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Background: The incidence and mortality of lung cancer rank first among various malignant tumors.
The lack of clear molecular classification and effective individualized treatment greatly limits the treatment
benefits of patients. Long non-coding RNAs (IncRNAs) have been demonstrated widely involve in tumor
progressing, and been proved easy to detect for occupying majority in transcriptome. However, less work
focuses on studying the potency of IncRINAs as molecular typing and prognostic indicator in lung cancer.
Methods: Based on the 448 lung adenocarcinoma (LUAD) samples and the expression of 14,127 IncRNAs
from the Cancer Genome Atlas (TCGA) database, we constructed a co-expression network using weighted
gene co-expression network analysis. Then based on the feature module and the overall survival of patients,
we constructed a risk score model through Cox proportional hazards regression and verified it with a
validation cohort. Finally, according to the median of risk score, the function of this model was enriched.
Results: We identified a module containing 123 IncRNAs that is related with the prognosis of
LUAD. Using univariate and multivariate Cox proportional hazards regression with lasso regression, six
IncRNAs were identified to construct a risk score model. The calculation formula shown as follows: risk
score = (=0.3057 x EXPypyias1) + (0.9678 x EXPycorg11.1) + (1.0829 x EXPypipast) + (=0.3505 x EXPyy35701.1)
+(3.9378 x EXPycoo3364) + (=0.2810 x EXPyy 1517002). Six-IncRNA model can be used as an independent
prognostic indicator in LUAD (P<0.001) and the area under the 5-year receiver operating characteristic
(ROC) curve is 0.715.

Conclusions: We developed a six-IncRNA model, which could be used for predicting prognosis and
guiding medical treatment in LUAD patients.
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Introduction

Lung cancer is one of the most malignant tumors that poses
great threat to the population health (1). According to
surgery improving (2), molecular targeted drug developing
and the application of immunotherapy, the overall survival
(OS) of lung cancer has been significantly improved.
Molecular targeted therapy has the characteristics of strong
specificity and small side effects (3). The currently marketed
molecular targeted drugs for non-small cell lung cancer
(NSCLC) mainly include oncogene molecular targeted
drugs, anti-angiogenesis drugs, immune targeted therapy
drugs, and multi-target inhibitors. With the advancement of
genetic testing technology and the wide application of small
molecule tyrosine kinase inhibitors (TKIs), most patients
with advanced NSCLC have achieved good therapeutic
effects in the treatment of TKIs (4). However, some difficult
issues still need to be resolved. Epidemiological studies
show that lung adenocarcinoma (LUAD) has replaced lung
squamous cell carcinoma (LUSC) as the main pathological
type in lung cancers, but its pathogenesis and progressive
mechanism remain unclear (5-7). Two-thirds of patients
with LUAD are diagnosed at advanced stage, and they
prone to earn poor prognosis for lacking effective individual
therapy (8). Therefore, studying the molecular mechanism
of LUAD to identify precise molecular typing markers is
urgently needed.

It is well known that about 70% human genome would
transcript into RINAs, of which protein-coding sequences
account for less than 2%, the rest thousands of transcripts
are non-coding RNAs (9,10). Long non-coding RNAs
(IncRNAs) are defined more than 200 nucleotides, which
occupied majority in non-coding RNAs (11). LncRNAs
have been demonstrated involve in cell cycling controlling,
cell differentiation mediating, epigenetic regulation and
so on (12). Compared with protein-coding genes (PCGs),
IncRNAs are composed of fewer exons to existing higher
evolutional conservation (13). Moreover, IncRNAs show
more stable feature against degradation as often forming
secondary structure. These characters make IncRNAs
easy to be detected in body fluids including blood and
urine (14).

