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Background: The genes and genetic mechanisms underlying the occurrence and progression of papillary
thyroid carcinoma (PT'C) are still unknown. This study aimed to find candidate genes related to the
pathogenesis and progression of PTC.

Methods: RNA sequencing (RNA-seq) data of PTC and normal tissues were downloaded from The
Cancer Genome Atlas (TCGA) database with clinical stage data to form a test, validation, and clinical-stage
data matrix. We used the test data set to analyze differentially expressed genes (DEGs) and weighted gene
co-expression network analysis (WGCNA) to find those gene clusters highly correlated with PTC. We
then verified the expression of genes in the interested modules using the validation matrix. The quantitative
real-time polymerase chain reaction (QRT-PCR) was used to verify the reliability of the expression of
selected genes. Five key genes (GDFI5, LCN2, KCNN4, SH3BGRL3, and MMP2) were used to analyze
the connection between gene expression and the American Joint Committee on Cancer (AJCC) stage. The
upregulated and downregulated DEGs, along with the modules of interest, were subjected to Gene Ontology
(GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment using the
Database for Annotation, Visualization, and Integrated Discovery (DAVID).

Results: We used WGCNA to find two modules of interest, the yellow module, which was positively
associated with PTC, and the blue module, which was negatively correlated with PTC. Four genes (GDFI5,
LCN2, KCNN#4, and SH3BGRL3) from the yellow module were determined to be highly expressed in PTC
in the test data matrix and were verified in both the validation data matrix and quantitative real-time PCR,
which indicated that these four genes were highly correlated with the occurrence of the PTC. Furthermore,
these four genes also had a significantly higher expression in the advanced levels of pathological T, N,
and AJCC stage, meaning that they were correlated with the progression of PTC. Genes in the yellow
module and upregulated DEGs were significantly enriched in three vital signaling pathways, including focal
adhesion, extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway.
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Conclusions: Four candidate genes (GDFI15, LCN2, KCNN4, and SH3BGRL3) may be potential
biomarkers for the PT'C’s pathogenesis and may be useful for predicting the disease stage.
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Introduction

The incidence of thyroid cancer has increased in recent
years. According to data from the National Cancer Center,
the 2018 incidence of thyroid cancer in China was 10.1 per
100,000 individuals, while the global incidence of thyroid
cancer was 6.7 per 100,000 individuals; during the same
period, the 5-year survival rate was 84.3% in China and was
98.1% in the United States (1). Papillary thyroid carcinoma
(PTC) is the primary thyroid cancer type, accounting for
approximately 80% of all thyroid cancers (2). Although
the majority of patients with PTC have a good prognosis
with surgery, adjuvant radio-iodine therapy, and thyroid-
stimulating hormone therapy (3,4), the prognosis of
advanced PTC is worse, with a significantly reduced 5-year
survival rate of less than 60% and a markedly increased
recurrence rate of more than 30% (5). It is therefore critical
to explore the genes and potential mechanisms related to
the occurrence and development of PTC, and to guide the
molecular diagnosis and treatment of PTC patients.

In recent years, many studies have used bioinformatics
analysis to analyze genes related to the incidence of PTC.
Li’s research has indicated that the survivin gene mutation
might be an excellent diagnostic criterion for PTC (6).
Meanwhile, Han ez a/. (7) identified four differentially
expressed genes (DEGs), including COMP, COL3A1,
ZAP70, and CD247, to be related to PTC clinical
phenotypes, that might be promising biomarkers for early-
stage PTC. Furthermore, Ao et 4l. reported that 5 candidate
genes (LRP4, KLK7, PRICKLEL, ETV4, and ETVS) could
be used to predict the pathogenesis of PTC (8). These
important findings have identified several biomarkers for
early-stage PTC, primarily through the Gene Expression
Omnibus (GEO) database; however, The Cancer Genome
Atlas (TCGA), which includes a large number of PTC
sequencing samples, has yet to be the subject of such an
investigation to find genes related to the pathogenesis and
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progression of PTC. Therefore, exploring the molecular
mechanisms and searching for novel biomarkers of PTC in
the TCGA database may have considerable clinical value.

