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Background: Lymphocyte-specific protein tyrosine kinase (LCK), an encoded Src family protein tyrosine 
kinase, performs a pivotal molecular signaling role in the selection and maturation processes during 
T-cell development. Although aberrant LCK expression is known to have a significant association with 
carcinogenesis, the underlying role of LCK in breast cancer (BC) is still obscure.
Methods: An analysis of the levels of LCK mRNA expression in BC was performed, and the value of LCK 
expression for predicting the prognosis of patients with BC was studied using various online data resources, 
which included Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), and UALCAN. The 
web-based NetworkAnalyst tool was utilized to investigate the functional network of differentially expressed 
LCK. LinkedOmics was employed to identify the genes with which LCK has correlations in BC, together 
with the kinases, microRNAs, and transcription factors (TFs) potentially targeted by LCK in BC. The 
expression levels of LCK and its significantly correlated genes in BC were investigated with the Human 
Protein Atlas (HPA).
Results: We observed a significant difference in the level of LCK mRNA expression between BC patients 
and healthy individuals, and a higher LCK expression was associated with poor overall survival (OS). The 
functional enrichment results revealed that the differential expression of LCK was mainly involved in the 
regulation of immune response and inflammatory response in BC. The expression of significantly related 
genes, such as inducible T-cell kinase (ITK), CD5, CD96, CD247, SH2 domain containing 1A (SH2D1A), 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CD), Src-like-adaptor 2 (SLA2), and interleukin 2 receptor 
(IL2RG), was associated with poor OS in patients with BC. Regulatory network analysis found that LCK 
regulated immune cells, cancer progression, apoptosis, and cell cycle signal transduction through cancer-
related kinases (ITK and MAPK3), miRNAs (miR-345 and miR-524), and TFs (AP1, SRF, and E2F1).
Conclusions: This study presents new perspectives on the differential expression and prognostic value of 
LCK in BC. Our observations will provide a basis for further study on the oncogenic and regulatory roles of 
LCK in BC.
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Introduction

Breast cancer (BC) was the one of the commonest cancer 
types for China (1). Each year, almost 1.7 million cases 
of BC are diagnosed, and 500,000 people die due to this 
disease (2). Approximately 1 in every 8 to 10 women will 
suffer from BC in their lifetime (3). With the development 
of advanced diagnostic methods and more effective 
therapies in the past few years, mortality among patients 
with BC has decreased. In 2016, BC was responsible for 
8% of all deaths in the European Union (4), and it is still 
the biggest contributor to cancer-related death around 
the world. Therefore, it is crucial to find a more sensitive 
and effective biomarker for the diagnosis of BC, as well as 
potential therapeutic targets.

Lymphocyte-specific protein tyrosine kinase (LCK) was 
first identified to be part of the Src protein tyrosine kinase 
family in the 1980s (5). LCK is composed of N-terminal 
site (Src-homology 4, SH4 domain), a unique region, a SH3 
and SH2 domain, a catalytic domain, and a short C-terminal 
tail (6). Later research demonstrated LCK to be a regulator 
of T-cell receptor (TCR) signaling, and T-cell development 
and homeostasis. LCK also acts as an important regulator 
of chimeric antigen receptor (CAR)-engineered T cells (7).  
Further studies showed that LCK is differentially expressed 
in various types of cancers and that the biological function 
of LCK differs depending on the cancer. Cancers in which 
LCK expression has been detected include BC, lung cancer, 
colon cancer, cholangiocarcinoma, and glioma (8-12). In 
cholangiocarcinoma, high LCK expression is considered 
to be a risk factor for tumor recurrence (8). Previous 
studies have also reported that LCK may be an important 
regulator of cancer stem cells (CSC) (13), which contribute 
to tumor drug resistance and recurrence. In another study, 
LCK is a potential therapeutic gene for acute myeloid 
leukemia (AML) (14). Compared to Bai et al. study, we 
not only analyzed the LCK gene but also explored the 
significant correlated-genes and significant regulators such 
as PIK3CD, SLA2, IL2RG, ITK, MAPK3, miR-345 and 
miR-524 of LCK (15). Based on the evidence described 
above, it can be speculated that LCK may be a diagnostic 
biomarker and a potential therapeutic target for patients 
with cancer. However, a lack of clarity still surrounds the 
role LCK plays in BC. Here, we studied the expression 
levels and prognostic value of LCK in patients with BC 
using bioinformatics tools. We mainly used The Cancer 
Genome Atlas (TCGA) data to perform this study, TGCA 
is a public funded project that aims to catalogue and 