In recent years, the role of IncRNAs have also been
widespread reported in tumorigenesis (15-18). LncRNA
UCAL is associated with poor prognosis in patients
with gastric cancer (19). LINC00963 could promote
tumorigenesis and radiation resistance of breast cancer

by interacting with miR-324-3p (20). LncRNA PCNAP1
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could enhance the replication of hepatitis B virus (HBV)
and the occurrence of liver cancer (21). In ovarian cancer,
IncRNA HOTTIP could indirectly up-regulate the
expression of PD-L1, inhibit the activity of T cells and
eventually accelerate the immune escape (22). And in
lung cancer, the LCAT1-miR-4715-5p-RAC1/PAK1 axis
plays an essential role during tumor progression and could
be a potential therapeutic target (23). These findings
suggest that the variation of IncRNAs are closely related
to tumor prognosis. Up to now, most studies only focus on
single IncRNA (24), there is still less work aim to analysis
the correlation between IncRNAs and tumor prognosis
systematically.

In this study, based on the Cancer Genome Atlas (TCGA)
database, we analyzed the expression of all IncRNAs by
Weighted Correlation Network analysis (WGCNA)
to determine prognosis related module. Then, a six-
IncRNA model with reliable prognostic value in LUAD
was constructed by Cox proportional hazards regression
analysis. In addition, we have conducted in-depth studies
on the biological functions of this six-IncRNA model. Our
results confirmed that this six-IncRNA model could be used
to predict OS in LUAD independently, which could couple
with traditional clinical prognostic factors to promote
LUAD survival. We present the following article in
accordance with the TRIPOD reporting checklist (available
at http://dx. doi. org/10. 21037/tcr-20-2436).

Methods
Patients and data pre-processing

A total of 479 LUAD samples containing clinical
information were collected from TCGA database (https://
portal. gdc. cancer. gov). Thirty-one patients with less than
30 days survival time were deleted, leaving 448 patients.
We extracted 14,127 IncRNAs from the expression profile,
and then screened 25% IncRNAs (n=3,532) with the largest
variance differences for subsequent analysis. All data were
filtered to reduce outliers. The flow chart of data collection
and analysis were shown in Figure 1. The study was
conducted in accordance with the Declaration of Helsinki (as
revised in 2013).

WGCNA

According to abline =650, 21 outlier samples were excluded,
and 427 samples were remained. By choosing B =5 as the
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Figure 1 Flow chart of data collection and analysis.

soft threshold, a WGCNA R package (25) was used to
construct a weighted gene co-expression network. The
topological overlap measurement (TOM) and the dynamic
hybrid cutting method were used to identify co-expressed
gene modules (26,27). Finally, removing the grey module,
we got 9 modules, and the minimum number of IncRNAs
in each clustering was set 30. According to the heatmap
of module-trait relationships, we found the red module
was significantly correlated with the prognosis. The 123
IncRNAs in the red module were used to construct a risk

score model.
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Y

GSEA analysis with entire
cohort

Construction of risk score model

The 427 samples were randomly divided into a training
cohort (n=215) and a validation cohort (n=212) (Table S1).
In order to verify the importance of IncRNAs in the red
module, 123 IncRNAs in the training cohort were screened
by univariate Cox proportional hazards regression, and
9 IncRNAs with P<0.05 were obtained. Then, IncRNAs
with high correlation were removed by lasso regression.
Finally, multivariate Cox proportional hazards regression
was performed to determine the risk score model, the
coefficients and hazard ratio (HR) values were obtained by
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Akaike information criterion (AIC). The calculation formula
is as follows: risk score = Z(C x EXP,,.xna)- In our formula,
EXP,,na represents the expression of six IncRNAs, and C
represents the corresponding coefficient of multivariate Cox
proportional hazards regression.

Validation and analysis of risk score model

Based on the median of risk score, the samples were
divided into high-risk and low-risk groups. The receiver
operating characteristic (ROC) curve was used to judge
the prediction accuracy of risk score model. Kaplan-
Meier curves were used to calculate OS and the statistical
differences were determined by a log-rank test (28-30).
Univariate and multivariate independent prognostic analysis
were performed to determine whether the risk score could
be distinguished from other clinical variables. Statistically,
P<0.05 was set as significant differences.

