patients, and delineated the target areas. The 
volume of the target area based on the PET was larger in 
WHO grade IV patients (P<0.001), but smaller in patients 
with larger and more complete surgical resections (P=0.004). 
Therefore, researchers have speculated that target areas 
based on the PET may benefit patients at grade IV. 
However, this needs to be verified through a randomized 
prospective study. 

Target volume definition for HGG during initial 
radiotherapy may yield significantly differing results 
depending upon the imaging modality. CT and MRI can 
show bony structure and soft tissue, respectively, and the 
combination of PET with CT or MRI can better distinguish 
tumor and normal brain tissue. PET/MRI fusion is more 
comprehensive than single examination in the diagnosis 
of glioma (37) and can more accurately define the target 
area, thereby making the radiotherapy of HGG patients 
more accurate. Researchers compared the radiotherapy 
plans of 44 patients with recurrent HGG, and found that 
the survival time of patients treated with the PET/MRI 
fusion radiotherapy plan was longer, when compared to 
patients treated with the CT/MRI radiotherapy plan (9 vs.  
5 months) (38). 

Dose fraction scheme

Fractionated external irradiation is the standard treatment 
for HGGs. Its survival rate is almost twice as surgery 
alone (39), but whether and how radiation therapy should 
be applied depends on characteristics specific to tumor 
and patient, including age and performance status. The 
suggested dose for HGGs is 60 Gy/30 f, or 59.4 Gy/33 f; 
for tumor with larger size or WHO grade III astrocytoma, 
dose can be decreased to 55.8–59.4 Gy, 1.8 Gy/f, or 
57 Gy/30 f. If boost dose is used, radiation dose can be 
increased by 14 Gy (2.0 Gy/f) or 9–14.4 Gy (1.8 Gy/f) after 

treatment at 46 Gy (2 Gy/f) or 45–50.4 Gy (1.8 Gy/f) (40).  
When depict ing gross  tumor volume (GTV),  i t ’s 
suggested to use MRI T1 enhanced phase and T2 
fluid-attenuated inversion recovery (FLAIR) phase. 
For WHO grade III tumors, clinical target volume 
(CTV) is 1–2 cm outside GTV, but for GBM, CTV 
is 2–3 cm outside GTV. However, HGGs have high 
malignancy and a high postoperative recurrence rate, 
and 90% occurs within 2 cm of the primary tumor, so 
it’s important to optimize the local radiotherapy (41). 
Researchers found that when split dose remains the same, 
increasing total dose does not bring more benefit to  
patients (42). Therefore, researchers have explored various 
fraction methods and radiotherapy regimens, including 
stereotactic radiosurgery (SRS), stereotactic radiotherapy 
(SRT) ,  hypofrac t ionated  rad iotherapy  (HFRT) , 
simultaneous integrated boost IMRT (SIB-IMRT).

SRS

The radiation sensitivity of HGGs remains unsatisfactory. 
In theory, it is better to use a large dose. SRS is a single 
high-dose radiotherapy technology, which is mostly used for 
small intracranial lesions. In 2004, RTOG9305 published 
the results of a multicenter randomized controlled trial (43). 
In this trial, patients with GBM were randomly divided into 
two groups: one group of patients received conventional 
radiotherapy (60 Gy/30 f), while the other group of 
patients received routine external radiation immediately 
after treatment with SRS (15–24 Gy/f). Patients in both 
groups were treated with carmustine chemotherapy. The 
results revealed that there was no significant difference in 
median survival time. However, this trial was discussed, 
because SRS was conducted before external radiation, and 
carmustine was not used as a routine treatment in GBM 
patients. Some subsequent retrospective studies on SRS 
revealed that SRS can be used as a safe and effective treatment 
for HGG patients with small recurrent tumors (44-46). Morris 
et al. (47) reported that 45 patients with recurrent GBM 
were treated with SRS and bevacizumab. The median 
tumor volume was 2.2 cm3, and the average dose of SRS was 
17 Gy (13–24 Gy), PFS and OS were 5.2 and 13.3 months 
after SRS, respectively. Abbassy et al. also reported that (48) 
recurrent GBM patients treated with SRS and bevacizumab, 
PFS and OS were 7.5 and 13 months, respectively. These 
studies reveal that SRS is beneficial for increasing the 
dose of HGG radiotherapy, and provides a new treatment 
approach for recurrent HGGs. However, in these studies, 
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the sample sizes were small. The best population to benefit 
from SRS, the choice of the best dose of treatment, and the 
determination of when to intervene the SRS needs to be 
determined through further studies. 

SRT

SRT is a non-coplanar, multi-field, 3D and multi-
fractionated radiation mode developed on the basis of 
SRS. SRT is similar to SRS in terms of dose, but the dose 
gradient is not as large as that of SRS. Therefore, compared 
to SRS, SRT can be used to treat large tumors and multiple 
fractionated radiation can also reduce the radiation damage 
to normal tissues (49). Compared with the conventional 
treatment regimen, SRT can reduce the treatment time to  
2 weeks and the shortened treatment time would significantly 
improve the quality of life of patients.

