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Background: Immune-related genes (IRGs) are highly relevant to the progression and prognosis of 
esophageal squamous cell carcinoma (ESCC). A prognostic signature could be reliable in stratifying ESCC 
patients according to the risk score, which may help manage systematic treatments. In this study, a systematic 
and reliable immune signature was developed to estimate the prognostic stratification in ESCC. 
Methods: Ribonucleic acid (RNA) expression data of 79 ESCC samples from the Cancer Genome Atlas 
(TCGA) database and 269 normal esophageal mucosal samples from the Genotype-Tissue Expression (GTEx) 
project database were downloaded from the University of California, Santa Cruz (UCSC) website to form a 
TCGA-GTEx dataset. First, we screened differentially expressed genes (DEGs) and then filtered IRGs based 
on the Immunology Database and Analysis Portal (ImmPort) database to obtain immune-related DEGs 
(IRDEGs). Next, a novel prognostic signature based on IRDEGs was developed using multivariable Cox 
analysis. Immune infiltration status was evaluated via single-sample gene set enrichment analysis (ssGSEA). 
ESCC tissues were grouped into three clusters in terms of immune infiltration (Immunity-L, Immunity-M, 
and Immunity-H) by applying an unsupervised hierarchical clustering algorithm. Finally, the samples 
were divided into high- and low-risk groups using the median of the risk score scores for GSEA pathway 
enrichment analysis in the three clusters. 
Results: The prognostic signature based on IRDEGs (FCER1G, ISG20, and EGFR) performed moderately 
in prognostic predictions, with a concordance index (C-index) value of 0.73 [95% (confidence interval) CI: 
0.63–0.84, P=2.02E-05] and an area under the curve (AUC) value of 0.817. The xenobiotic metabolism 
pathway was significantly enriched and up-regulated both in the high-risk group of the immunity-M and 
immunity-H clusters. 
Conclusions: The novel immune-related prognostic signature we constructed has a good prognostic, 
predictive ability and can be used as an independent prognostic indicator. Our study provides clinicians with 
a quantitative tool to predict the probability of individual survival time and helps clinicians select targets for 
immunotherapies and individualized treatment strategies for ESCC patients.
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Introduction

Esophageal cancer (EC) is the sixth leading cause of 
cancer death worldwide (1) and has two common subtypes: 
esophageal squamous cell  carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC). ESCC is the most 
frequent subtype of EC (2). Although the emergence of 
new chemotherapeutic drugs and regimens has improved 
the overall survival (OS) rate of ESCC patients, drug 
resistance has significantly worsened patients’ prognostic 
outcome. At present, the pathogenesis of ESCC is unclear. 
Therefore, there is a pressing need for effective biomarkers 
and targeted therapeutics to improve patients’ prognostic 
outcome. 

Cancer immunotherapy has been a major driver 
of personalized medicine, with aggressive efforts to 
leverage the immune system to fight tumors (3,4). It has 
shown encouraging results as an emerging treatment for 
some cancers, including melanoma (5), hepatocellular  
carcinoma (6), and non-small cell lung cancer (7). 
Tumor cells in the tumor microenvironment (TME) 
can mimic immune cel l s ’  funct ions  to af fect  the 
composition and function of host immune cells and induce 
immunosuppression by overexpressing IRGs, thereby 
promoting the proliferation and spread of tumor cells (8). 
The acquisition of immune functions maintains tumor 
cells that can survive in the immunosuppressive TME. 
Therefore, patients with different immune infiltration 
states may have different prognoses. Meanwhile, reliable 
biomarkers or stratification systems that can be used for 
more accurate prediction are essential in the TME.

