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Background: Lung squamous cell carcinoma (LUSC) is a prevalent and lethal malignancy with a poor 
clinical prognosis. Major constituents of the tumor microenvironment (TME) include infiltrating immune 
cells and stromal cells, which play a pivotal role in the progression and growth of the disease. To improve 
the understanding of the prognostic influence of immune and stromal cell-related genes for patients with the 
disease, we performed a comprehensive bioinformatics analysis to identify TME-relevant biomarkers, and 
investigated the potential role of these candidate signatures in LUSC. 
Methods: Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) assessed the samples of LUSC obtained from The Cancer Genome Atlas (TCGA). The 
samples were grouped according to their immune/stromal scores (high or low). Multivariate cox regression 
and receiver operating characteristic curves (ROC) were implemented to construct the risk assessment 
model for prognosis prediction. The co-upregulated differentially expressed genes (DEGs) in the immune 
and stromal groups were used for further analyses. Overall survival (OS) curves were used to determine 
the prognostic value of the DEGs, and the TME-related DEGs were verified with Gene Expression 
Omnibus (GEO) datasets. The functional assessments were performed include Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and protein–protein interaction (PPI) analyses. 
Results: The immune/stromal scores calculated by ESTIMATE showed significant associations with OS 
(log-rank P<0.05). In addition, the prognostic risk score model based on immune and stromal scores also 
showed significant correlations with OS. A total of 94 TME-related genes were obviously related to poor 
OS. Among them, BHMT2, FES, HSPB7, NOVA2, LPAP2, and SEMA3B (BFHNLS) were confirmed 
using GSE4573 and GSE17710 datasets. The functional assessments exhibited those TME-related genes 
mostly participate in immune response, cytokine-cytokine receptor interaction, and metabolic pathways, 
which elucidated the probable correlation of TME with tumorigenesis in LUSC. 
Conclusions: In this study, 6 potential biomarkers named BFHNLS were identified as TME-related genes 
with prognostic value based on immune and stromal scores of LUSC patients of TCGA, and were verified 
using GEO datasets, which might serve as therapeutic targets.
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Introduction

Lung cancer accounts for over 25% of cancer-related deaths 
worldwide. Lung cancers mainly fall into 2 histologic 
categories: small cell lung carcinoma (SCLC) and non-
small cell lung cancer (NSCLC). NSCLC accounts for 
the largest proportion (80%) of lung cancers and mainly 
consists of lung adenocarcinoma and lung squamous cell 
carcinoma (LUSC). Despite LUSC being the dominant 
form of NSCLC (nearly 40% of cases), it significantly 
lacks biomarkers and targeted agents compared to lung 
adenocarcinoma. The precise targets and pathogenesis of 
LUSC remain unclear (1-3). 

Accumulative evidences suggest that non-tumor cells of 
the tumor microenvironment (TME) play a pivotal role in 
cancer development and progression (4-7). The TME refers 
to a complicated environment where tumor cell locates 
and proliferates. Immune, endothelial, and epithelial cells, 
together with extracellular matrix, fibroblasts, chemokines, 
and cytokines, also populate the TME (8,9). Infiltrating 
immune cells and stromal cells are 2 primary components of 
the TME, and investigations of their interactions have been 
valuable in the exploration of novel therapeutic approaches 
for LUSC (10). However, to date, the majority of research 
on the TME has been directed toward the immune 
microenvironment; as such, stromal cells in the TME have 
yet to be investigated in any depth.

Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) is 
an algorithm designed for the quantitation of immune 
and stromal cells in tumors. Through the calculation of 
gene expression data, ESTIMATE can facilitate a better 
understanding of the landscape of non-tumor cells in 
the TME (11). Studies on hepatocellular carcinoma, 
acute myeloid leukemia, and glioblastoma have shown 
the accuracy and robustness of ESTIMATE. However, a 
comprehensive investigation to explore the influences of 
TME immune and stromal scores on LUSC has yet to be 
performed (12-14). A publicly accessible gene expression 
database The Cancer Genome Atlas (TCGA) allows for the 
discovery and categorization of genomic abnormalities in 
large-scale datasets from around the globe. By using this 
approach, the potential associations exist between genes and 
prognostic outcomes in LUSC, can be explored (15-17). In 

this work, we downloaded the TCGA LUSC dataset and 
determined the immune and stromal score of patients using 
the ESTIMATE algorithm. Subsequently, TME-associated 
genes were screened to identify those that could potentially 
be predictive of a poor outcome of LUSC, and the 
underlying interactions of relevant differentially expressed 
genes (DEGs) were uncovered.

We present the following article in accordance with the 
REMARK reporting checklist (available at http://dx.doi.
org/10.21037/tcr-21-401).

Methods

Data source

The publicly accessible LUSC dataset was downloaded 
from TCGA (http://portal.gdc.cancer.gov/). The dataset 
included patients’ gene expression profiling data (level 3), as 
well as clinical details such as sex, age, histological type, and 
survival time. The ESTIMATE algorithm was applied for 
the calculation of stromal and immune scores based on the 
downloaded RNA expression data. Cases were classified as 
having a high or low score according to the top and bottom 
quartiles of the immune/stromal scores.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Calculation of stromal and immune scores

ESTIMATE outputs stromal and immune scores by 
performing single-sample gene set-enrichment analysis 
(ssGSEA). In our analysis of LUSC samples from TCGA, 
gene expression values were subjected to rank normalization 
and rank ordering. Following that, the calculation of 
empirical cumulative distribution functions was performed 
for the signature genes and the remaining genes. Finally, 
a statistic was obtained through integrating the difference 
between the empirical cumulative distribution functions. 
Furthermore, a prognostic risk score model based on the 
immune and stromal scores was constructed by multivariate 
Cox regression, with the coefficient (β) used for weighting. 
We calculated the risk score using the following formula: 
risk score = immune score × β1 + stromal score × β2 (18). 
According to the median risk score, the model divided 
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LUSC cases into high- and low-risk score groups. The 
performance of the risk score model in predicting prognosis 
was assessed by drawing time-dependent receiver operating 
characteristic (ROC) curves using the “survivalROC” 
package (version 1.0.3) in R software (19).

Screening of DEGs

Data were analyzed with “DESeq2” (version 1.28.1) in R 
software (version 3.6.0) (20). The criteria for screening 
DEGs were as follows: mean value of gene expression >5; 
absolute value of log2 fold change (log2FC) ≥1; and false 
discovery rate (FDR) <0.05. Subsequently, the common 
upregulated DEGs between the immune and stromal 
groups were used for further analyses.

Functional enrichment analyses

Fisher’s exact test was applied in the Gene Ontology (GO) 
term and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses (21,22). GO terms reflect the 
functions of candidate signatures with respect to biological 
processes (BPs), molecular functions (MFs), and cellular 
components (CCs). KEGG analysis uncovers the pathways 
in which DEGs are enriched. A P value of <0.05 was set as 
the cut-off for significance.

Protein-protein interaction (PPIs) network construction

An analysis of the PPIs of the TME-related DEGs was 

performed using the Search Tool for the Retrieval of 
Interacting Genes (STRING) database (http://string-db.
org). Visualization of the interaction network was performed 
with Cytoscape software (23,24). We employed the 
Cytoscape plugin Molecular Complex Detection (MCODE) 
for the detection of the module with the greatest degree 
of significance in regard to the topology of the connected 
regions. The MCODE parameters used were: degree cut-
off =2, node score cut-off =0.2, k-core =2, and maximum 
depth =100.

Statistical analyses

The prognostic significance of TME-related common 
upregulated DEGs, high and low immune/stromal scores, 
and high and low risk scores was examined with Kaplan-
Meier estimation followed by the Log-rank test. A P value 
of <0.05 served as the criterion for statistical significance 
(25). The above analyses were performed using R software. 
Additionally, the PrognoScan online tool was utilized to 
verify the DEGs of significant prognostic value (26).