Weighted gene co-expression network analysis
(WGCNA) is a novel method that has been used to
effectively screen for new biomarkers in cancers (9). The
WGCNA algorithm can group genes into modules based
on the gene co-expression similarities across the samples,
yielding a cluster of genes with similar functions that
can be useful for relating modules and external sample
traits. From these correlation networks, tissue-specific
biomarkers and pathophysiological-related pathways
can then be identified (10). This study used WGCNA
to select core network genes and modules with high-
expression oncogenes, to find candidate genes related to
the pathogenesis and progression of PTC.

We present the following article in accordance with
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tcr-20-2866).

Methods
Data acquisition

We downloaded the RNA sequencing (RNA-seq) expression
data of 560 samples, including 58 normal and 502 PTC
samples, and the corresponding clinical information of the
502 cases from the TCGA database (https://portal.gdc.
cancer.gov/). The flowchart of the study design and the
process of sample enrollment is illustrated in Figure 1. After
using the random number method, 116 PTC samples were
randomly selected from the dataset of the 502 PT'C samples
for pairing with normal tissues. We merged the count
matrix of 116 PTC samples and 58 normal samples to form
a test data matrix; we merged the count matrix of 386 PTC
samples and 58 normal samples to form a validation data
matrix; we merged the count matrix of 502 PTC samples
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quantitative real-time polymerase chain reaction.
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and clinical-stage data to form a clinical-stage matrix.

We also downloaded the gene expression dataset
(accession number: GSE33630), which contained
microarray data of 49 PTC samples and 45 adjacent normal
thyroid samples from the NCBI GEO database (http://
www.nibi.nih.gov/geo/) for further verification of the test
data matrix.

The study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013).

DEG analysis

We used the test data matrix (RNA-seq data of 116 PTC
and 58 normal samples) to analyze the DEGs between the
PTC and normal samples using the “DESeq2” R package.
We set the false discovery rate (FDR) to 0.05, and fold
change was considered the differential expression ratio
between PTC and normal samples. The criteria for DEGs
were |log2(fold change)| >1 and FDR <0.05.

Construction of weighted gene co-expression networks and
module identification

We analyzed the weighted co-expression network by using
the test data matrix. To identify biologically meaningful
gene modules containing highly correlated genes, a gene co-
expression network was constructed using the “WGCNA”
package in R software. We detected modules by setting
MEDissThres to 0.25 in order to merge similar modules. We
used average linkage hierarchical clustering based on topology
overlap measurement (TOM) to identify gene co-expression
modules, consisting of a group of genes with similar expression
patterns. The soft threshold power was set to four based on
the criterion of approximate scale-free topology. We used
gene significance (GS) to qualify the link of individual genes
to the trait of interest (PT'C). In each module, we used module
membership (MM) to evaluate the gene expression profile
correlation and the module eigengene (11).

Gene interaction network construction and key gene
identification

When the correlations between modules and traits (PTC
and normal samples, respectively) were >0.5 and the P
value was <0.05, and we considered this to be a module of
interest. Topological data of the modules of interest (yellow
and blue modules) were imported from the R program
to Cytoscape (version 3.80) to visualize gene interaction
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network construction. The hub genes and subnetworks were
identified using CytoHubba in Cytoscape. The analysis of
DEGs was matched to the gene interaction network: genes
that had a lower expression in PTC samples [log2 (fold
change) <—1 and FDR <0.05] were labeled in green, while
genes that had a higher expression in PTC samples [log2
(fold change) >1, and adjusted P<0.05] were labeled in red.
The top 10 DEGs and the top 10 hub genes in each module

of interest were selected for validation.

Validation by the RNA-seq data and GEO data in the
modules of interest

We exported gene interactive networks of the yellow
and blue modules from the R program to Cytoscape for
visualization with the thresholds set as 0.17 and 0.27,
respectively, to screen highly centralized genes (hub genes)
in these modules. The validation data matrix (RNA-seq data
of 386 PTC and 58 normal samples) and the GEO data
were used to validate selected genes’ expression.

Cell culture and quantitative veal-time polymerase chain

reaction (qRT-PCR)

We used the human PTC-derived cell line (B-CPAP) and
normal thyroid epithelial cell line (Nthy Ori3-1) from the
American Type Culture Collection (ATCC, Manassas,
VA, USA), and cultured them in DMEM/F-12 (Gibco,
Grand Island, NY, USA) with 10% fetal bovine serum and
1% penicillin G and streptomycin in a 37 °C environment
containing 5% CO,.