Several immune-related parameters or signatures that 
predict ESCC patients’ prognosis have been reported  
(9-11), further suggesting that distinct immune infiltration 
status has a profound influence on ESCC patient outcomes. 
Herein, we established a predictive risk model based on 
IRGs to estimate patient outcomes in ESCC. Importantly, 
we evaluated this model’s predictive ability in assessing OS 
in different immune infiltration patterns and screened out 
pathways closely related to these patterns. We performed 
a systematic investigation of the immune phenotype 
within the ESCC microenvironment to better understand 
the complex antitumor response and guide effective 
immunotherapies in ESCC. We present the following 
article in accordance with the Materials Design Analysis 
Reporting (MDAR) checklist (available at http://dx.doi.
org/10.21037/tcr-20-2665).

Methods

Data from the UCSC Xena website

Log2(FPKM+1) format ribonucleic acid (RNA)-sequencing 
data used in this study were downloaded from the 
University of California, Santa Cruz (UCSC) Xena website 
(https://xenabrowser.net/), which provides comprehensive 
information retrieval services based on the Cancer Genome 
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) 
project databases. We collected and processed transcription 
data from 79 ESCC samples from the TCGA database 
and the expression data of 269 normal esophageal mucosa 
samples from the GTEx project database. For comparative 
analysis between ESCC samples and many normal samples, 
we combined the TCGA dataset with the GTEx dataset 
(TCGA-GTEx dataset) for subsequent analysis. Moreover, 
the corresponding survival and clinical information files 
of 79 patients with ESCC were also downloaded from the 
UCSC. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Screening immune-related differential genes

The limma R package was used to screen differentially 
expressed genes (DEGs) between normal and ESCC 
samples. |Log2FC| ≥2 and PFDR<0.05 were used as the 
interception criteria for screening DEGs. We also derived 
a list of 1,811 IRGs via the Immunology Database and 
Analysis Portal (ImmPort, https://immport.niaid.nih.gov) 
database. We then intersected DEGs with IRGs to obtain 
IRDEGs. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses were 
simultaneously conducted to explore potential molecular 
mechanisms of the IRDEGs, which were performed by the 
R bioconductor package clusterProfiler. PFDR<0.01 was set 
as the enrichment cut-off to screen meaningful enrichment 
results.

Construction of the immune-related prognostic signature

To provide clinicians with a quantitative tool to predict 
the individual probability of survival time, we developed 
an immune-related prognostic signature. A univariate Cox 
analysis was performed to select IRDEGs with a significant 
prognostic value (P<0.05) as candidates for the prognostic 
signature. Next, these selected IRDEGs were further 
refined with stepwise forward selection by employing the 
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least absolute shrinkage and selection operator (LASSO) 
method. Finally, a multi-gene prognostic signature was 
constructed by multivariate Cox analysis, and an individual 
risk score was calculated based on a combination of 
coefficients and the expression status of these refined 
IRDEGs. The risk score was set as: 

1
( * )

N

i
Ri Expression gene iβ

=

=∑  [1]

Ri, N, expression, and βgene i represented the patient’s 
risk score, the number of these refined IRDEGs, the gene 
expression level, and the coefficient value, respectively. The 
median value was used as the cutoff value for dividing high- 
and low-risk groups. Subsequently, Kaplan-Meier survival 
analysis, principal component analysis (PCA), and univariate 
and multivariate Cox analysis, were performed to evaluate 
the predictive value of this prognostic signature. 

Gene set enrichment analysis (GSEA) 

ESCC cases were divided into two risk groups according to 
the median value of the risk scores. GSEA was performed 
using Broad Institute GSEA software 4.1.0 (https://www.
gsea-msigdb.org/gsea/downloads.jsp) in three immune 
clusters. The annotated gene set “h.all.v7.1.symbols.
gmt” was selected and used for the enrichment analysis. 
Permutations were set to 1,000 to obtain a normalized 
enrichment score (NES). A normal P alue <0.05 and NES 
>1.5 were considered significantly enriched. We chose all 
hallmark gene sets with significant enrichment and displayed 
gene sets enrichment plots. The xenobiotic metabolism 
pathway was significantly enriched and up-regulated in 
both high-risk groups of the immunity-M and immunity-H 
clusters. Effective genes enriched by this pathway in two 
clusters were then intersected, and 34 significant correlation 
hub genes were imported to construct the protein-protein 
interaction (PPI) network.