Results

Immune and Stromal Scores of Patients with LUSC

A total of 551 patients with LUSC were included from the 
TCGA database, and their clinical information is shown 
in Table 1. The ESTIMATE algorithm was utilized for the 
assessment of immune and stromal cells in the samples 
on the basis of RNA sequencing data. The immune and 
stromal scores of the samples ranged from −2,336 to 
6,956 and from −190 to 8,913, respectively. To investigate 
possible correlations between overall survival (OS) and 
stromal and immune scores, we assigned the LUSC cases 
to the high- and low-score group according to their 
stromal/immune scores. The survival analysis results 
(Figure 1A,B) suggested that the immune/stromal scores 
showed significant associations with OS (log-rank P<0.05). 
Meanwhile, the overall survival analysis of patients with lung 
adenocarcinoma was also performed to assess the effect of 
immune/stromal score on prognosis, however, the result 
was not statistical significant, shown as Figures S1 and S2, 
respectively. Furthermore, the prognostic risk score model 
of LUSC based on immune and stromal scores also showed 
significant correlations with OS (Figure 1C). The risk score 
formula was: risk score = immune score × 0.4374 + stromal 
score × 0.2985, and the effectiveness of this prognostic model 

Table 1 Clinical characteristics of patients with LUSC in TCGA 

Clinical Information Statistics

Sex (male/female) 373/131

Age (>60 years old, yes/no) 404/91

Pathologic_M (M0/M1) 7/414

Pathologic_N (N0/N1/N2/N3) 320/133/40/5

Pathologic_T (T1/T2/T3/T4) 114/295/71/24

Stage (I/II/III/IV) 245/163/85/7

Survival status (alive/dead) 284/220

Overall survival, days 968.4±957.7

Smoking duration, years 39.6±12.2

LUSC, lung squamous cell carcinoma; TCGA, The Cancer Genome 
Atlas.

http://string-db.org
http://string-db.org
https://cdn.amegroups.cn/static/public/TCR-21-401-supplementary.pdf
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was evidenced by time dependent ROC curves (Figure 1D),  
the area under curve (AUC) is 0.728.

DEG screening

Statistically, 3,045 DEGs were screened out from the 
high and low immune score groups, of which 1,718 
were upregulated and 1,327 were downregulated. In a 
similar way, 3,240 DEGs were identified from the high 
and low stromal score groups, including 1,813 that were 
upregulated and 1,427 that were downregulated. Volcano 
plots (Figure 2A,B) and heatmaps (Figure 2C,D) displayed 
the DEG expression profiles of the immune and stromal 
score groups, respectively. Venn diagram analysis showed 
that 824 upregulated DEGs and 548 downregulated DEGs 
overlapped between the immune and stromal score groups, 
as shown in Figure 2E and Figure 2F, respectively. These 

overlapping upregulated genes, all of which met the criteria 
of |log2FC| >1 and FDR <0.05, were selected for further 
analysis.