discover major cancer-causing genomic alterations to create 
a comprehensive "atlas" of cancer genomic profiles (16).

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tcr-21-328).

Methods

UALCAN (http://ualcan.path.uab.edu) is an online portal 
which allows users to interactively and straightforwardly 
conduct comprehensive analysis of gene expression data 
from The Cancer Genome Atlas (TCGA) (17). Using 
UALCAN, we examined the expression level of LCK in BC 
according to different clinicopathological features, such as 
age, sex, histological subtype, co-mutation status, and stage.

Gene Expression Profiling Interactive Analysis (GEPIA) 
analysis

GEPIA (http://gepia.cancer-pku.cn) is an online server 
delivering functions that can be customized by the user to 
rapidly analyze data from TCGA and Genotype-Tissue 
Expression (GTEx) projects (18). To study the prognostic 
roles of LCK and the genes with which it is significantly 
correlated in BC, we constructed survival curves using 
GEPIA. Independent-samples t-test was employed for the 
prognostic analysis, with P<0.05 set as the threshold for 
significance.

PrognoScan analysis

PrognoScan is a database that can be used to investigate 
the associations between defined genes and prognosis for 
multiple cancers (https://www.abren.net/PrognoScan/) (19).  
We validated the prognostic role of LCK in BC via 
PrognoScan with data derived from the Gene Expression 
Omnibus (GEO).

GeneMANIA analysis

GeneMANIA (https://genemania.org) is website that can 
be used to construct protein-protein interaction (PPI) 
networks (20). We use GeneMANIA to predict the function 
of the LCK gene and visualize the gene network.

LinkedOmics analysis

LinkedOmics (http://www.linkedomics.org) contains 

http://dx.doi.org/10.21037/tcr-21-328
http://dx.doi.org/10.21037/tcr-21-328
http://gepia.cancer-pku.cn)
https://www.abren.net/PrognoScan/
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multi-omics and clinical data of 11,158 individuals with 32 
different cancers from TCGA. This web-based resource 
allows researchers to access multi-omics data for analysis 
and comparison within and among cancer types (21). We 
found the genes with significant correlations with LCK 
(Pearson’s correlation ≥0.6) in the LinkedOmics dataset 
and constructed a heatmap of the top 50 correlated genes. 
Further, the differentially expressed genes within the TCGA 
BC cohort were analyzed via the “LinkFinder” module. The 
LinkedOmics database was also used to analyze the possible 
kinase targets, miRNA target, and transcription factor (TF) 
targets of LCK in BC. 

TIMER analysis 

The TIMER (https://cistrome.shinyapps.io/timer) web 
server can be used to analyze immune cell infiltration 
comprehensively and systematically in a wide variety of 
tumors (22). In our study, the TIMER database was utilized 
for the analysis of immune cell infiltration in BC, and 
to examine the relationship of immune infiltration with 
prognosis in patients with BC.

Human Protein Atlas (HPA) analysis

The HPA has the aim of mapping every protein found in 
the cells, tissues, and organs of humans through the use of 
integrated omics technologies (http://www.proteinatlas.
org) (23). Differences in the expression level of LCK in tumor 
and normal tissue samples were examined using the HPA.

This study was approved by the Academic Committee of 
Guangdong Medical University and conducted according to 
the principles of the Helsinki Declaration (as revised in 2013).