Protein-protein interaction network (PPI)

STRING (https://string-db.org) was used for PPI network 
construction and hub gene screening. The PPI network was 
constructed by setting medium confidence at 0.400. After 
the irrelevant genes were excluded, 23 genes were used for 
constructing the PPI network.

Statistical analysis 

All analyses were conducted using R software (version 3.5.3, 
https://www.r-project.org). PCA was also performed by 
using the ggplot2 package of R. Clinical correlation analyses 
were tested by the Student’s t-test or Wilcoxon test for 
two groups, and by one-way analysis of variance (ANOVA) 
or Kruskal-Wallis test for more than two groups. The 
Cox proportional hazards regression model was used for 
univariate and multivariate analyses. The performance of 
the multivariate Cox regression model was evaluated by the 
concordance index (C-index) using the survcompr software 
package. The area under the curve (AUC) of the multi-
index receiver operating characteristic (multi-ROC) curve 
was calculated via the survivalROC R package to validate 
the prognostic signature’s performance. All tests were 
two sided, and P-values of less than 0.05 was considered 
statistically significant.

Results

Clinical characteristics

Seventy-nine patients diagnosed with ESCC were registered 
in the TCGA cohort, including 68 male (86.08%) and 11 
female (13.92%) patients. Detailed clinical characteristics of 
all patients are presented in Table 1.

Screening of immune-related genes

As shown in Figure 1A,B, we initially identified a total 
of 1,575 DEGs in ESCC tissues compared with normal 
tissues (P<0.05, |log2FC| >2). Next, we intersected 1,811 
IRGs from ImmPort with 1,575 DEGs from the TCGA-
GTEx dataset. As a result, a total of 124 IRDEGs, among 
which 67 genes were up-regulated while 57 genes were 
down-regulated, were obtained and displayed using a Venn 
diagram (Figure 1C). 

The 124 IRDEGs examined in this study played various 
roles in immune functions, and many of them were involved 
in the TME. Through Gene Ontology (GO) enrichment 
analysis, we found that the top 10 GO biological process 
(BP) terms were mainly related to receptor signaling 
pathways (Figure 1D). The most enriched GO BP term 
correlated with those genes was the “immune response-
activating cell surface receptor signaling pathway”, which 
contained 36 IRDEGs. The top 10 KEGG enrichment 
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terms are presented in Figure 1E. Epstein-Barr virus 
infection and cytokine-cytokine receptor interaction were 
the most frequently identified KEGG pathway. The results 
indicate that these IRGs directly or indirectly affect tumor 
cells in the TME by acting on different signaling pathways.

Construction and evaluation of the prognostic signature 
based on IRDEGs

In our univariate Cox regression analysis, seven genes 
(FCER1G, PSMD6, ISG20, IRF9, CD14, EGFR, and 
PLXNA1) were selected as candidates for developing the 
predictive model (Figure 2A). We then chose the appropriate 
candidates using the LASSO method (Figure 2B,C), and 
subsequently constructed an immune-related prognostic 
signature with a C-index of 0.73 [95% confidence interval 
(CI): 0.63–0.84, P=2.02E-05] to predict the outcome of 
ESCC patients by multivariate Cox regression analysis 
(Figure 2D). The risk score distribution and survival status 
were ranked by the risk scores in the ESCC set (shown 
in Figure 3A,B). The heatmap showing this signature’s 
expression profiles in the low- and high-risk groups is 
shown in Figure 3C. Through PCA analysis based on this 
immune signature, we found that high- and low-risk groups 
could be well distinguished (Figure 3D). Patients in the 
low-risk group had a longer OS compared to those in the 
high-risk group (Figure 3E). These results indicate that this 
prognostic signature exhibits good prognostic, predictive 
ability. 

