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Abstract: In the past few decades, the incidence of esophageal adenocarcinoma has increased by six-fold 
in western countries, as the proton pump inhibitor targeting the gastric acid reflux has failed to control 
the disease. It is currently suggested that deoxycholic acid reflux leads to esophageal adenocarcinoma. As 
an inflammation-related cancer, the formation and progression of esophageal adenocarcinoma are closely 
related to the concentration of reactive oxygen species (ROS). Meanwhile, the critical developmental stage 
of esophageal adenocarcinoma involves characteristic pathological changes in which the distal esophageal 
squamous epithelial cells are replaced by intestinal columnar epithelial cells, suggesting the involvement of 
cancer stem cells. Thus, esophageal adenocarcinoma is a good model to study the interplay between ROS 
and stem cells in cancer. Until now, some important questions related to ROS in esophageal adenocarcinoma 
remain unanswered. For example, the molecular mechanism by which deoxycholic acid induces malignant 
transformation in esophageal adenocarcinoma remains unclear. In addition, whether ROS are involved in 
the induction of cancer stem cell formation by chemotherapeutic drugs and deoxycholic acid stimulation 
in esophageal adenocarcinoma remains to be further explored. This review summarizes current research 
progress on ROS and stemness activity, regulation of ROS by stanniocalcin-1 (STC1)/uncoupling protein 
2 (UCP2), and inspiration for ROS in esophageal adenocarcinoma to guide further research and provide 
insight into the clinical treatment of esophageal adenocarcinoma.
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Introduction 

The origin of reactive oxygen species (ROS)

ROS are defined as oxygen-containing substances that 
readily oxidize other molecules and include superoxide 
(O2

−), hydroxyl (HO), and hydrogen peroxide (H2O2) 
molecules (1). ROS are produced in the mitochondria by 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase (NOX). G-protein-coupled receptor 5 (TGR5), 
NOX1, and NOX2 are NADPH hydrogenases. Early 
studies have shown that acids and bile acids produce ROS 
by upregulating TGR5 (2,3). Recent studies have shown 
that bile acids also produce ROS by upregulating NOX1 
and NOX2, causing DNA damage and the malignant 
progression of Barrett’s esophagus. Meanwhile, NOX1 
and NOX2 inhibition by siRNA interference can reduce 
ROS production and DNA damage (4). Both P16 and 
P53 are important tumor suppressor genes. Hong et al. (2) 
showed that ROS methylate P16DNA and downregulate 
P16mRNA expression, promote cell proliferation, and 
cause the malignant transformation of Barrett’s esophagus 
into esophageal adenocarcinoma. Cardin et al. (5) showed 
that the accumulation of DNA oxidative damage activates 
telomerase and telomere lengthening occurs in the late 
stage, ultimately leading to p53 gene mutation and adverse 
effects on cell growth, apoptosis, and DNA repair that 
promote cancer progression.

The relationship between ROS and esophageal 
adenocarcinoma

ROS do not only cause cancer by damaging DNA, but 
also by activating inflammatory pathways and producing 
inflammatory mediators, which further promote tumor 
microenvironment formation. These processes are related 
to apoptosis resistance, invasion, and metastasis. Nuclear 
factor kappa B (NF-κB) is an important inflammatory 
pathway in esophageal adenocarcinoma. Liu et al. (6) found 
that deoxycholic acid-mediated NF-κB-interleukin 8  
(IL-8) pathway activation is related to ROS, and the 
activated NF-κB pathway also produces anti-apoptotic 
protein Bcl-2, rendering DNA-damaged cells resistant 
to apoptosis (7). Signal transducer and activation of 
transcription 3 (STAT3) is also an important inflammatory 
pathway in esophageal adenocarcinoma. Acid and bile 
acid reflux have been shown to activate the interleukin 6  
(IL-6)–STAT3 pathway and increase expression of the anti-
apoptotic protein Bcl-xL, leading to apoptosis resistance in 