Statistical analysis

The gene expression levels thresholds of |log2 fold change| 
>1.0 and false discovery rate (FDR <0.05), P value <0.05 
seemed as significant difference, the survival analysis P value 
<0.05 was seemed as the significant influence prognosis, 
and the spearman correlated value >0.6 seemed significantly 
correlated.

Results

Expression levels of the LCK gene in patients with BC

To examine the relationship between LCK gene expression 

and BC, UALCAN was used to analyze the level of LCK 
mRNA in BC and normal tissue samples (Figure 1). 
Significant upregulation of LCK mRNA was observed 
in patients with BC. LCK expression was found to differ 
between normal and tumor tissues when data were analyzed 
according to BC stage, race, sex, age, main subtypes, major 
subclasses with triple-negative BC, menopausal status, 
histological subtype, nodal metastasis status, and TP53 
mutation status. To summarize, compared to normal 
samples, BC samples showed a significant increase in the 
level of LCK gene expression.

The relationship of LCK with patient prognosis in BC

To determine whether the LCK gene has an influence on 
survival in BC, we next studied the relationship of LCK 
expression with the prognostic outcomes of patients 
with BC using the PrognoScan and GEPIA databases. 
Data from both databases showed that the expression of 
LCK significantly impacted the overall survival (OS) of 
patients with BC. Analysis using PrognoScan revealed an 
association between a high expression of LCK and a good 
prognostic outcome (P=0.012) (Figure 2A). Similarly, results 
were observed with GEPIA, which revealed a marginal 
association between a high level of LCK and poor OS 
(P=0.041) (Figure 2B,C).

Correlated significant genes of LCK and their role in BC

We continued our investigation of the role potentially 
played by LCK in BC by analyzing the mRNA sequencing 
data of 526 patients with BC from TCGA with the 
LinkFinder module in LinkedOmics. A volcano plot was 
generated, which showed significantly positive correlations 
of LCK with CD5 and CD247, with a false discovery rate 
(FDR) of <0.01. Heatmaps in Figure 3A,B,C show the 
top 50 most significant genes with a positive or negative 
association with LCK. We found that CD5 (Spearman 
correlation =9.166e−01, P=2.249e−149), CD96 (Spearman 
correlation =9.074e−01, P=2.325e−141), CD247 (Spearman 
correlation =9.190e−01, P=1.124e−151), IL2RG (Spearman 
correlation =8.715e−01, P=1.583e−116), ITK (Spearman 
correlation =8.860e−01, P=1.547e−125), PDCD1 (Spearman 
correlation =8.594e−01, P=8.146e−110),  PIK3CD 
(Spearman correlation =7.790e−01, P=5.088e−77), SH2D1A 
(Spearman correlation =9.079e−01, P=8.332e−142), and 
SLA2 (Spearman correlation =8.677e−01, P=2.359e−114) 
were strongly associated with LCK in BC (Figure 4).

https://cistrome.shinyapps.io/timer/
http://www.proteinatlas.org
http://www.proteinatlas.org
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Figure 1 The expression levels of LCK in breast cancer based on different clinical features. LCK, lymphocyte-specific protein tyrosine 
kinase.
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Figure 2 The LCK expression levels and its roles in breast cancer. (A) The LCK expression levels in breast cancer. (B,C) The relationship 
between LCK expression level and prognostic role for breast cancer. LCK, lymphocyte-specific protein tyrosine kinase.
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Next, GEPIA was used to evaluate the prognostic 
value of the genes positively related to LCK in BC. CD5 
(P=0.0037), CD96 (P=0.0036), CD247 (P=0.0058), IL2RG 
(P=0.0085), ITK (P=0.0019), PDCD1 (P=0.0095), PIK3CD 
(P=0.022), SH2D1A (P=0.002), and SLA2 (P=0.025) 
showed significant associations with poor OS in BCs with a 
high transcriptional level of LCK (Figure 5).