Following this, we evaluated the prognostic, predictive 
value of five clinicopathological characteristics, including 
T stage, lymph node metastasis (N), distant metastasis of 
tumor (M), histologic grade (G), and stage, and determined 
the risk scores by Cox regression analysis. The results 
of the univariate Cox regression analysis suggested that 
the risk score (P<0.001) and N (P=0.036) were associated 
with prognosis, whereas the other clinicopathological 
factors were not (Table 2). Multivariate Cox regression 
analysis suggested that only the risk score could become 
an independent predictor after the other parameters were 
adjusted (Table 2). Furthermore, through multi-index 
ROC analysis, we affirmed that the diagnostic efficiency of 
this immune signature (AUC =0.817) was better than the 
above five clinicopathological characteristics in predicting 
survival, including T (AUC =0.515), N (AUC =0.635), M 
(AUC =0.541), G (AUC =0.582), and stage (AUC =0.581)  
(Figure 3F). Put simply, this signature is an independent 
prognostic indicator and is superior to the other five 

Table 1 Detailed clinical characteristics of all patients are listed 
below

Variables Case, n (%) 

Age at diagnosis (year)

≤55 34 (43.04)

>55 45 (56.96)

Gender

Male 68 (86.08)

Female 11 (13.92)

Histologic grade 

G1 15 (18.99)

G2 38 (48.10)

G3 19 (24.05)

NA 7 (8.86)

Alcohol history

No 19 (24.05)

Yes 58 (73.42)

NA 2 (2.53)

Pathologic-M

M0 70 (88.61)

M1 3 (3.80)

NA 6 (7.59)

Pathologic-N

N0 45 (56.96)

N1 26 (32.91)

N2 5 (6.33)

N3 1 (1.27)

NA 2 (2.53)

Pathologic-T

T1 7 (8.86)

T2 27 (34.17)

T3 41 (51.90)

T4 3 (3.80)

NA 1 (1.27)

Pathologic-stage

I 6 (7.59)

II 47 (59.49)

III 22 (27.85)

IV 3 (3.80)

NA 1 (1.27)

NA, not available.
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clinicopathological characteristics.
We also explored the clinical significance of the included 

genes and the risk score of the prognostic signature. 
The results showed that the expression of FCER1G was 
significantly higher in advanced G stage cases (Figure 4A), 
the expression of ISG20 was significantly lower in advanced 
T stage cases (Figure 4B), and the risk score was significantly 

higher in advanced G stage cases and in males (Figure 4C,D) 
(all P<0.05).

Evaluation of the prognostic, predictive ability of this 
prognostic signature in three immune clusters

The enrichment of immune cells and immune-related 

Figure 1 Differentially expressed genes. Heatmap (A) and volcano plot (B) demonstrating differentially expressed genes (DEGs) between 
ESCC and normal tissues. Brown dots represent differentially down-regulated genes, purple dots represent differentially up-regulated 
genes, and black dots represent no differentially expressed genes in the TCGA-GTEx dataset. (C) Venn diagrams showing the number of 
up-regulated or down-regulated IRDEGs. The top 10 significantly enriched GO-BP terms (D) and KEGG terms (E) of 124 IRDEGs. The 
red and blue dots in the graph represent up-regulated and down-regulated genes, respectively. The depth of the inner arc area shows the 
decrease or increase of the biological process.
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pathways were estimated using the single-sample GSEA 
(ssGSEA) algorithm. ESCC samples were clustered 
into low, intermediate, and high immune infiltration 
clusters (Immunity_L, Immunity_M, and Immunity_
H) using the hierarchical clustering method (Figure 5A). 
The immunity_H cluster showed a higher risk score 
than both the immunity_M and immunity_L clusters  
(Figure 5B). Similarly, patients with a low risk score had a 
lower proportion of high immune infiltration than patients 
with a high risk score (Figure 5C). High immune infiltration 
in patients was linked to a high risk score and was associated 
with an unfavorable outcome (Figure 5D). The association 
between OS and the different clusters of ESCC was 
analyzed by log-rank test (Figure 5E,F,G). Due to the 
limited sample size, survival prediction was significant only 

in the immunity_M cluster. However, it can be seen from 
the results that the immunity_M and immunity_H clusters 
had an unfavorable survival probability compared with the 
immunity_L cluster.