cancer cells (8). STAT3 inhibitors significantly reduce the 
proliferation and migration of esophageal adenocarcinoma 
cells, suggesting that the STAT3 pathway is also associated 
with esophageal adenocarcinoma proliferation and 
metastasis (9). Studies have found that ROS activation 
promote malignant lung cancer progression by stimulating 
the Janus kinase (JAK)-STAT3 pathway. After UCP2 
silencing, ROS levels increase, thus activating the STAT3 
pathway. Rotenone or NOX inhibitor pretreatment reduces 
ROS and eliminates STAT3 pathway activation (10). In 
addition, studies on gastric cancer have found that H. pylori 
promotes the STAT3 pathway activation by increasing ROS 
production, further leading to Wnt pathway activation 
and excessive cancer cell proliferation, while antioxidants 
significantly inhibit STAT3 pathway activation and prevent 
malignant cancer progression (11). However, whether 
ROS can also activate the STAT3 pathway in esophageal 
adenocarcinoma has not been studied yet.

Reflux of bile acid and ROS in esophageal adenocarcinoma

It is currently suggested that bile acid reflux is an important 
factor leading to the formation and progression of Barrett’s 
esophagus and esophageal adenocarcinoma. Bile acids are 
structurally classified into two groups: free bile acids—
including cholic acid, deoxycholic acid, goose deoxycholic 
acid, and a small amount of licholic acid—and the 
conjugated products of bile acid with glycine or taurine, 
termed the conjugated bile acid. Bile acid reflux in patients 
with Barrett’s esophagus usually ranges from 3 to 820 µM, 
with a median of 180 µM (12), but may reach 6,400 µM (13). 
In the rat reflux model, it was found that gastric acid 
alone could not induce Barrett’s esophagus formation; 
in contrast, bile acid alone could produce it (14). Shen  
et al. (15) successfully reprogramed deoxycholic acid-
induced immortal esophageal squamous epithelial cell line 
Het-1a to express caudal-type homeobox gene 2 (CDX2) 
and mucin 2 (MUC2), which serve as intestinal epithelial 
cell markers. Huo et al. (7) treated Barrett’s esophagus cell 
lines with deoxycholic acid and ursodeoxycholic acid and 
found that deoxycholic acid causes oxidative stress reaction 
and subsequent cell DNA damage, while hydrophobic 
ursodeoxycholic acid does not damage cell  DNA. 
Esophageal adenocarcinoma is defined as an inflammation-
related cancer in which excessive ROS is mediated by bile 
acid (deoxycholic acid) reflux (6). Therefore, unconjugated 
deoxycholic acid may be an important determinant in 
bile that causes carcinogenesis and the transformation 
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of esophageal squamous epithelial cells into Barrett’s 
esophagus (16). Specifically, the molecular mechanism by 
which deoxycholic acid induces malignant transformation 
remains unclear.

ROS and cancer stem cells

Current conventional chemoradiotherapy kills most cancer 
cells by increasing ROS levels in the cells, but cancer stem 
cells survive due to their resistance to chemoradiotherapy 
and thus can induce relapse by differentiating into cancer 
cells at the appropriate timing. Cancer stem cells are a small 
number of self-renewing and differentiating cells in tumors, 
which are closely related to recurrence, metastasis, and 
chemoradiotherapy resistance. Cancer stem cells may be 
transformed from normal stem cells, as well as progenitor, 
tumor, or normal non-stem cells after dedifferentiation 
and reprogramming (17-19). Therefore, it is particularly 
important to understand cancer stem cell formation to 
subsequently perform targeted treatment to improve the 
efficacy of cancer treatment and improve the survival 
prognosis of patients.

This review focuses on the research progress of ROS 
specifically in esophageal adenocarcinoma, including 
the relationship between stemness activity and ROS, the 
regulation of ROS, and the inspiration for clinical treatment 
based on ROS levels.