Functional enrichment analysis

The entire LUAD samples were divided into two groups
according to the median risk score. PCGs were screened
by the cutoff criterion logFC >1.5, P<0.01. Finally, 689
differential genes were obtained. Functional enrichment
analysis of Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway of 689 differential
genes were performed using the DAVID Bioinformatics
Tool (https://david.nciferf.gov/, version 6.8) (31). Use the
ClueGO package (http://apps.cytoscape.org/apps/cluego)
in Cytoscape software to draw a network diagram of the
biological process (BP). P<0.01 was used as the cutoff
criterion for functional annotation of GO terms and KEGG
pathways.

Gene set enrichment analysis (GSEA) was performed to
explore potential pathways between high-risk and low-risk
groups (32). Set the false discovery rate (FDR) <0.05 as the

cutoff criterion.
Statistical analysis

All statistical tests were two-sided, and P<0.05 was considered
statistically significant. Statistical analyses were conducted
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using R software (version 3.6.1, www.r-project.org).

Results
Data pre-processing of IncRNA profiles in LUAD

A total of 479 LUAD samples containing clinical
information were downloaded from the TCGA database.
According to the survival time, 31 patients were excluded,
and 448 patients were remained. And the top 25% of
IncRNAs (n=3,532) with the largest variance differences
were screened for WGCNA analysis.

Identification of module related to the survival status of
LUAD

To determine the expression characteristics of IncRNAs
in LUAD, we constructed a co-expression network using
WGCNA. After removing outliers, an adjacency matrix was
constructed using 427 samples (Figure 2A4). We choose B =5
as the soft power threshold to ensure that the correlation
coefficient was close to 0.9 (Figure S1A,B). Then, 9
different-color co-expression modules were determined
(Figure 2B). Finally, we found that this red module was
significantly correlated with the survival status (cor =0.77,
P<0.01) by analyzing the relationship between the modules
and the clinical variables of LUAD (Figure 2C,D).

Identification of Cox proportional hazards regression
model

The above 427 LUAD samples were randomly divided into
two groups: training cohort (n=215) and validation cohort
(n=212) (Table S1). In the training cohort, we performed
univariate Cox and lasso regression analysis to obtained
9 IncRNAs based on 123 IncRNAs in the red module
(Figure 3A4). Finally, we constructed a risk score model
through six IncRNAs by performing multivariate Cox
analysis (Figure 3B, Table I). Based on six IncRNAs, the
risk score is calculated using the following formula: risk
score = (-0.3057 x EXPypiasi) + (0.9678 x EXPrcoorsii1)
+ (1.0829 x EXPypiaas)) + (=0.3505 x EXPyoss0011) +
(3.9378 x EXPycoro3364) + (=0.2810 x EXPyy51790.)- At the
same time, based on the overall data of TCGA-LUAD,
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Figure 2 Construction of a weighted co-expression gene network and its relationship with clinical traits. (A) TCGA-LUAD cluster tree

diagram and its clinical traits; (B) cluster dendrogram of top 25% IncRINAs based on dissimilarity measure (1-TOM); (C) heatmap of the
correlation between module traits IncRNAs and clinical information of LUAD; (D) scatter plot of IncRNAs in red module. TCGA, the

Cancer Genome Atlas; LUAD, lung adenocarcinoma; IncRNAs, long non-coding RNAs; TOM, topological overlap measurement.

we plotted the Kaplan-Meier curve of six IncRNAs
(Figure 3C,D,E,F,G,H).