Functional annotation and screening hub genes

To identify the constructed immune signature’s underlying 
biological characteristics, GSEA analysis was performed 
based on the high- and low-risk score groups in the three 
immune clusters, respectively. No significant pathway was 
enriched in the immunity_L cluster. The GSEA results 
showed that only xenobiotic metabolism was significantly 
up-regulated in the high-risk score group of the immunity_
M cluster, which is the same result observed in the high-risk 
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Figure 2 Development of the prognostic signature based on IRGs. (A) Univariate Cox analysis based on immune-related genes showed 
that seven genes (FCER1G, PSMD6, ISG20, CD14, IRF9, PLXNA1, and EGFR) have prognostic value. (B) LASSO coefficient profiles of 
the selected immune-related gene. (C) Partial likelihood deviance for LASSO coefficient profiles. (D) Multivariate Cox analysis was used to 
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Figure 3 The predictive ability of this immune signature for the OS of ESCC patients was confirmed. (A) Risk score distribution. (B) 
Survival overview. (C) Heatmap showing the expression profiles of the signature in the low- and high-risk groups. (D) Principal Component 
Analysis (PCA) based on the immune signature. (E) Kaplan-Meier curves between the high- and low-risk score groups. Patients in high-risk 
group had shorter OS. (G) Multi-index ROC analysis. The AUC value of the prognostic signature was the highest (AUC =0.817).
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Figure 4 Clinical correlation analysis. (A) Association between FCER1G and G stage. (B) Association between ISG20 and T stage. (C) 
Association between risk score and G stage. (D) Association between risk score and gender. 

score group of immunity_H cluster. In contrast, the mitotic 
spindle, glycolysis, phosphatidylinositol 3-hydroxy kinase/
protein kinase B/mammalian target of rapamycin (PI3K/
AKT/MTOR) signaling, G2M checkpoint, and unfolded 
protein response pathways were significantly down-
regulated in the high-risk score group of the immunity_H 
cluster (Figure 6A,B,C,D,E,F,G). 

Next, effective genes enriched by the xenobiotic 
metabolism pathway in two clusters were intersected, and 

34 significant correlation hub genes were imported to 
construct the PPI network (Figure 6H). Ultimately, the 
PPI network was constructed by 23 hub genes that were 
significantly related to this pathway (Figure 6I). We found 
that numerous genes, such as ADH7 (12), AKR1C2 (13), 
ALDH2 (14), NQO1 (15), ADH1C (12), EPHX1 (16), 
BLVRB (17), HMOX1 (18), ABCC3 (19), ALDH3A1 (20), 
and IDH1 (21,22), are related to ESCC tumor susceptibility, 
tumorigenesis, and progression.

Table 2 Univariate and multiple regression analysis of esophageal squamous cell cancer