ROS and stemness activity in esophageal 
adenocarcinoma

Markers of cancer stem cells in esophageal adenocarcinoma

The critical developmental stage of esophageal adenocarcinoma 
involves characteristic cellular morphological changes, which 
may suggest cancer stem cell involvement. Esophageal 
adenocarcinoma developed from the normal esophagus 
proceeds through several developmental stages, including 
Barrett’s esophagus, low-grade dysplasia, high-grade 
dysplasia, and esophageal adenocarcinoma. The critical 
precancerous stage Barrett’s esophagus has been marked by 
columnar epithelial cells replacing squamous epithelial cells 
in the distal esophagus (20), which strongly suggests the 
involvement of stem cell-related activities (21).

Three types of markers can be used for the recognition 
of cancer stem cells, including cell surface molecules, 
transcription factors,  and molecules of  s ignal ing 
pathways. Cell surface molecules mainly include aldehyde 

dehydrogenase (ALDH), CD44, and CD133, while 
transcription factors include Octamer-binding transcription 
factor 4 (OCT4), homeobox protein (Nanog), and sex-
determining region Y-box 2 (SOX2). The signaling 
pathways include Notch, JAK/STAT3, phosphatidylinositol 
3-kinase/ protein kinase (PIK3/AKT), Wnt, etc. (19). In 
esophageal adenocarcinoma, researchers have found that 
cancer stem cells of esophageal adenocarcinoma express 
stem cell markers, such as ALDH (22), OCT4 (23), 
CD44 (21), and CD133 (21). Lynam-Lennon et al. (22) 
confirmed that ALDH expression was associated with 
cancer stem cells. Patients with esophageal adenocarcinoma 
and elevated ALDH expression were less responsive to 
chemoradiotherapy. In addition, studies have found that 
ALDH1+ cells, which can prevent ROS-induced apoptosis 
by reducing ROS production, are more resistant to 
oxidative stress than ALDH1− cells (24). ALDH expression 
inhibition target cancer stem cells in ovarian cancer, 
enhancing the sensitivity of ovarian cancer to chemotherapy 
from taxanes and platinum. These results suggest that 
cancer stem cells in esophageal adenocarcinoma may also 
develop resistance to radiotherapy and chemotherapy 
through ALDH expression to improve antioxidant capacity 
in cancer. OCT4, also known as OCT3, is an important 
transcription factor that maintains the pluripotency of 
stem cells. Studies have shown that OCT4 expression 
increases with the progression of Barrett’s esophagus to 
esophageal adenocarcinoma, while the decrease in OCT4 
expression reduces the invasiveness and cloning ability in 
esophageal adenocarcinoma cells, reducing cancer stem 
cell generation. This suggests that OCT4 might play an 
important role in the progression of Barrett’s esophagus to 
esophageal adenocarcinoma by promoting cancer stem cell  
formation (23). Signaling pathways such as Notch 
have been proven to drive the formation of esophageal 
adenocarcinoma cancer stem cells, while inhibition of 
Notch signaling could reduce the number of cancer stem 
cells, increasing their sensitivity to chemoradiotherapeutic 
drugs (25). The JAK/STAT3 pathway is also recognized as 
an important signaling pathway regulating the formation 
of cancer stem cells. It has been found in lung cancer that 
STAT3 could regulate ALDH activity, which is essential 
for the maintenance of lung cancer stem cells (26,27). In 
cervical cancer, STAT3 affects the expression of OCT4 and 
Nanog transcription factors and regulates the biological 
characteristics of cervical cancer stem cells (28). It has 
also been found in esophageal adenocarcinoma that the 
JAK/STAT3 pathway is activated under the stimulation of 
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acid or deoxycholic acid to promote apoptosis resistance, 
proliferation, and metastasis (8,9). However, whether the 
STAT3 pathway in esophageal adenocarcinoma can regulate 
stem cell formation remains unclear, and further studies are 
needed.