Prognostic efficiency and validation of six-IncRNA model

Based on the median risk score, we divided the training
cohort into high-risk and low-risk groups. It could be
seen from the scatter plot of Figure 44, the mortality
of high-risk patients was significantly higher than low-
risk patients. From the heatmap of Figure 44, as the risk
score increases, three IncRNAs expression (VIM-ASI,
AL035701.1 and AL121790.2) were gradually decreased,
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and three IncRNAs expression (AC092811.1, NFIA-
AS1 and AC079336.4) were gradually increased. Using
the same classification method, we divided the validation
cohort into high-risk and low-risk groups. We also found
a significant increase of mortality in high-risk patients
(Figure 4B). In addition, our results indicated that the
S-year survival areas under the ROC curve were 0.715,
0.735 and 0.721 in the training cohort, validation cohort
and the entire TCGA data, which imply that this six-
IncRNA model has good predictive value (Figure 4C).
Finally, we found that the 5-year survival rates were
significantly worse in the high-risk group compared with
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Figure 3 Identification of Cox proportional hazards regression model. (A) Lasso regression removes highly correlated genes; (B) six
IncRINAs were significantly related with survival time to construct risk score model by multivariate Cox analysis; (C,D,E,F,G,H) based on
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Table 1 6 LncRINAs significantly correlated with overall survival in the training cohort
Univariate analysis Multivariate analysis
Symbol
HR 95% Cl of HR P value HR 95% Cl of HR P value Coefficient

VIM-AS1 0.714 0.573-0.889 0.003 0.737 0.580-0.936 0.012 -0.30569451
AC092811.1 2.559 1.388-4.719 0.003 2.632 1.450-4.777 0.001 0.96776812
NFIA-AS1 3.488 1.468-8.287 0.005 2.953 1.136-7.680 0.026 1.08294756
AL035701.1 0.663 0.480-0.916 0.013 0.704 0.516-0.962 0.027 -0.35051832
AC079336.4 28.828 1.397-594.845 0.030 51.304 3.698-711.708 0.003 3.93777712
AL121790.2 0.778 0.612-0.988 0.039 0.755 0.594-0.960 0.022 -0.28098658

LncRNAs, long non-coding RNAs; HR, hazard ratio; Cl, confidence interval.

the low-risk group (all P<0.001) (Figure 4D).

Independent prognostic ability and prognostic value of six-
IncRNA model

Based on the training cohort, univariate and multivariate
independent prognostic analysis were used to analyze the
correlation of gender, age, TNM stage, T stage, N stage,
M stage, risk score and prognosis. Through univariate
independent prognostic analysis, we found that risk score
was a powerful variable related to prognosis (P<0.001)
(Figure 5A, luble 2). By adding other clinical variables for
multivariate independent prognostic analysis, we found that
risk score could also be used as an independent prognostic
variable (P<0.001) (Figure 5B, Tuble 2).

Throughout the TCGA database, we verified the
independent prognostic capabilities of risk score. According
to TINM staging, patients were divided into early stage (stage
I & II) and advanced stage (stage III & IV) for analysis.
We found that the risk score can successfully predict the
survival outcome in two subgroups (all P<0.01) (Figure 5C).
According to the T stage, the patients were divided into
the highly differentiated group (T'1 & T2) and the poorly
differentiated group (13 & T'4) for analysis. We found that
both groups were significantly different (P<0.01, P=0.01)
(Figure 5D). According to the analysis of lymph node
metastasis (NO, N1 & N2 & N3) and distant metastasis
(MO0, M1), we found that in the NO, N1 & N2 & N3 or M0
stage, the risk score could successfully predict the survival
outcome (all P<0.01) (Figure SE,F). However, we have not
found significant difference in the M1 stage, which may
be related with the few samples. But we found that the
high-risk group in the M1 stage had a lower survival rate
than the low-risk group (Figure 5F). Similarly, subgroup
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analysis in age (<66, >66) and gender (male, female) showed
that the risk score could predict the survival outcome
(Figure S2A,B). These results indicated that the predictive
ability of six-IncRNA model was not affected by gender,
age, TINM stage, T stage, N stage, and M stage. In addition,
based on the training cohort, we found that the 3-year and
S-year areas of six-IncRNA model under the ROC curve
were higher (AUC =0.798, AUC =0.771) than the other
clinical variables (Figure 5G,H).