"Ten core genes (the top five DEGs: LCN2, PDZKI1IP]1,
GDF15, SLPI, and KCNN#4; the top five of hub genes: MI'P,
OCIAD2, MMP2, SH3BGRL3, and S100A11) of interest
in the yellow module were further verified in the B-CPAP
and Nthy Ori3-1 cell lines by qRT-PCR. The primers of
the 10 genes are listed in 7able 1. We set B-actin as a control
and the Nthy Ori-3-1 cell line as a calibrator sample for
the PTC-derived cell line, and then calculated the relative
““method. The Student’s z-test was
used to compare gene expression levels, PTC-derived cell

expressions using the 2

lines, and normal thyroid epithelial cell lines.

The expression of key genes in TNM stage

We used the clinical-stage matrix to analyze the connection
between gene expression and the clinical TNM stage.
The five genes (GDFI5, LCN2, KCNN4, MMP2, and
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Table 1 Primers of the 10 genes for the qRT-PCR

Chen et al. Genes related to PTC pathogenesis and progression

Primer name Forward Backward

H-actin GTCCACCGCAAATGCTTCTA TGCTGTCACCTTCACCGTTC
H-MVP GGGCTTGGTGCTGTTTGAT CCTTTAGATGGAGGGCAGTGTT
H-OCIAD2 AAAACACAAAGGGCCGGAAG CTGTGTGGTCTGGGTCGC
H-MMP2 CGAGTGGATGCCGCCTTTA CACGCTCTTCAGACTTTGGTTC
H-SH3BGRL3 CCAATGCAGGCCACTTCTC CATTTGGGGCTGTTGCTTAA
H-S7100A11 GAGTCCCTGATTGCTGTCTTCC AGGGTCCTTCTGGTTCTTTGTG
H-LCN2 AGACAAAGACCCGCAAAAGAT GCTGGCAACCTGGAACAAA
H-PDZK1IP1 GCACCCCGATGTAACCTTCT ACCTTGGCTGGCTATACTTCAA
H-GDF15 CCGGATACTCACGCCAGAAG GTCACGTCCCACGACCTTG
H-SLPI TGACACCCCAAACCCAACA GACTCCAGAGCCTCCTCCATA
H-KCNN4 GAGAGGCAGGCTGTTAATGC ACGTGCTTCTCTGCCTTGTT

gRT-PCR, quantitative real-time polymerase chain reaction.

SH3BGRL3) verified by qRT-PCR were stratified by
pathologic T, N, M, and American Joint Committee on
Cancer (AJCC) stage, respectively. We used the Kruskal-
Wallis test to analyze the omnibus difference and used the
Wilcoxon test to analyze post-hoc pairwise comparison.

Enrichment analysis of DEGs and modules of interest

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID, http://david.abcc.nciferf.gov) was used
for Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment. We uploaded the genes from the critical co-
expression modules to identify the potential functions.
The Benjamini correction was performed to calibrate the
confidence level, with a q value <0.05 being considered
the cutoff criterion. The upregulated and downregulated
DEGs, and the modules of interest were enriched in GO
and KEGG functions by DAVID. GO analysis results
indicated enrichment in biological process (BP), cellular
component (CC), and molecular function (MF).

Statistical analysis

Data from validation data matrix, clinical stage matrix
and GEO dataset were displayed by median (also from
minimum to maximum) due to that gene expression
from matrix and dataset did not conform to a normal
distribution. For validation in silicon, we used Wilcox
test to verify the gene difference between normal and
PTC groups. For examining gene expressions relating to
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TNM stage, we used the Kruskal-Wallis test to analyze the
omnibus difference and used the Wilcoxon test to analyze
post-hoc pairwise comparison. We set o as 0.05 and used
Bonferroni correction to calibrate the confidence level, with
a q value <0.05 being considered the cutoff criterion (12).
Data from validation in vitro were displayed by mean =
standard deviation and Student 7-test was used to analyze
the difference between normal and PTC groups; P<0.05
was regarded as being statistically significant.

Results
Sample characteristics and DEG screening

Among the 502 samples, the mean age was 47.35 (range,
15 to 89) years. Male were 135, and female were 367. The
main PTC clinical data are shown in Table 2. The RNA-
seq count matrix contained 13,693 genes. The filtering
criteria required that the row sums of gene counts be bigger
than the upper quantile of the row sums, and 4,387 highly
expressed genes in 560 samples were thus selected for test,
validation, and clinical-stage analysis. We finally identified
499 DEGs, 316 of which were upregulated and 183 were
downregulated in the PTC samples compared with normal
samples (Figure 24). The expression of DEGs was highly
clustered in both PTC and normal samples (Figure 2B).

