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Buzzwords indicate popular trends in research fields. These 
terms might last for decades or perish in just a few years (1). 
Over the last ten years, we have witnessed the rise of a big 
buzzword-deep learning (DL) (2-7). In brief, DL is a sub-
domain of artificial intelligence (AI), a type of representation 
learning, which automatically finds features in a data and 
transforms them into a higher abstract data based on matrix 
operations (3). There are various types of DL algorithms 
such as convolutional neural networks (8), recurrent neural 
networks (9), long short-term memory networks (10),  
convolutional deep belief networks (11), generative 
adversarial networks (12), and deep residual networks (13), 
just to name a few. Depending on the specific task/problem, 
one could use these networks individually or combine them 
into a pipeline. The biggest advantage of DL algorithms 
is that they can be trained without pre-defined features/
variables, which is especially convenient for complicated 
data types, such as biomedical images or sequencing data, 
that are time-consuming and computationally expensive 
and require a high level of human expertise for feature 
selection (3). Moreover, high-end facilities such as graphical 
processing units, central processing units, and random-
access memory are needed for processing and training such 
data within a reasonable amount of time.

A growing body of research related to neural network 
applications for solving problems in the biomedical field 
includes diverse research topics that commonly leverage 
big data. This includes biomedical images and multi-omics 
datasets either from public domain or in-house data from 

different populations (6,14-16). Biomedical images can be 
in 2-dimensional (2D) format such as pathological images, 
or 3-dimensional (3D) such as with mammography images, 
computed tomography scans, and magnetic resonance 
imaging (17-22). A single scanned image could be split 
into hundreds to several thousands of smaller images, 
which easily complies with the data demands of neural 
network training. The data formats for multi-omics data 
is even more complicated and are highly dependent on the 
manufacturing platforms. The omics data, such as genomics 
(sequencing data) (23), transcriptomics (sequencing and 
expression data) (24,25), proteomics (mass spectrometry 
data) (26), and metabolomics (metabolite compounds) (27),  
can be used for DL models as long as the number of 
samples and features is suitable for training and can achieve 
acceptable accuracy. From only a single run, these high-
throughput platforms can generate thousands to millions 
of data points from each sample. Integrating these could 
provide an unprecedentedly comprehensive data to study 
the complicated diseases such as cancer (28) or human 
brain diseases (29). Therefore, this is a golden era for 
data-driven research, not only due to the huge amount of 
publicly available datasets, but also because of the rapid 
development of modern algorithms and giant technology 
corporations such as Google (TensorFlow and CoLab cloud 
computing) (30-32), Amazon (Amazon Web Services) (33),  
and Facebook (PyTorch) (34) and their platforms and 
cloud computing services. With such favorable conditions 
and the available open-source environments of the DL 
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community, it is inevitable that biomedical researchers start 
to enter the race of DL. Moreover, several databases are 
available that house a huge number of biomedical images 
such as the National Cancer Institute’s GDC Data Portal 
(https://portal.gdc.cancer.gov), the National Institutes of 
Health Database (https://nihcc.app.box.com/v/ChestXray-
NIHCC), the Cancer Imaging Archive (https://www.
cancerimagingarchive.net), NLM’s MedPix database 
(https://medpix.nlm.nih.gov/home), the Open Access Series 
of Imaging Studies (OASIS) (http://www.oasis-brains.org), 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(http://adni.loni.usc.edu), and Stanford’s AI in Medicine 
database (AIMI) (https://aimi.stanford.edu/research/public-
datasets); all of these could be of immense advantage for 
the DL community. These databases are maintained and 
continuously updated with additional samples and data 
types and play a central role in DL studies due to their well-
structured and diverse disease sources. For instance, the 
GDC data portal can provide whole exome sequencing data, 
targeted sequencing data, RNA-sequencing data, genotype 
data, tissue and diagnostic slides, whole genome data, and 
ATAC-seq data. All of these data are not fully open access, 
but researchers can apply for access to the controlled 
portions of the data. However, model training on such large 
datasets requires data labeling and annotation, which are 
time-consuming and sometimes expensive, so there are still 
barriers to the use of all the available data. 

Many DL publications describe well-annotated datasets; 
however, gaining access to these resources is usually 
difficult. Access to in-house datasets, pre-annotated by 
experts, is still in demand, for the benefit of the healthcare 
research community. As the public domain data are usually 
specific to ethnic groups or local populations, other in-
house datasets from varied ethnicities could serve as an 
external validation resource to prevent model bias of certain 
datasets. That would ultimately make the pre-trained model 
more useful across populations.

Clinical application is the ultimate goal in biomedical 
research. Therefore, the questions or hypotheses that 
researchers aim to address with DL, leveraging all ready-
to-use data and resources, is of utmost clinical importance. 
This is what leads to the proper design of models that 
represent complex real-life data, and potentially provide 
data-driven information for clinical research. All of this 
requires close collaboration between laboratory researchers 
and medical doctors, to understand the current needs in 
each specific disease and successfully translate findings from 
the laboratory bench to the clinic.  
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