Association of LCK expression with immune cell 
infiltration and prognosis

We further analyzed the association of LCK expression 
with immune cell infiltration and prognosis in BC using 
the TIMER database. The following associations were 
identified: In BCs, tumor purity (P=8.62e−71), B cells 
(P=2.08e−77), CD8+ T cells (P=5.65e−73), CD4+ T 
cells (P=3.77e−145), neutrophils (P= 5.43e−104), and 
dendritic cells (P=3.09e−148); in basal-like BCs, tumor 
purity (P=3.93e−14), B Cells (P=1.75e−15), CD4+ T cells 
(P=3.25e−11), neutrophils (P=1.57e−10), and dendritic 
cells (P=3.36e−14); in human epidermal growth factor 
receptor (HER2)-positive BCs, tumor purity (P=1.17e−05), 
CD8+ T cells (P=7.08e−13), CD4+ T cells (P=1.39e−11), 
neutrophils (P=1.35e−08), and dendritic cells (P=1.60e−10); 
and in luminal BCs, B cells (P=4.36e−39), CD8+ T Cells 
(P=1.22e−67), CD4+ T Cells (P=3.89e−85), neutrophils 
(P=3.05e−57), and dendritic cells (P=1.57e−82); all partial 
cord >0.5 or <−0.5 show in Figure 6. LCK was statistically 
significantly associated with OS in patients with luminal 
BCs (P=0.019). In the subgroup analysis, B cells were found 

to be statistically significant for all BCs (P=0.046) and BCs 
HER2 (P=0.017), with patients with a high expression of 
LCK having worse OS than patients with a low expression 
(Figure 7).

Functional enrichment analysis of LCK 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional enrichment analyses of 
LCK were performed, and the results are shown in Figure 8.  
LCK was found to be localized in the plasma membrane 
and pericentrosomal vesicles, and to bind to cell surface 
receptors, including CD4, CD8, and other signaling 
molecules. Multiple alternatively spliced variants encoding 
the same protein have been described. LCK was shown 
to be mainly involved in lymphocyte-mediated immunity, 
activation of natural killer cells, regulation of leukocyte 
activation, and regulation of viral defense.