Functional enrichment analysis

The biological function of IncRNAs is still unknown.
Therefore, in order to accurate evaluated the biological
function of this six-IncRNA model, we analyzed the
function of 689 differential genes according to the high-risk
and low-risk groups of risk score (Figure S3A). As shown in
Figure 64, BPs were mainly involved in the cell cycle process
and DNA metabolic process. The cellular components
(CCs) were mainly enriched in nuclear chromosome part
and chromatin (Figure 6B). Enriched molecular functions
(MFs) were mainly enriched in chromatin binding and cell
adhesion molecule binding (Figure 6C). KEGG functional
analysis found that the main enrichment was spliceosome,
cell cycle and DNA replication (Figure 6D).

The functional GSEA showed that the high-risk group
were highly enriched in proteasome and protein export
(Figure S3B), and the low-risk group were highly enriched
in cell adhesion molecules and T/B cell receptor signaling

pathway (Figure 6E).

Discussion

In the past, most researches concentrated on studying
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Figure 4 Prognostic efficiency and validation of six-IncRNA model. The risk score distribution, the vital status of patients and the heatmap
based on the six-IncRNA model in the training cohort (A) and the validation cohort (B). (C) The 5-year area under the ROC curve has a
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validation cohort and the entire TCGA cohort (P<0.01). LncRNAs, long non-coding RNAs; ROC, receiver operating characteristic; TCGA,
the Cancer Genome Atlas.
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Figure 5 Analysis of independent prognostic ability and prognostic value of six-IncRNA model. Univariate (A) and multivariate (B)

independent prognostic analysis based on the gender, age, TNM stage, T stage, N stage, M stage and risk score in the training cohort.

Based on the TNM stage (C), T stage (D), N stage (E) and M stage(F), we verified the independent prognostic capabilities of risk score in
the entire TCGA cohort. Compared with the individual clinical variables, the 3-year (G) and 5-year (H) areas of risk score under the ROC

curve were analyzed.
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Table 2 The prognostic effect of different clinical characteristics

Bai and Deng. Six-IncRNA model predicts prognosis in LUAD

Univariate analysis

Multivariate analysis

Variables (n=215)

HR 95% Cl of HR P value HR 95% Cl of HR P value

Gender 1.158 0.685-1.959 0.583 1.301 0.737-2.295 0.364
Age 0.987 0.958-1.017 0.405 1.003 0.972-1.034 0.852
Tumor stage 1.784 1.392-2.286 4.70E-06 1.319 0.695-2.502 0.397

T 1.534 1.175-2.002 0.002 1.115 0.819-1.518 0.489

M 2.941 1.237-6.995 0.01466 0.816 0.140-4.776 0.822

N 1.791 1.347-2.381 6.05E-05 1.452 0.804-2.621 0.216
Risk score 1.157 1.097-1.221 9.53E-08 1.155 1.083-1.232 1.14E-05

HR, hazard ratio; Cl, confidence interval.

the role of PCGs in cellular behavior regulation (33-35).
However, some cellular behaviors alterations have been
found not mediated by PCGs, either linked to “gene
deserts” regions. It is reported that only 2% of the human
genome encodes proteins, which further supports the
potential regulation role of “gene deserts” regions in cellular
behaviors (36,37). As products of “gene deserts” regions,
IncRNA dysfunctions have been presented in various tumors
and are closely related with progressing (38,39). But there
is still rare work try to analysis the correlation between
IncRNAs and tumor prognosis systematically (24). In this
work, we employed the LUAD database from TCGA to
construct a six-IncRNA prognostic model and investigated
its prognostic evaluation efficiency by the following steps:
a prognosis module was screened through WGCNA, and
then a six-IncRNA model was identified by constructing
multivariate Cox proportional hazards regression and
verified by validation cohort. Finally, we have conducted in-
depth studies on the biological functions of this six-IncRINA
model.