ROS induces stemness activity in cancer 

Stud ie s  have  shown tha t  low and  medium ROS 
concentrations promote stemness formation in cancer 
cells (29). In fact, it is one of the reasons for cancer 
resistance to chemoradiotherapy and its recurrence after 
chemoradiotherapy. Chemoradiotherapy kills cancer cells 
by producing ROS; although high ROS concentrations 
kill cancer cells, playing a therapeutic role, low ROS 
concentrations act as signaling molecules in related 
signaling pathways, inducing cancer cells to transform into 
cancer stem cells and enhancing cancer malignancy (30,31). 
Both insufficient chemotherapeutic drugs or antioxidant 
system enhancement in cancer might have the opposite 
consequence to the desired therapeutic outcome.

ROS can directly activate Notch, STAT3, and other 
signaling pathways to induce cancer stem cell formation. 
Charles et al. (32) found that nitric oxide activates Notch 
signaling and promotes the stemness of glioma cells. Zhang 
et al. (29) found that during the treatment of pancreatic 
cancer, low-dose gemcitabine also induces pancreatic cancer 
stem cell formation by activating the STAT3 pathway 
through producing low and medium levels of ROS. 
However, the activated Notch or STAT3 signaling pathway 
upregulates ROS scavenger enzymes or increases anaerobic 
glycolysis through the phosphatidylinositol 3 kinase/protein 
kinase B (PIK3/AKT) pathway to control ROS levels (33), 
which helps to maintain a low level in cancer stem cells. 
In addition, transcription factors such as hypoxia-induced 
factor α (HIF-α) and NF-κB also promote the formation or 
maintenance of stemness in cancer. Researchers have found 
that ROS promotes cancer stem cell formation by regulating 
HIF-α expression and promoting NF-κB activation (34). 
Notably, ROS also induce mesenchymal transformation in 
tumor epithelial cells, promoting invasion and metastasis. 
As an E-cadherin inhibitor, Snail is the most important 
mesenchymal transformation transcriptional regulator. 
Studies have shown that ROS induce Snail expression, which 
could further activate Notch, PIK3/AKT, Wnt, and other 
signaling pathways to promote mesenchymal transformation 
in cancer (19). Mesenchymal transformation is closely 
related to cancer stem cell formation (35,36), possibly 

because mesenchymal transformation and cancer stem cells 
share common activation pathways, such as Notch, PIK3/
AKT, Wnt, and others. Furthermore, it was found that 
mesenchymal transformation also activates cancer cells to 
obtain stemness through the Ras-mitogen-activated protein 
kinase pathway (37). In general, ROS induce cancer stem 
cell formation by directly activating the relevant signaling 
pathways or transcription factors of cancer stem cells, and 
also promote cancer stem cell generation by promoting 
the occurrence of cancer mesenchymal transformation. 
However, in esophageal adenocarcinoma, the relationship 
between ROS and cancer stem cells is still not clear. Studies 
have found that chemotherapeutic drugs also induce the 
formation of esophageal adenocarcinoma cancer stem 
cells (38). Bile acid stimulation upregulates esophageal 
adenocarcinoma stem cell markers and promotes cancer stem 
cell formation (23). It is known that both chemotherapeutic 
drug use and deoxycholic acid stimulation promote ROS 
generation. However, whether the induction of cancer stem 
cell formation by chemotherapeutic drugs and deoxycholic 
acid stimulation in esophageal adenocarcinoma is related to 
ROS remains to be further explored.

ROS uncoupling protein 2 (UCP2) and 
stanniocalcin-1 (STC1) 

Proton leak, a significant biological energy phenomenon 
that greatly reduces the yield of ROS and adenosine 
triphosphate (ATP), is one of the important accomplices 
of drug resistance in cancer cells. Significantly high 
proton leak-mediated bioelectricity is one of the primary 
characteristics of cancer, rendering cancer cells different 
from normal cells (39,40). Although proton leak has not 
been directly studied in relation to cancer treatment, it 
plays a key role in cancer treatment strategies because 
proton leak determines the level of ROS. The up-regulated 
UCP2 expression in the UCP2-mediated proton leak in 
cancer cells is responsible for drug resistance. Reducing 
UCP2-mediated proton leak increased the level of ROS and 
chemical sensitivity to cisplatin therapy in cancer cells (40).