The RTOG0023 (50) included 76 patients with 
GBM, and these patients were treated with conventional 
fractionated radiotherapy with a total dose of 50 Gy. SRT 
(5–7 Gy/f) was added weekly during the 3–6 weeks of 
treatment. The median survival was 12.5 months and had 
no significant survival benefit when compared with the 
historical RTOG data. Many studies after RTOG0023 
suggest that for relapse and elderly HGG patients, 
the benefits of SRT would be more significant. Fogh 
et al. investigated (51) the toxicity and efficacy of SRT  
(35 Gy/10 f, 3.5 Gy/f) in 147 patients with recurrent 
HGGs. The results revealed that SRT was well-tolerated 
and the median survival time after SRT was 11 months. 
Young patients, patients with small GTV sizes, and patients 
with short intervals between diagnosis and recurrence may 
have significant survival benefits. SRT is recommended for 
HGG patients who relapse within 6 months after traditional 
treatment. RTOG1205 (52) is the first multicenter, 
randomized controlled phase II clinical trial for recurrent 
GBM. Patients in this trial were divided into two groups: 
SRT (35 Gy/10 f, 3.5 Gy/f) + bevacizumab (10 mg/kg, once 
every 2 weeks) group and bevacizumab alone (10 mg/kg,  
once every 2 weeks) group. A total of 182 patients were 
enrolled in this study. There was no significant difference in 
median survival time between these two groups. In the SRT 
+ bevacizumab group, PFS increased to 6 months (54% vs. 
29%; HR 0.42, 95% CI: 0.34–0.50, P=0.001). 

HFRT

HFRT pertains to the administration of a large fractionated 

dose in a short time, and a single fractionated dose is 
greater than 2.5 Gy/f (for example, 60 Gy is fractionated 
into 15–20 times). HFRT is more frequent, and has fewer 
single doses, when compared to SRT. Various studies 
have revealed that elderly patients with GBM can benefit 
from HFRT. In the Nordic Trail (53), 342 elderly patients 
were randomly assigned to three groups: TMZ treatment  
(200 mg/m2, d1–d5, q28d) group, HFRT (34 Gy/10 f) 
group, and conventional radiotherapy (60 Gy/30 f) group. 
The OS of patients in the TMZ group and HFRT group 
was similar (8.4 vs. 7.4 months), and this significantly 
improved, when compared to that in the conventional 
radiotherapy group (6 months). This study suggests that 
conventional radiotherapy is not the best choice for elderly 
patients, especially for patients >70 years old. Furthermore, 
TMZ and HFRT should be used as a standard treatment 
for elderly GBM patients. Biau et al. (54) conducted a study 
on elderly patients with GBM, who were treated with 
HFRT + TMZ. This study also confirmed that HFRT + 
TMZ can benefit elderly patients with GBM, and TMZ 
treatment was recommended, regardless of the methylation 
of the O6-methylguanine-DNA-methyltransferase 
(MGMT). Roa et al. (55) conducted a study on 98 GBM 
patients (aged or frail), who were randomly divided into 
two groups (25 Gy/5 f and 40 Gy/15 f). The differences 
in OS, PFS and quality of life between these two groups 
were not statistically significant. The median survival time 
was 7.9 and 6.4 months, respectively. Considering the 
treatment time, the 25 Gy/5 f regimen was preferred. In 
the EORTC/NCIC/Trans-Tasman Radiation Oncology 
Group (TROG) phase III clinical trial (56), 562 GBM 
patients (over 65 years old) were randomly divided into 
two groups: HFRT (40 Gy/15 f) group and HFRT + TMZ 
group. The OS of patients in these two groups was 7.6 and  
9.3 months, respectively, and the PFS was 3.9 and 5.3 months, 
respectively. The differences were statistically significant. 
This study concluded that HFRT combined with TMZ can 
be recommended as a standard treatment for new GBM in 
the elderly. 