This six-IncRNA model is consisted by VIM-ASI,
AL035701.1, AL121790.2, AC092811.1, NFIA-AS1 and
AC079336.4. Our study found that among these IncRINAs,
the low expression of 3 IncRNAs (VIM-AS1, AL035701.1
and AL121790.2) and the high expression of 3 IncRNAs
(AC092811.1, NFIA-AS1 and AC079336.4) are related
with the poor prognosis in LUAD (Figure 3C,D,E,EG,H).
It is reported that VIM-AS1 could promote the
progression and metastasis of colorectal cancer by inducing
EMT (40). In addition, the abnormal expression of VIM-
AS1 in cumulus cells during embryonic development
is crucial for oocyte growth (41). Although the other

© Translational Cancer Research. All rights reserved.

five IncRNAs have not been reported in LUAD-related
research, more works are needed to verify this finding
in the future. In addition, based on the TNM stage, T
stage, N stage and M stage, we have verified that the
independent prognostic capabilities of six-IncRNA model
is statistically significant (all P<0.001, Figure 5C,D,E,F).
And we also found that the 5-year areas of the six-IncRNA
model (AUC =0,771) under the ROC curve was higher
than other clinical variables, such as gender (AUC =0.488),
age (AUC =0.464), tumor stage (AUC =0.693), T stage
(AUC =0.631), N stage (AUC =0.652) and M stage (AUC
=0.559) (Figure SH). These results indicate that the six-
IncRNA model shows a higher-risk detection efficiency as
contrasted to other clinical variables.

To determine the biological function of the six-IncRNA
model, we analyzed the function of 689 differential genes
obtained by high-risk and low-risk groups. We found
that these differential genes were almost related with cell
cycle process, cell adhesion molecule binding and the cell
cycle and DNA replication pathway. Among them, cell
adhesion regulation is a key factor for tumor invasion
and occurrence (42), cell cycle processing and DNA
replication also been shown related to tumor development
and occurrence (29,30). GSEA analysis found that the low-
risk group was mainly enriched in cell adhesion molecules
and T/B cell receptor signaling pathway, which imply that
the immune system is involve in suppressing the malignant
processes of tumor.

Conclusions

Epidemiological statistics show that the incidence of various
types of lung cancer has changed significantly compared

Transl Cancer Res 2020;9(12):7505-7518 | http://dx.doi.org/10.21037/tcr-20-2436
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Figure 6 Functional enrichment analysis. (A) Using the ClueGO package to draw the network diagram of the biological process based on
the prognostic differential genes. Histogram of (B) cellular component, (C) molecular function and (D) enrichment of KEGG pathway
analysis of prognostic differential genes. (E) Based on the low-risk group in the entire TCGA cohort, gene sets were analyzed by GSEA.
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with the past. LUAD has replaced LUSC as the main type
of lung cancers (7). It shown that even LUAD patients
exhibit same clinical stage and nearly pathological subtype,
they may bear different prognosis and recurrence risk after
surgery. In this study, we constructed a Cox proportional
hazards regression model consisting of six-IncRNA, which
could help physicians to précising subtype LUAD patients
and give them more individual treatment.
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TCGA-78-7537
TCGA-78-7540
TCGA-78-7542

TCGA-75-6206
TCGA-78-7143
TCGA-78-7145
TCGA-78-7147
TCGA-78-7148
TCGA-78-7149
TCGA-78-7152
TCGA-78-7153
TCGA-78-7156
TCGA-78-7161
TCGA-78-7163
TCGA-78-7166
TCGA-78-7539
TCGA-78-8640
TCGA-78-8655
TCGA-78-8660
TCGA-80-5608
TCGA-83-5908
TCGA-86-6562
TCGA-86-7701
TCGA-86-7714
TCGA-86-7955
TCGA-86-8055
TCGA-86-8073
TCGA-86-8076
TCGA-86-8280
TCGA-86-8359
TCGA-86-8585
TCGA-86-8668
TCGA-86-8669
TCGA-86-A456
TCGA-86-A4D0
TCGA-86-A4P7
TCGA-91-6829
TCGA-91-6830