Studies have found that deoxycholic acid could reduce 
the expression of UCP2 and enhance the ability of cloning, 
proliferation, invasion, and metastasis in esophageal 
adenocarcinoma cells (41). UCP2 was found to be widely 
distributed in the liver, brain, pancreas, adipose tissue, 
immune cells, spleen, kidney, and central nervous system. 
Several studies have focused on UCP2 (42), which can 
pump protons between the inner and outer mitochondrial 
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membranes into the mitochondrial matrix. Proton 
transport bypasses ATP synthase and reduces the proton 
gradient of the mitochondrial inner membrane, leaving 
the oxidative complex of the electron transport chain in 
the mitochondrial inner membrane idle. This leads to a 
decrease in the mitochondrial inner membrane potential, 
electron leakage in the electron transport chain, and ROS 
production. Functionally, UCP2 is involved in insulin 
secretion, immune response regulation, and cell energy 
metabolism, which enhance glycolysis (43).

In recent years, studies have identified a key role of UCP2 
in oncogenesis and progression. It is generally believed 
that UCP2 is inhibited in the early stage of carcinogenesis, 
during which intracellular ROS accumulation leads to 
genomic instability and induces cancer formation. In 
the subsequent stages of cancer development, UCP2 is 
activated or overexpressed in cancer cells compared to in 
normal tissue cells by reducing intracellular ROS levels, 
thereby increasing resistance to chemotherapeutic drugs in 
cancer cells, improving their invasiveness, and protecting 
cancer cells (42,44,45). Therefore, UCP2 and cancer might 
have a dual relationship. Proton leak determines the ROS 
level, which plays an important role in cancer treatment 
strategies. Reduction of mitochondrial oxidative metabolism 
is a hallmark biological energy feature of malignant tumors, 
and may have an adaptive effect on cancer occurrence. 
Targeting mitochondria is a promising new approach 
for cancer prevention and treatment (20). UCP2 is often 
overexpressed in drug-resistant cancer cells, where it 
controls the ROS level and limits drug toxicity.

STC1 is a blood calcium and phosphorus metabolic 
balancing regulating protein expressed in various 
tissues and organs in the human body. In addition, it is 
involved in calcium and phosphorus transport and plays 
an important role in the formation and progression of 
cancer. Studies have shown that STC1 is overexpressed 
in multiple malignant tumors, such as laryngeal cancer, 
glioma, esophageal cancer, gastric cancer, colorectal cancer, 
thyroid cancer, kidney cancer, and breast cancer. STC1 
promotes cell proliferation by regulating cell cycle protein  
expression (46). In kidney cancer, STC1 accelerates 
transformation from G1 phase to S phase, thereby 
shortening the cell cycle and increasing the proliferation 
rate of cancer cells (47). STC1 improves the anti-apoptosis 
effect in cancer, mainly by activating the ERK and JNK 
signaling pathways, promoting the expression of anti-
apoptotic proteins Bcl-2 and Bcl-xL, and inhibiting the 
pro-apoptotic proteins Bax, Bak, and Bid (48). Moreover, 

STC1 also promotes blood vessel formation through the 
vascular endothelial growth factor/vascular endothelial 
growth factor receptor (VEGF/VEGFR2)-related 
signaling pathway (49). Therefore, the high expression 
of STC1 improves the malignant ability of the cancer 
and is a predictive marker of cancer progression. Wang  
et al. (50) showed that STC1 induces UCP2 expression in 
macrophages, which is an important factor that weakens 
the oxidative stress response in cells. Ono et al. (51) 
reported that large STC1 quantity mediates UCP2, reduces 
alveolar epithelial cell ROS production, and inhibits 
pulmonary fibrosis. These findings verify the existence of 
an association between STC1 and UCP2 in normal cells. 
Recent studies have found that STC1 is highly expressed 
in cancer, accompanied by a decrease in intracellular  
ROS (52). Considering the involvement of UCP2 in 
regulating cellular ROS production, it is speculated that the 
reduction of STC1 to ROS depends on the expression of 
UCP2 in related cancers.