Kinase and TF targets of LCK

The focus of our analysis next shifted to the kinases, 
miRNAs, and TFs potentially targeted by LCK in the 
LinkedOmics database. The most significant kinase targets 
of LCK were found to be ITK, MAPK3, HCK proto-
oncogene (HCK), and protein kinase C theta (PRKCQ) 
(Table 1). The miRNA targets of LCK are shown in Table 2.  
We identified (AGTCAGC) miR-345, (CTTTGTA) miR-
524, (CAGCCTC) miR-485-5P, (TTTGCAG) miR-
518A-2, (AGGTGCA) miR-500, and (AGCATTA) miR-
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Figure 3 Differentially expressed genes correlated with differentially expressed LCK in breast cancer (LinkedOmics). (A,B,C) Volcano plots 
and heat maps indicating genes positively and negatively genes correlated with LCK in breast cancer, respectively (top 50). Red suggests 
positively correlated genes, and green suggests negatively correlated genes. LCK, lymphocyte-specific protein tyrosine kinase.
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Figure 4 Genes significantly related to LCK in BC via LinkedOmics. (A) The scatter plots show Pearson’s correlation of LCK expression 
with expression of CD5. (B) The scatter plots show Pearson’s correlation of LCK expression with expression of CD96. (C) The scatter 
plots show Pearson’s correlation of LCK expression with expression of CD247. (D) The scatter plots show Pearson’s correlation of LCK 
expression with expression of IL2RG. (E) The scatter plots show Pearson’s correlation of GPX-8 expression with the expression of ITK. 
(F) The scatter plots show Pearson’s correlation of LCK expression with the expression of PDCD1. (G) The scatter plots show Pearson’s 
correlation of LCK expression with the expression of PIK3CD. (H) The scatter plots show Pearson’s correlation of LCK expression with the 
expression of SH2D1A. (I) The scatter plots show Pearson’s correlation of LCK expression with the expression of SLA2. LCK, lymphocyte-
specific protein tyrosine kinase; BC, breast cancer. LCK, lymphocyte-specific protein tyrosine kinase; CD5, T-cell surface glycoprotein 
CD5; CD96, CD96 antigen; CD247, T-cell surface glycoprotein CD3 zeta chain; IL2RG, interleukin 2 receptor subunit gamma; ITK, 
tyrosine-protein kinase ITK; programmed cell death protein 1; PIK3CD, phosphoinositide-3-kinase; SH2D1A, SH2 domain-containing 
protein 1A; SLA2, Src-like adapter protein-2.
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Figure 5 Prognostic analysis of genes correlated with LCK in patients with breast cancer (GEPIA). (A) The overall survival curves of CD5. 
(B) The overall survival curves of CD96. (C) The overall survival curves of CD247. (D) The overall survival curves of IL2RG. (E) The 
overall survival curves of ITK. (F) The overall survival curves of PDCD1. (G) The overall survival curves of PIK3CD. (H) The overall 
survival curves of SH2D1A. (I) The overall survival curves of SLA2. LCK, lymphocyte-specific protein tyrosine kinase; CD5, T-cell surface 
glycoprotein CD5; CD96, CD96 antigen; CD247, T-cell surface glycoprotein CD3 zeta chain; IL2RG, interleukin 2 receptor subunit 
gamma; ITK, tyrosine-protein kinase ITK; programmed cell death protein 1; PIK3CD, phosphoinositide-3-kinase; SH2D1A, SH2 domain-
containing protein 1A; SLA2, Src-like adapter protein-2.
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Figure 8 Functional enrichment analysis of LCK. (A) Enriched biological processes for LCK, (B) enriched cellular components for LCK, (C) 
enriched molecular functions for LCK, (D) kinase targets of LCK, (E) miRNA targets of LCK, and (F) transcription factor targets of LCK. 
LCK, lymphocyte-specific protein tyrosine kinase.
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Table 2 miRNA targets of differentially expressed glutathione peroxidases in BC (LinkedOmics)

Gene set Size Leading edge number P value FDR

AGTCAGC, miR-345 22 6 0 0.11743

CTTTGTA, miR-524 117 31 0 0.15266

CAGCCTC, miR-485-5P 47 11 0 0.36502

TTTGCAG, miR-518A-2 66 12 0 0.53366

AGGTGCA, miR-500 27 9 0.017857 0.23486

AGCATTA, miR-155 46 13 0.031579 1

BC, breast cancer; Leading edge num, the number of leading edge genes.

Table 1 Kinase targets of differentially expressed glutathione peroxidases in LCK (LinkedOmics)

Gene set Description Size Leading edge number P value FDR

Kinase_LCK LCK proto-oncogene, Src family tyrosine kinase 20 13 0.000 0.012

Kinase_ITK IL2-inducible T-cell kinase 6 5 0.006 0.126

Kinase_MAPK3 Mitogen-activated protein kinase 3 67 17 0.026 0.588

Kinase_HCK HCK proto-oncogene, Src family tyrosine kinase 9 5 0.028 0.308

Kinase_PRKCQ Protein kinase C theta 13 6 0.036 0.296

LCK, lymphocyte-specific protein tyrosine kinase.

155 as the 6 most significant miRNA targets of LCK in BC. 
Also, a number of key TFs were found to have a regulatory 
association with the differential expression of LCK in BC 
(Figure 9). Of note, AP1, SRF, and E2F1 were indicated to 
be key targets in the V$IRF Q6, RYTTCCTG V$ETS2B, 
and V$RFX1 01 TF-target networks. Based on these 
results, it could be seen that there were many potentially 
significant regulators of LCK in BC.