TCGA-78-7633
TCGA-78-8648
TCGA-78-8662
TCGA-80-5611

TCGA-86-6851

TCGA-86-7711

TCGA-86-7713
TCGA-86-7953
TCGA-86-7954
TCGA-86-8056
TCGA-86-8075
TCGA-86-8279
TCGA-86-8358
TCGA-86-8671

TCGA-86-8673
TCGA-86-8674
TCGA-86-A4JF
TCGA-86-A4P8
TCGA-91-6828
TCGA-91-6831

TCGA-91-6835
TCGA-91-6848
TCGA-91-6849
TCGA-91-8496
TCGA-91-8497
TCGA-91-A4BD
TCGA-93-7348
TCGA-95-7039
TCGA-95-7562
TCGA-95-7567
TCGA-95-7944
TCGA-95-7947
TCGA-95-7948
TCGA-95-A4VK
TCGA-95-A4VN

TCGA-91-6836
TCGA-91-6840
TCGA-91-7771
TCGA-91-8499
TCGA-91-A4BC
TCGA-93-7347
TCGA-93-8067
TCGA-93-A4J0
TCGA-93-A4JP
TCGA-95-7043
TCGA-95-8494
TCGA-97-7552
TCGA-97-7554
TCGA-97-8174
TCGA-97-Ad4M2
TCGA-97-A4M5
TCGA-97-A4M7
TCGA-99-7458
TCGA-99-8025
TCGA-99-8028
TCGA-99-8032
TCGA-J2-8194
TCGA-J2-A4AE
TCGA-L4-A4E6
TCGA-L9-A50W
TCGA-L9-A5IP
TCGA-L9-A743
TCGA-L9-A7SV
TCGA-MP-A4SV
TCGA-MP-A4SW
TCGA-MP-A4T6
TCGA-MP-A4T8
TCGA-MP-A4TC
TCGA-MP-A4TD
TCGA-MP-A4TH

TCGA-97-7547
TCGA-97-7553
TCGA-97-7937
TCGA-97-8171
TCGA-97-8175
TCGA-97-8177
TCGA-97-8552
TCGA-97-A4LX
TCGA-97-A4MO
TCGA-97-A4M1
TCGA-97-A4M3
TCGA-97-A4M6
TCGA-99-8033
TCGA-99-AA5R
TCGA-J2-8192
TCGA-J2-A4AD
TCGA-J2-A4AG
TCGA-L4-A4E5
TCGA-L9-A443
TCGA-L9-A444
TCGA-L9-A8F4
TCGA-MN-A4N1
TCGA-MN-A4N4
TCGA-MN-A4N5
TCGA-MP-A4SY
TCGA-MP-A4T4
TCGA-MP-A4T7
TCGA-MP-A4T9
TCGA-MP-A4TA
TCGA-MP-A4TE
TCGA-MP-AATF
TCGA-MP-A4TI
TCGA-MP-A4TK
TCGA-NJ-A4YG
TCGA-NJ-A4YP

TCGA-MP-A5C7

TCGA-NJ-A4YF
TCGA-NJ-A4YQ
TCGA-NJ-A7XG
TCGA-O1-A52J

TCGA-NJ-A55R
TCGA-S2-AA1A

Table S1 (continued) Table S1 (continued) Table S1 (continued) Table S1 (continued) Table S1 (continued) Table S1 (continued)
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Figure S1 Determination of soft-threshold power in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the

scale-free fit index and the mean connectivity for various soft-threshold powers. (B) Histogram of connectivity distribution and the scale free

topology when B =5.
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Figure S2 Analysis of independent prognostic ability of 6-IncRINA model. Based on the (A) age (<66, >66) and (B) gender (male, female), we
verified the independent prognostic capabilities of 6-IncRINA model in the entire TCGA cohort.
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Figure S3 Functional enrichment analysis. (A) According to the median of risk score in the entire TCGA cohort, 689 differential genes

were obtained. (B) Based on the high-risk group in the entire TCGA cohort, gene sets were analyzed by GSEA.
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