ROS on the prevention and treatment of 
esophageal adenocarcinoma

Prevention of cancer (ROS lowering anticancer therapy)

It  i s  known that  deoxychol ic  acid st imulates  the 
production of ROS, and the increased ROS triggers a 
series of malignant events. ROS can promote HIF-2a  
generation (53) and NF-κB activation (54) by damaging 
DNA (55) and interfering with the expression of tumor 
suppressor genes (2,5,56), thus inducing anticancer 
immune tolerance and promoting the expression of anti-
apoptotic proteins (53), which together promote esophageal 
adenocarcinoma occurrence. On one hand, oxidative stress 
plays an important role in esophageal adenocarcinoma 
occurrence; therefore, antioxidant therapy may be 
effective in the prevention and treatment of esophageal 
adenocarcinoma, specifically by inhibiting ROS production 
and increasing ROS clearance. For example, NADPH 
oxidase is the key enzyme for peroxisomal ROS production. 
Studies have shown that inhibiting NADPH oxidase ROS 
species production and DNA damage, which may be an 
effective target for preventing tumorigenesis (4). On the 
other hand, an obstacle to the antioxidant system leads to 
an increase in ROS due to limited clearance. Studies have 
found decreased levels of superoxide dismutase (SOD) 
in Barrett’s esophagus and esophageal adenocarcinoma, 
where SOD supplementation reduces oxidative damage to 
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the esophageal epithelium and prevents the progression 
of esophageal epithelium from Barrett’s esophagus to 
esophageal adenocarcinoma (57). In addition, some 
antioxidants may be effective in the prevention of 
esophageal adenocarcinoma. Bhardwaj et al. (58) found 
that a natural antioxidant, oleandine, which may be used 
to prevent the occurrence of esophageal adenocarcinoma, 
inhibits ROS production, prevents DNA damage in 
Barrett’s esophagus cells, and enhances DNA repair. Diallyl 
disulfide is a natural organic sulfur compound derived 
from garlic. Studies have shown that diallyl disulfide, 
which may be a good candidate for Barrett’s esophagus 
or esophageal adenocarcinoma chemoprophylactic and 
therapeutic therapies, inhibits deoxycholic acid-induced 
ROS production, thereby inhibiting NF-κB activation 
and inflammatory cytokine and anti-apoptotic protein 
production (59). In addition, Jenkins et al. (60) confirmed 
that vitamin C blocks the genetic toxicity of esophageal 
mucosal epithelium caused by bile acids by clearing ROS, 
thus supporting the idea that antioxidants may be an 
effective chemical protectant. In short, ROS promotes 
the occurrence of esophageal adenocarcinoma through 
a variety of mechanisms. Therefore, lowering the ROS 
level in the body might contribute to the prevention of 
esophageal adenocarcinoma. Specifically, these measures 
could be achieved by inhibiting key enzymes involved in 
ROS production, enhancing the body antioxidant system, 
or using some antioxidants to reduce ROS levels in the 
body. However, effectiveness still needs to be confirmed 
using sufficient evidence. It is worth noting that antioxidant 
therapy may be effective for the prevention of cancer, 
but for malignant developed cancer, especially advanced 
cancer, antioxidant therapy is not helpful and may reduce 
the survival rate of tumor patients. This may be due to the 
elimination of ROS as well as the ROS-mediated apoptosis, 
leading to the survival of cancer cells. Therefore, it is 
necessary to increase the level of ROS to induce apoptosis 
in an advanced situation.