Variables
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

G 1.00 (0.55–1.82) 0.999 1.30 (0.59–2.86) 0.518

T 1.05 (0.57–1.93) 0.868 1.99 (0.70–5.68) 0.200

N (yes/no) 2.67 (1.07–6.69) 0.036* 4.70 (0.98–22.59) 0.053

M (yes/no) 3.20 (0.91–11.24) 0.070 6.36 (0.68–59.89) 0.106

stage 2.22 (0.96–5.15) 0.063 0.59 (0.11–3.05) 0.525

RiskScore 1.30 (1.13–1.49) <0.001* 1.32 (1.11–1.56) 0.002*

*, significant results. 
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Figure 5 Heterogeneous immune cell infiltration in the low- and high-risk score groups. (A) The heatmap showing the expression level of 
immune cells and immune-related pathways under different immune infiltration clusters. (B) The distribution of risk scores in three immune 
infiltration patterns. (C) The distribution of immune infiltration patterns in the low- and high-risk groups. (D) Sankey diagram of immune 
infiltration patterns in groups with different risk scores and survival outcomes. Kaplan-Meier curves between the high- and low-risk score 
groups in the immunity_L (E), immunity_M (F) and immunity_H (G) clusters, respectively.
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Figure 6 GSEA revealed that most significant hallmarks correlated with our immune signature in three immune infiltration clusters 
separately. The enriched pathways were up-regulated in the high-risk score group (A) and in the low-risk score group (B,C,D,E,F) in the 
immunity_H cluster. (G) The enriched pathway was up-regulated in high-risk tumors in the immunity_M cluster. A normal P value <0.05 
and NES >1.5 were considered significantly enriched. (H) Effective genes enriched by the xenobiotic metabolism pathway in two clusters 
were intersected and depicted by Venn diagrams. (I) PPI analysis of intersection genes and depiction by STRING. 

A

F

B

G

C

H

D

I

E

Immunity_H Immunity_M



2364 Xu et al. An immune-related prognostic signature for ESCC

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(5):2354-2367 | http://dx.doi.org/10.21037/tcr-20-2665

Discussion

Cancer immunotherapy is a promising new avenue for 
ESCC treatment that acts primarily on the TME. Also, the 
heterogeneity of the TME is closely related to the efficiency 
of immunotherapy. In the present study, we attempted to 
identify an immune-related signature that contributes to the 
OS of ESCC. Using multiple indicators, we first evaluated 
its ability to predict prognosis in all samples. We discovered 
that this signature not only has good prognostic predictive 
ability but can also be used as an independent prognostic 
indicator. Importantly, we also assessed its ability to predict 
prognosis under different immune infiltration states, and 
used GSEA to determine which pathways were significantly 
enriched in the high- and low-risk groups. We found that 
this signature’s ability to predict prognosis was different 
under different infiltration patterns, and the pathways of 
significant enrichment in the high- and low-risk groups 
were also non-identical.

A multi-gene risk prediction model based on FCER1G, 
EGFR, and ISG20 was established in this study. FCER1G 
and ISG20 [also called cluster of differentiation (CD)25] 
are two risk genes, and EGFR  is a protective gene  
(Figure 2D). Pauline et al. reported that FCER1G is essential 
for tumor development and squamous carcinogenesis by 
B cells, humoral immunity and activating FCER1G to 
establish chronic inflammatory programs (23). FCER1G 
is also engaged in many immune responses and plays 
a tumor-promoting role in numerous types of tumors, 
such as meningioma (24) and childhood leukemia (25). At 
present, there are no directly-related reports concerning 
the association between FCER1G and ESCC; however, it 
is generally conceded that chronic inflammation is closely 
related to oncogenesis. Therefore, we might assume 
that the overexpression of FCER1G regulates immune-
related pathways of tumorigenesis. Furthermore, Guan 
et al. found that patients with ESCC had a significant 
increase in circulating anti-CD25 immunoglobulin G (IgG) 
antibodies compared to control subjects and that patients 
with early stage ESCC (stage I) had the highest expression 
of circulating IgG (26). In this study, we discovered that 
patients with T1 stage ESCC had the highest expression 
of ISG20 (Figure 4B). So, ISG20 may be considered as a 
potential biomarker for early diagnosis and prediction of 
ESCC recurrence or survival. EGFR expression was usually 
associated with a more advanced tumor stage and a reduced 
OS in patients with esophageal and esophagogastric junction 
adenocarcinomas (27). ESCC predominantly involves EGFR 