The yellow module was positively correlated with PTC,
while the blue module was negatively correlated with PTC

Eight modules were selected: red (76 genes), turquoise
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Table 2 Characteristics of PT'C patients

Characteristics PTC Quantity

Gender Male 135
Female 367

T stage T1 142
T2 164
T3 171
T4 23
Tx* 2

N stage NO 228
N1 224
Nx* 50

M stage MO 283
M1 9
Mx* 210

AJCC TNM stage | 281
I 52
M 113
1Y 55
NA* 1

*, as we could not evaluate pathologic Tx representing papillary
tumor, pathologic Nx representing regional (nearby) lymph
nodes, or pathologic Mx representing distant metastasis, we
treated Tx, Nx and Mx, as not applicable. PTC, papillary thyroid
carcinoma.

(1,135 genes), yellow (94 genes), green (86 genes),
black (73 genes), blue (896 genes), brown (468 genes),
and grey (244 genes). The TOM of all genes is shown
in Figure 3A. As shown in Figure 3B, seven modules
(grey module excluded) were categorized into two
main clusters: one cluster covered three modules (red,
turquoise, and yellow module), while the other cluster
involved four modules (green, black, blue, and brown
module). Three pairs of modules had higher adjacencies:
yellow and turquoise, blue and black, and brown and
blue modules (Figure 3C). We selected 2 modules of
interest: the yellow module (R’=0.61, P=2E-19) and
the blue module (R*=—0.94, P=3E-85) (Figure 3D).
The yellow module's correlation analysis revealed a

© Translational Cancer Research. All rights reserved.
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positive interrelationship between gene expression and
PTC, while that of the blue module showed a negative
correspondence between gene expression and PTC. In
the yellow module, GS and MM’s association was 0.84
(P=3.7E-26; Figure 3E), while that in the blue module
was 0.96 (P<1E-200; Figure 3F).

Network construction and key gene identification in PTC
of the yellow and blue modules

After screening with a 0.17 threshold in the yellow module,
64 genes were visualized, with 31 of these being matched
to DEGs (Figure 44). After screening with a 0.27 threshold
in the blue module, 111 genes were visualized, with 84 of
these genes being matched to DEGs (Figure 4B). The top 10
DEGs in the yellow and blue modules are shown in Tibles 3,4,
respectively, and the top 10 hub genes in the core network in
the yellow and blue modules are shown in Figure 4C,D.

Among the 36 genes selected, 31 genes were consistent with
the test data matrix, while five genes (COL1A2, COL6A3,
MMP2, LUM and ABI3BP) were not consistent with the
test data matrix

All the top 10 DEGs and the top 10 hub genes in the yellow
and blue modules were selected for validation. COLI1A1
was repeated both in the DEGs and hub genes in the
yellow module, and thus, we finally selected 19 genes in
the yellow module for validation. In all, 16 of 19 selected
genes were highly expressed in the PTC group in the
yellow module (q<0.05), while the expression of 3 genes
(COL1A2, COL6A3, and MMP2) showed no significant
difference between the PTC and normal group (q>0.05) in
the validation data matrix (Figure 5). DGKI, IPCEF1, and
SLC4A4 were the repeat genes in the blue module’s DEGs
and hub genes. Thus, 17 genes were finally chosen to be
validated in the blue module. All of the selected genes in the
blue module had a low expression in the PTC group in the
validation data matrix (q<0.05) (Figure 6).

Because the array data from GEO did not contain ITBG4,
we selected 35 genes from the test data matrix to verify in
the GEO data. Among the 35 genes selected for validation,
the expression of 32 genes was consistent with the test matrix
(q<0.05), while the expression of three genes (MMP2 and
LUM in the yellow module, and ABI3BP in the blue module)
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Figure 2 Screening DEGs between normal (N) and tumor (T) samples. (A) A volcano map of differentially DEGs showing the fold

change and FDR of each gene (dot): red dots represent significantly upregulated genes (FDR <0.05) and green dots represent significantly
downregulated genes (FDR <0.05); grey dots represent no significance (FDR >0.05). (B) A heatmap of DEGs showing both PTC and
normal samples clustered independently. DEGs, differentially expressed genes; FDR, false discovery rate; PT'C, papillary thyroid carcinoma.

were inconsistent with the test matrix (q>0.05) (Figures 7,8).