HPA analysis 

HPA was used to analyze the differences in the levels of 
LCK protein expression between normal and BC tissues. 
The results showed that LCK protein was overexpressed 
in BC as compared to normal tissue. An analysis of the 
significantly correlated genes for protein expression was 
also performed, and the results are shown in Figure 10.

Discussion 

With the development of advanced diagnostic and 
therapeutic methods, the lifespan of patients with BC has 
been lengthened; yet, BC is still the biggest contributor to 

cancer-related deaths in women. Mechanistically, tumor 
formation, drug resistance, and immune response in BC 
are still poorly understood, which results in the poor 
management of patients with BC. Therefore, more sensitive 
and specific novel biomarkers for the early diagnosis of BC 
are needed, as are novel therapeutic targets. It has been well 
established that aberrations in genes are important factors 
contributing to tumorigenesis, drug resistance, and tumor 
immunity. Various gene mutations have been reported in 
BC, including LCK mutation, which has also been found 
in other cancers. However, the fundamental biological 
functions of LCK in BC are still unexplored. In the current 
research, we comprehensively analyzed the expression levels 
and prognostic value of LCK in BC. 

We found that LCK was significantly overexpressed in BC 
tissues compared to normal samples, and that overexpression 
of LCK is associated with an adverse prognosis in patients 
with BC. The expression of LCK may be influenced by age, 
histological subtype, co-mutation status, cancer status, and 
nodal metastasis. To date, few studies have reported on the 
expression of LCK in BC (9,15,24), and the relationship 
between LCK expression levels and prognosis remains to 
be explored. Bai et al. revealed that LCK had a significant 
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Figure 9 Protein-protein network of LCK and its significantly associated genes. LCK, lymphocyte-specific protein tyrosine kinase.

relationship with immune infiltration (15). Another study 
reported that LCK expression can act as a potential 
biomarker for predicting the recurrence of colon cancer (10).  

Additionally, LCK expression has also been detected in 
lung cancer (24). There are several correlated significant 
genes of LCK that including CD5, CD96, CD247, IL2RG, 
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ITK, PDCD1, PIK3CD, SH2D1A, and SLA2. CD5 has 
been observed to play a role in multiple types of lymphoma 
(25,26), and it may act as a regulator of cancer immunity (27). 
Also, CD96 was detectable in hepatocellular carcinoma, 
and was shown to be involved in the prognosis of patients 

with the disease through its regulation of the fate of 
natural killer cells (28). Overexpression of CD96 has been 
indicated to be a positive biomarker of colorectal cancer (29).  
In one study on ovarian cancer, downregulation of CD247 
was observed, and the gene was also found to affect patient 
prognosis through immune cell regulation (30). ITK 
has been shown to be a biomarker of malignant T-cell 
lymphoma, and its inhibition can induce tumor cell death 
via TCR signaling pathway inhibition (31). Another study 
showed that PIK3CD promoted the growth and invasiveness 
of colorectal cancer cells through AKT/GSK-3β/β-catenin 
signaling activation (32). Moreover, PDCD1 also plays a 
role in immune regulation (33). However, no studies have 
been carried out to investigate the relationship between 
SLA2 and SH2D1A and cancer. All of this evidence hints 
that LCK and its associated genes play important roles in 
the pathogenesis of various cancers.

Despites of LCK was a regulator of T-cell receptor (TCR) 
signaling, the relationship between LCK and the tumor 
infiltrating lymphocytes (TIL) of BC did not have been 
explored. To investigate the biological functions of LCK, 
we performed a functional enrichment analysis of LCK in 
BC, and the results showed that LCK plays roles in immune 
regulation, including in lymphocyte-mediated immunity, 
activation of natural killer cells, regulation of leukocyte 
activation, and regulation of viral defense. The tumor 
microenvironment plays a crucial role in cancer progression 
and therapeutic efficacy, and immune infiltrates are the 
major constituents of the microenvironment. In our study, 
we investigated the relationship between LCK and immune 
infiltration in multiple BC subtypes. We found infiltration 
by B cells, CD8+ T cells, CD4+ T cells, neutrophils, and 
dendritic cells to have a positive correlation with LCK, 
but LCK was negatively correlated with tumor purity. A 
previous study showed that LCK had a significant impact 
on immune infiltration in BC, and that the overexpression 
of LCK was associated with a good prognosis (15). Thakur 
et al. revealed that patients with BC who had high levels 
of activated T cells had a longer time to progression than 
those who died not (34). Our current research revealed the 
following association of patient OS with immune infiltration 
in BC: the higher the level of tumor-infiltrating B-cells, the 
better the prognostic outcome. The study also highlighted 
the roles of other immune cells in BC. 