SIB

Glioma has the characteristics of recurrence in situ, and 
its local recurrence is closely correlated to the survival of 
HGG patients (10). SIB-IMRT can irradiate different doses 
to different targets at the same time without increasing 
the toxicity to normal tissues (57). Cho et al. (58) treated  
40 HGG patients with SIB-IMRT. The PTV dose per time 
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was 2.0 Gy, the planning gross tumor volume (PGTV) 
dose per time was 2.4 Gy, a total of 25 times of treatment 
was given. The median survival time was 14.8 months. 
It has been proven that SIB-IMRT is safe and feasible, 
and that its survival is equivalent to that of traditional 
radiotherapy. However, the best fractionated dose and its 
effect still needs to be further explored. Some scholars 
(59) have studied the maximum tolerable dose of SIB in 
HGG patients. The dose for PTV1 (operated cavity and 
residual tumor) started from 2.8 Gy, and was increased 
in each group by 0.4 Gy, in order to carry out a dose 
climbing test. A total of 20 f was set. PTV2 (PTV1 + 2 cm)  
was given at 2.5 Gy at a time, for a total dose of 50 Gy, 
TMZ was concurrently given during the treatment. The 
results reveal that the maximum single-tolerance dose of 
SIB when combined with TMZ was 3.6 Gy/f (72 Gy/20 f), 
and that the median OS and PFS were 19 and 16 months, 
respectively. In the phase II clinical study conducted by 
Mallick et al. (60), 89 GBM patients, who were treated from 
2011 to 2017, were randomly divided into two groups: 
traditional radiotherapy group (60 Gy/30 f) and SIB group. 
In the SIB group, a single dose per time was 3 Gy for high-
risk PTV and 2.5 Gy for low-risk PTV, and a total of  
20 fractions were given. The median OS of patients in the 
two groups was similar (18.07 vs. 25.18 months, P=0.3), 
patients <40 years old with complete resection and isocitrate 
dehydrogenase 1 (IDH1) mutation had better OS. After 
2 years, 60% of patients in the SIB group survived, while 
merely 24% of patients in the traditional radiotherapy 
group survived. After 2 years, 30% of patients in the 
SIB group did not progress, while patients in traditional 
treatment group all progressed. In an ongoing phase III 
clinical trial (61), GBM patients were divided into two 
groups: conventional STUPP treatment group and SIB 
radiotherapy combined with TMZ group. In the SIB group, 
the target area was delineated according to MRS. When 
CHO/NAA was >2, the dose for the operated cavity and 
MR-enhanced area were simultaneously added. The single 
dose was 2.4 Gy, and the total dose was 72 Gy (30 fractions). 
These results were as expected. 

Biomarkers

Prognosis of HGG is related to many factors, including 
age, surgery, Karnofsky Performance Scale (KPS) score 
and pathology results. Detection of biomarkers can provide 
more information (62,63). MGMT is very important in 

the decision of treatment regimen. MGMT is a DNA 
modification enzyme; methylation of its promoter can 
decrease its expression; thus, DNA reparation will 
be prevented, and the tumor will become sensitive to 
chemotherapy. Hegi et al. found that methylation of its 
promoter in patients can lead to better treatment results 
and prognosis of TMZ (64). Patients with IDH1/2 
mutation usually also have MGMT promoter methylation 
(65-67). ATRX (α thalassemia/mental retardation syndrome 
X-linked) mutation is the biomarker of neuroastrocytoma; 
patients with this mutation have better prognosis. Other 
biomarkers include telomerase reverse transcriptase (TERT) 
mutation, epithelial growth factor receptor (EGFR) 
mutation, P53 mutation, and all have diagnosis values.

Radiation toxicity

Radiation toxicity include early and late stage toxicity, 
the former being reversible, which the latter being 
irreversible. Radiation will kill the newborn neuros, 
causing the loss of brain functions. Early toxicity of 
fractionated external irradiation include fatigue, anorexia, 
dermatitis, cephalgia, nausea. Late effects include 
radiation necrosis, neuroendocrine dysfunction, cognition  
disorders (68). Precise radiation has greatly decreased the 
occurrence of radiation toxicity after HGGs. The factors 
that can affect radiation toxicity include the volume of 
normal tissues that are involved in the radiation, total 
dose and fraction methods, tolerance of the patients, etc. 
HGG patients have a short median survival and high rate 
of recurrence at the original site. Many of the therapeutic 
strategies tend to increase the radiation dose to the target 
therefore increased the risk of radiation damage to the 
nearby normal brain structures, which would be associated 
with toxicity or even shortened survival (69-73).

Summary

HGGs are common central malignant tumors in clinic, 
which have the characteristics of high malignancy, short 
median survival time and high recurrence rate. Surgery, 
radiation, and chemotherapy remain the standard treatment 
options for patients with HGGs. With the continuous 
development and innovation of medical technology in 
recent years, the clinical treatment of HGGs has made 
some progress. Different groups of people should choose 
different dose fraction schemes, in order to realize the 
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individualization of treatment schemes, and provide more 
benefits to patients. For older patients, preliminary data 
suggest that using a shorter course of radiotherapy may 
benefit. For HGG patients, it is feasible to integrate 
different imagings, such as PET and MRI, with precise 
radiotherapy planning. At present, the optimal radiotherapy 
dose, the fraction model, and how to achieve individualized 
radiotherapy remains unclear. Hence, further research is 
still needed. In view of the poor prognosis of this disease, 
patients should be encouraged to participate in properly 
conducted experimental studies.
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