The expression of GDF15, MMP2, SH3BGRL3, KCNN4,
and LCN2 were bigher in the BCPAP cell line compared
with the Nthy Ori3-1 cell line

Subsequently, we selected the 10 PTC-related genes in
the yellow module and then validated the mRNA levels
using qRT-PCR. We discovered that the expression levels
of GDF15 (P=0.0004), MMP2 (P=0.0003), SH3BGRL3
(P=0.0003), KCNN4 (P=0.0228), and LCN2 (P=0.0389)
were higher in the BCPAP cell line compared with the
Nthy Ori3-1 cell line. In contrast, the expression of SLPI
(P<0.0001), S100A11 (P<0.0001), OCIAD2 (P<0.0001),
MVP (P=0.0004), and PDZKIIP1 (P=0.0013) were
downregulated in the BCPAP cell line (Figure 9).

The expression of GDF15, LCN2, KCNN4, MMP2, and
SH3BGRL3 was bighly associated with TNM stage

As shown in Figure 104,B,C,D,E, four genes (GDFI5,
LCN2, KCNN4, and SH3BGRL3) showed a much higher
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expression in the T3-T4 stages than in the T1-T2 stages
(q<0.05). In contrast, the expression of MMP2 showed
no difference across the T1-T4 stages (q>0.05), which
indicated that the high expression of GDFI5, LCN2,
KCNN4, and SH3BGRL3 was associated with large tumor
size and extensive growth beyond the thyroid gland. In
pathological N analysis, the five genes were all more highly
expressed in N1 than in NO (g<0.05), indicating that the
high expression of the five genes was associated with spread
to nearby lymph nodes (Figure 10F,G,H,I,f). However,
these five genes did not demonstrate a difference between
MO and M1 (q>0.05) (Figure 10K,L,M,N,0O). Finally, we
discovered that these five genes had a higher expression in
stage IV than in other stages (q<0.05), which suggested that
these genes might be correlated with a higher stage (Figure
10PQ,R,S,T).

Functional enrichment in DEGs and modules of interest

The upregulated DEGs were significantly enriched in BP,
CC, and MF showed in Figure 11A4. As shown in Figure 11B,
the downregulated DEGs that were significantly enriched

Trans! Cancer Res 2021;10(2):694-713 | http://dx.doi.org/10.21037/tcr-20-2866
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in BP, CC, and MF. In the KEGG analysis, the upregulated enriched.

DEGs were significantly enriched in the PI3K-Akt signaling

pathway, focal adhesion, extracellular matrix (ECM)- ) B}

. . . Discussion

receptor interaction, and proteoglycans in cancer. The

downregulated DEGs were not significantly enriched in any In this study, we used WGCNA to identify two modules of

pathways (q>0.05). interest: the yellow module, which was positively associated
Genes in the yellow module were mainly enriched in 13 with PTC, and the blue module, which was negatively

GO terms closely related to cancer, shown in Figure 11C. correlated with PTC. Four genes (GDF15, LCN2, KCNN4,

Moreover, in the yellow module, KEGG pathway and SH3BGRL3) that were identified from the yellow

enrichment analysis showed notable enrichment in the module, were highly correlated with the PTC occurrence.
PI3K-Akt signaling pathway, focal adhesion, protein We also found that the four genes had significantly higher
digestion and absorption, and ECM-receptor interaction. expression in cases of larger tumor size, lymph node

No GO or KEGG terms were significant (q>0.05) in metastasis, and higher AJCC stage, meaning that they were
the blue module, and no GO or KEGG pathways were correlated with PTC progression.
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Table 3 The top 10 DEGs in the yellow module

703

Gene ID Gene name Log2 fold change Adjusted P value
ENSG00000148346 LCN2 5.553841607 2.95E-91
ENSG00000162366 PDZK1IP1 4.530363669 2.63E-58
ENSG00000130513 GDF15 4.319358493 1.57E-92
ENSG00000124107 SLPI 4.15074815 3.09E-55
ENSG00000104783 KCNN4 4.029339699 1.14E-60
ENSG00000131435 PDLIM4 3.990102564 1.68E-164
ENSG00000171345 KRT19 3.194147299 2.67E-92
ENSG00000133110 POSTN 3.161981456 1.91E-33
ENSG00000108821 COL1A1 2.845246535 4.43E-29
ENSG00000132470 ITGB4 2.35982993 1.11E-59

DEG, differentially expressed gene.