Gene expression is regulated by various factors, including 
microRNAs and kinases. In our study, we found that there 
were several kinases [mitogen-activated protein kinase 3 
(MAPK), HCK proto-oncogene, and protein kinase C 

Figure 10 LCK protein expression levels in samples of breast 
cancer tissue and normal breast tissue (HPA). LCK, lymphocyte-
specific protein tyrosine kinase; HPA, Human Protein Atlas.
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(PKC) theta] and microRNAs (miR-345, miR-524, miR-
485-5P, miR-518A-2, miR-500, and miR-155) associated 
with the expression of LCK in BC. MAPK 3 is reported to 
be a promoter of tumorigenesis in AML. Numerous cellular 
functions, such as cell proliferation, differentiation, migration, 
and apoptosis, are regulated by MAPK pathways. Thus, 
aberrations of MAPK signaling pathway components play 
a central part in cancer development and progression (35),  
and aberrant MAPK3 activation has been observed in 
colorectal cancer (36). Also, in gastric cancer, overexpression 
of MAPK3 is associated with cisplatin resistance (37). 
Hematopoietic cell kinase (HCK), part of the cytoplasmic 
tyrosine kinase SRC family, can enhance the proliferation 
and survival of cells through physically associating with 
oncogenic fusion proteins and functionally interacting 
with receptor tyrosine kinases. Activation of HCK leads to 
colorectal cancer progression, and HCK is also observed in 
multiple myeloma and acute lymphoblastic leukemia (35,38). 
The PKC family is divided into distinct protein classes 
with various cellular functions. When activated, PRKCQ 
can promote the growth ability of TNBC. Among the 
miRNA targets of LCK, miR-345-5p, miR-524, miR-485-
5p, and miR-518 act as tumor suppressors in certain cancers 
(39-42), and the overexpression of miR-155 was found to 
indicate drug resistance (43,44). Various TFs associated with 
LCK have also been found in other cancer types (45,46). 
The observations of the studies described above suggest 
an important role of LCK and its associated miRNAs and 
kinases in multiple cancers. In the present study, HPA 
analysis demonstrated that LCK and its correlated genes 
showed elevated expressions in BC samples as compared to 
normal breast samples. However, the limitation of this study 
is that absence of validation experiments.

Conclusions

In the present work, we performed a collective analysis 
of the expression and prognostic significance of LCK in 
BC, and investigated the biological events related to the 
progression of BC. The findings indicate that LCK is 
differentially expressed in BC and that its overexpression is 
linked to a poor survival outcome. Moreover, the results we 
obtained suggest that tumor immune status is an important 
factor for the prognostic outcomes of patients with BC, and 
that it could potentially serve as an indicator of prognosis 
in such patients. Regulatory network analysis of LCK 
showed its differential expression in BC to be implicated 

in immune cell regulation and activation, including 
lymphocytes, natural killer cells, and leukocytes, through 
a variety of tumor-related kinases (ITK and MAPK3), 
miRNAs (miR-345 and miR-524) and TFs (AP1, SRF, and 
E2F1), regulating cell proliferation, cell cycle progression, 
apoptosis, and survival. The limitations of the study include 
the small number of clinical samples and analysis using 
miRNA correlated genes. In future, functional validation 
should be performed to confirm the results obtained.
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