Cancer therapy (an anticancer therapy that increases ROS)
 
There are sti l l  no strategies for the treatment of 
esophageal adenocarcinoma. At present, neoadjuvant 
chemoradiotherapy combined with surgery is utilized, but 
the response rate of tumor to chemoradiotherapy is 16% 
of the complete pathological responses (34). Researchers 
have found that the existence of esophageal adenocarcinoma 
cancer stem cell subsets is important for resistance to 

neoadjuvant chemoradiotherapy; therefore, targeted 
treatment of cancer stem cells may increase the sensitivity 
of chemoradiotherapy and improve clinical results (25). 
It is known that the concentration of ROS in cancer stem 
cells is also lower than that in ordinary cancer cells, because 
cancer stem cells are more sensitive to ROS. Medium 
and low concentrations of ROS can help the formation of 
cancer stem cells, while high concentrations can inhibit 
the expression of cancer stem cells and even kill them. 
Therefore, current chemoradiotherapeutic drugs kill cancer 
and cancer stem cells by producing a large amount of ROS. 
However, cancer stem cells can reduce the concentration of 
ROS in cells through a powerful antioxidant system or the 
transformation of energy metabolism. In terms of antioxidant 
systems, cancer stem cells can enhance antioxidant 
capacity by inducing the activation of antioxidant protein 
nuclear factor erythroid 2-related factor 2 (NRF2) (61), 
increasing the expression of antioxidant enzyme superoxide 
dismutase1 (62), and increasing the production of 
antioxidant glutathione (63), to control the ROS level and 
avoid damage to cancer cells. Therefore, ROS levels may be 
low in this case, which may induce the formation of cancer 
stem cells, which is also a cause of cancer chemoradiotherapy 
resistance. Thus, under the condition of ensuring sufficient 
ROS production by chemotherapy, drugs that inhibit cancer 
antioxidant system can be combined to significantly increase 
ROS levels in cancer to achieve therapeutic purpose. 
Studies have shown that a combination of cisplatin and 
salazosulfapyridine can reduce the in vivo glutathione effect, 
leading to significant ROS accumulation, thereby enhancing 
the sensitivity of colorectal cancer to cisplatin and inhibiting 
cancer cell proliferation (64). Another study found that 
reducing the antioxidant enzyme Mn-superoxide dismutase 
(Mn-SOD) expression through siRNA can increase the 
sensitivity of ovarian cancer cells to chemically induced  
apoptosis (65). In addition, ALDH expression also 
contributes to the clearance of ROS in cancer stem cells. 
High ALDH expression is related to chemotherapeutic 
cancer resistance, while siRNA ALDH enhances the 
cytotoxicity of taxane and platinum and targets ovarian 
cancer stem cells (66). In short, improving the ROS level 
in cancer may be effective for cancer treatment. Due to the 
enhanced antioxidant capacity of cancer stem cells, drugs 
used solely to promote ROS production may be ineffective. 
Therefore, ROS-generating drugs combined with 
antioxidant system drugs could effectively improve the ROS 
level in cancer cells to achieve therapeutic effects. However, 
at present, few studies have focused on these methods in 
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esophageal adenocarcinoma, which still need to be further 
explored.

Conclusions

Esophageal adenocarcinoma is an inflammatory cancer 
caused by the chronic reflux of gastric and bile acids. ROS 
not only causes cancer by damaging DNA, but also activates 
inflammatory pathways, produces inflammatory mediators, 
and further promotes cancer microenvironment formation. 
ROS levels are also related to apoptosis resistance, invasion, 
and metastasis, as well as potentially cancer stem cells, and 
thus may be a key driver of the growth and metastasis of 
this cancer type to initiate tumorigenesis, self-renewal, 
and differentiation of cancer cells. In addition, interactions 
among ROS, UCP2, and STC1 are noteworthy. It is 
important to recognize that esophageal adenocarcinoma 
can be prevented or treated by regulating the ROS level 
in the body. Since high ROS levels can kill cancer cells 
significantly, the combination of chemotherapeutic 
drugs along with drugs that exhibit antioxidant system 
characteristics might serve as an effective treatment strategy.
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