Table 4 The top 10 DEGs in the blue module

Gene Gene name Log2 fold change Adjusted P value
ENSG00000074706 IPCEF1 -4.55752 1.33E-151
ENSG00000115112 TFCP2L1 -4.24682 8.54E-91
ENSG00000153246 PLA2R1 -3.85242 3.68E-150
ENSG00000080493 SLC4A4 -3.85126 6.26E-78
ENSG00000157680 DGKI -3.80398 3.17E-90
ENSG00000147606 SLC26A7 -3.80141 3.00E-62
ENSG00000157404 KIT -3.48921 6.25E-81
ENSG00000112562 SMOcC2 -3.29676 2.92E-76
ENSG00000132561 MATN2 -3.23942 4.00E-132
ENSG00000091137 SLC26A4 -3.23634 4.50E-40

DEG, differentially expressed gene.

Abundant research has found these four genes to be
associated with the occurrence and progression of cancer.
Mimeault et al. reported that growth differentiation
factor 15 (GDFI5) was significantly increased in injury,
inflammation, cancer, and other diseases compared
with normal physiological conditions (13), and higher
expression of GDFI5 was related to tumor tumorigenesis
and progression. Studies by Yang et 4/. and Urakawa ez
al. showed that the high expression of GDFIS promoted
tumorigenesis and progression in oral squamous cell
carcinoma (14) and esophageal squamous cell carcinoma,

© Translational Cancer Research. All rights reserved.

respectively (15). Moreover, overexpression of GDFI5 was
shown to stimulate MEK/ERK and PI3K/Akt/mTOR
signaling (16-18) and to assist in epithelial-mesenchymal
transition (EMT) in ovarian and colorectal carcinomas cells
(19,20). Many studies reported that lipocalin 2 (LCN2) was
overexpressed in various cancers and associated with vascular
invasion, TNM stage, and tumor recurrence (21-25).
Wu er al. identified SH3 domain-binding glutamate-
rich protein-like 3 (SH3BGRL3) as a highly relevant
potential PTC candidate biomarker, as it was more
highly expressed in PTC than in normal tissues (26); it

Transl Cancer Res 2021;10(2):694-713 | http://dx.doi.org/10.21037/tcr-20-2866
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Figure 7 Genes in the yellow module were verified by the GEO data. (A-P) Sixteen of 18 selected genes were significantly different
across the PTC and normal groups (q<0.05), (Q,R) while the MMP2 and LUM expression did not have a significant difference between
the PTC and normal groups (q>0.05). *, indicates P<0.05 and ns indicates P>0.05. GEO, Gene Expression Omnibus; PTC, papillary

thyroid carcinoma.

was shown to promote the EMT, proliferation, and cell
migration of urothelial carcinoma, and was also found to
be highly connected with the epidermal growth factor
receptor (EGFR) in bladder cancer (27). Potassium calcium-
activated channel subfamily N member 4 (KCNN#4) also
demonstrated elevated expression in various types of cancer
and was shown to be involved in promoting cell invasion
and cell proliferation. Furthermore, the KCNN4-induced
calcium signaling process also reported to be associated
with the malignant phenotypes of numerous tumors, such

© Translational Cancer Research. All rights reserved.

as glioblastoma, pancreatic cancer, melanoma, and prostate
cancer (28-31).

Our data indicated that a higher expression of these four
genes was significantly related to the PTC’s pathogenesis
and correlated with a higher stage. Consistent with our
findings, recent studies have reported that the mRNA levels
of GDFI5 (32), LCN2 (24), and H3BGRL3 (26) display
a notable increase in thyroid cancer, especially in PTC.
KCNN+4 may regulate cancer proliferation and invasion,
and increased expression of KCNN+4 has been found to be

Transl Cancer Res 2021;10(2):694-713 | http://dx.doi.org/10.21037/tcr-20-2866



Translational Cancer Research, Vol 10, No 2 February 2021

A KIT B TFCP2LA C PLA2R1
* *
5.5 5.0 48 *
— — —
fol T £
g E E 44
E E 4 E
Qa5 g Qa2
7] 8 44 7]
€ € € 40
3 40 3 3
o o4 O 338
3.5 4.0 T T 3.6 T T
PTC Normal PTC Normal PTC Normal
G SLC26A4 H SMOC2 I SLC4A4
* *
*
55 — 46 — 45 —
c X c c
250 S 44 2
= g Z 40
Sas = =
2 Q42 2
@ 40 i) 2
g g g8
4.0
o o o
335 3 S
3.0 3.8 3.0
PTC Normal PTC Normal PTC Normal
M CGNL1 N FAXDC2 O RAP1GAP
* * *
44 5.2 55
— —
8 50 5
42 E 48 T 5.0
g 3 8
g 248 g
0 0 123
€ 40 € 44 € a5
2 3 3
o O 42 o
3.8 4.0 4.0
PTC Normal PTC Normal PTC Normal