gene copy number alterations and protein overexpression 
(28-31), with little EGFR mutation (32-34). Furthermore, 
the literature regarding EGFR expression in ESCC contains 
conflicting data on the relationship between overexpression 
and survival (31,35,36). Although several clinical studies 
show the beneficial effects of EGFR inhibitors in the 
treatment of ESCC (37,38), evidence supporting the validity 
of EGFR-targeting therapies for esophageal cancer (39) is 
not robust. Yoshioka et al. discovered that one of the factors 
affecting the therapeutic effect of EGFR inhibitors in ESCC 
cells is cell phenotype. Mesenchymal-like ESCC cells are 
resistant to EGFR inhibitors because EGFR signaling is 
not blocked. On the contrary, EGFR signaling is affected 
by EGFR inhibitors, which exhibit antitumor effects on 
epithelial-like ESCC cells accompanied by the promotion of 
squamous cell differentiation. In the future, more potential 
mechanisms need to be studied to determine the effect of 
EGFR targeted therapy for ESCC (40).

We found that the OS of patients in the high-risk group 
was poor through model analysis in all samples compared 
with those in the low-risk group (Figure 3E). Patients 
in the high-risk group received more precise treatment 
options to improve their prognosis. We further evaluated 
the signature’s predictive ability for the OS of patients in 
different immune infiltration states. We discovered that the 
predictive ability and the predictive results of this signature 
could be different in different immune infiltration states 
(Figure 5E,F,G). Patients in the high-risk score group 
had a higher infiltration status and poorer survival than 
patients in the low-risk score group in the immunity_H 
and immunity_M clusters. However, further analysis of 
the prognostic evaluation for the OS of patients with low 
immune infiltration status in this paper is needed.

To understand which gene sets can be enriched in the 
high- and low-risk groups in different immune infiltration 
clusters, GSEA analysis was performed based on the high- 
and low-risk group in three immune clusters, respectively. 
Only xenobiotic metabolism was significantly up-regulated 
in the high-risk group of the immunity_M (Figure 6G) and 
immunity_H (Figure 6A) clusters. We found that some 
studies have been conducted on the association between 
xenobiotic metabolizing genes polymorphism and ESCC. 
Several studies have linked polymorphisms in genes 
encoding phase I and phase II xenobiotic metabolizing 
enzymes to the modulation of risk for ESCC (41-44). Based 
on the PPI network, we found numerous genes significantly 
related to the xenobiotic metabolism pathway, which are 
related to ESCC tumor susceptibility, tumorigenesis, and 
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progression. For instance, Wang et al. have demonstrated 
that the ADH1B-ADH1C-ADH7 cluster single nucleotide 
polymorphisms (SNPs) confer susceptibility to ESCC in 
two case-control sets (12). Also, Ren et al. noted that ESCC 
tumors frequently expressed heme oxygenase 1 (HO-1), and 
knockdown of HO-1 promoted apoptosis through activation 
of a reactive oxygen species (ROS)-mediated caspase 
apoptosis pathway (18). Zhang et al. revealed that AKR1C2 
could function as an oncogene (via activation of the PI3K/
AKT pathway) and a novel prognostic biomarker and/or a 
potential therapeutic target in ESCC (13). In contrast, the 
mitotic spindle, glycolysis, PI3K/AKT/MTOR signaling, 
G2M checkpoint, and unfolded protein response pathways 
were significantly up-regulated in the low risk score group 
of the immunity_H cluster (Figure 6B,C,D,E,F). These 
pathways could be closely related to the good prognosis of 
the tumors. Shang et al. has confirmed that down-regulation 
of BIRC5 as a mitotic spindle checkpoint gene inhibits the 
migration and invasion of ESCC cells by interacting with 
the PI3K/AKT signaling pathway (45). 

There are some limitations to our research that should 
be noted. This study is primarily based on database analyses, 
and lacks clinical practice confirmation. Thus, further 
verification through clinical trials is needed in the future.

Conclusions

In summary, this study established a stable multi-gene risk 
prediction and evaluated its predictive value for ESCC 
patients’ OS. We found several key pathways and hub genes 
closely related to ESCC patients’ prognosis under different 
immune infiltration states. Therefore, further verification 
with clinical trials in the future is needed.
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