707
D MATN2 E SLC26A7 F IPCEF1
*
41 ns 55 — 55 *
c — c x c —
o 40 o 50 o
T E E 5.0
E 3o E s E
[ [ [
o o (=%
0 38 @40 @
c c c 45
3 3 3
3§37 o 35 o
3.6 3.0 4.0
PTC Normal PTC Normal PTC Normal
J DGKI K WDR72 L ADII;ORZ
*
5.5 * 5.5 — 5.1
5 s | § 50
250 2 50 2
= H =
g : E s
845 245 2
2 2 248
5 5 5
4.0 4.0
o o o
3 3 3 a7
3.5 3.5 46
PTC Normal PTC Normal PTC Normal
P SMARCA2 Q ABI3BP
ns
5.2 * 3.8
c
<
250 * 2 37
g E
E c s
g 48 g
] @ 35
c <
346 3
S 3 34
4.4 3.3
PTC Normal PTC Normal

Figure 8 Genes in the yellow module were verified by the GEO data. (A-P) Sixteen of 17 selected genes were significantly different across

the PTC and normal groups (q<0.05), while (Q) the ABI3BP expression did not have a significant difference between the PTC and normal

groups (q>0.05). *, indicates P<0.05 and ns indicates P>0.05. GEO, Gene Expression Omnibus; PTC, papillary thyroid carcinoma.

an indicator of poor clinical outcomes in various tumors
(27,33-37). Collectively, these findings highlight this gene’s
potentially significant role in cancer development. In this
study, KCNN4 was screened out in PTC, implying that it
might play an essential role in this malignancy.

By analyzing gene function and signaling pathways,
we confirmed that genes in the yellow module and the
upregulated DEGs were significantly enriched in the three
vital signaling pathways of focal adhesion, ECM-receptor
interaction, and PI3K-Akt signaling, which play critical

© Translational Cancer Research. All rights reserved.

roles in PTC. In line with our results, several studies
have also reported focal adhesion (38,39), ECM-receptor
interaction (39-41), and the PI3K-AKT signaling pathway
(42,43) to be associated with the proliferation, metastasis,
and development of PTC.

Several limitations of our study should also be
mentioned. First, the test and validation data matrix
used the same normal samples, which would lead to data
independence. Thus, we used data from the GEO database
for independent verification in the article and got the

Transl Cancer Res 2021;10(2):694-713 | http://dx.doi.org/10.21037/tcr-20-2866
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Figure 9 Genes in the yellow module were verified by qRT-PCR. (A-E) GDFI15, MMP2, SH3BGRL3, KCNN4, and LCN2 were highly
expressed (P<0.05) while (F-]) SLPI, S100411, OCIAD2, MVP, and PDZKI1IPI were weakly expressed (P<0.05) in the BCPAP cell line
compared with the Nthy-ori 3-1 cell line. *, indicates P<0.05; **, indicates P<0.01; ***, indicates P<0.001. qRT-PCR, quantitative real-time

polymerase chain reaction.

same result that four genes (GDFI5, LCN2, KCNN4, and
SH3BGRL3) from the yellow module that were highly
correlated with the occurrence and progression of PTC.
Second, we only used a single PTC cell line for verification,
and more PTC cell lines would provide more substantial
verification. Finally, future studies with iz vivo animal
models are required to further validate the present study’s

© Translational Cancer Research. All rights reserved.

conclusions.

Conclusions

We systematically identified four genes (GDFI5, LCN2,
KCNN4, and SH3BGRL3) from the yellow module that

were highly correlated with the occurrence and progression

Transl Cancer Res 2021;10(2):694-713 | http://dx.doi.org/10.21037/tcr-20-2866
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of PTC. These findings provide insights into the
mechanisms underlying the pathogenesis and progression
of PTC and may serve as potential targets for the diagnosis
and treatment of patients with this disease.
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