Functional enrichment analysis

Fisher’s exact test was applied in the functional enrichment 
analysis of the common upregulated DEGs. The results 
suggested that the DEGs were closely linked to immune 
response and cytokine-cytokine receptor interaction. 
As shown in Figure 3A, the results of GO term analysis 
revealed the DEGs to have significant enrichment in 
BPs including immune response, cell adhesion, and 
immune system process. In terms of CCs, the DEGs 
were predominantly enriched in the plasma membrane, 
extracellular region and nucleus. With respect to MFs, the 
DEGs were involved in calcium ion binding, DNA binding, 
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Figure 1 The correlations between immune/stromal score and prognosis. (A) Kaplan-Meier survival curves of the immune score groups 
(log-rank P=0.027). (B) Kaplan-Meier Survival curves of stromal score groups (log-rank P=0.032). (C) Kaplan-Meier survival curves of the 
high- and low-risk score groups based on immune and stromal scores (log-rank P=0.0083). (D) Receiver operating characteristic (ROC) 
curves of the risk score model for overall survival area under the ROC curve (AUC) =0.728.
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Figure 2 Screening of differentially expressed genes (DEGs) based on immune/stromal scores. (A) Volcano plot of DEGs identified from 
the high and low immune score groups. (B) Volcano plot of DEGs identified from the high and low stromal score groups. (C) Heatmap 
of DEGs in the immune score groups. (D) Heatmap of DEGs in the stromal score groups. (E) Venn diagram of upregulated DEGs in the 
immune and stromal score groups. (F) Venn diagram of downregulated DEGs in the immune and stromal score groups.
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Figure 3 Functional assessment of common upregulated differentially expressed genes (DEGs). (A) Gene Ontology (GO) enrichment 
analysis of common upregulated DEGs. The top 30 GO terms showing biological processes, cellular components, and molecular functions 
in which the DEGs are significantly enriched. (B) Significantly enriched KEGG pathway terms of common upregulated DEGs.
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and receptor activity. Additionally, as shown in Figure 3B, 
the DEG-related enriched KEGG pathways were obviously 
associated with cytokine-cytokine receptor interaction, cell 
adhesion molecules, and tumor relevant pathways including 
the ras, the transforming growth factor (TGF) beta, and the 
nuclear factor (NF) kappa B signaling pathways.

Survival analysis and verification with gene expression 
omnibus data

To determine the significance of the TME-related DEGs 
for predicting the prognosis of LUSC, Kaplan-Meier 
survival curves were drawn to examine the relationships 
of common upregulated DEGs with the OS of patients 
with LUSC from the TCGA database. Among the 824 
co-upregulated DEGs, 94 were significantly associated 
with a poor prognosis of LUSC according to the log-rank 
test (data not shown). Finally, BHMT2, FES, HSPB7, 
NOVA2, LPAP2, and SEMA3B (BFHNLS) were identified 
as potential predictors of a poor prognosis (Figure 4), and 
were verified using the PrognoScan online tool and Gene 
Expression Omnibus datasets GSE4573 and GSE17710 
(Figure 5).

PPI network construction

To explore the potential interactions of the TME-related 
DEGs, a PPI analysis of the co-upregulated DEGs was 
performed using the STRING database. Visualization of 
the interaction network was performed with Cytoscape. 
The top 3 modules in the network, as assessed by MCODE, 
are shown in Figure 6. Pathway enrichment analysis 
indicated that genes involved in module 1 were enriched in 
the terms of signaling by GPCR and signaling transduction  
(Figure 6A,B). Module 2 genes were primarily clustered 
in pathways related to the immune system and interleukin 
signaling (Figure 6C,D). The most enriched pathway terms 
for the module 3 genes were similar to those mentioned 
above for the other 2 modules (Figure 6E,F). Moreover, the 
94 DEGs with significant unfavorable prognostic value were 
used for PPI network construction (Figure 7A). Cytokine-
cytokine receptor interaction, endocytosis, and PI3K-Akt 
signaling pathway were the top pathway terms (Figure 7B).

Discussion

Male patients with LUSC are significantly more than 
female patients, and smokers are more prone to develop 

the disease. The prevalence and mortality are higher in 
patients over 60 years old. The prevalence is higher in 
developed countries, and the disease is more susceptible for 
urban patients than for rural ones. LUSC originates from 
bronchial mucosal epithelium and is mostly found in lobar 
and segmental bronchi. LUSC belongs to central type lung 
cancer in the clinical classification, of which the cells are 
often accompanied with cornification, showing irregular 
spindle-shaped. The early LUSC is in situ or early invasive 
carcinoma, and deteriorates as bronchial lumen tumor in 
advanced stage. 

Despite being a more prevalent subtype of lung cancer, 
LUSC lacks effective therapeutic targets as compared to 
lung adenocarcinoma (27). Large-scale mining of data 
from publicly available collections has been applied to 
identify potential biomarkers in various cancers, including 
LUSC. Previous research has revealed that the TME 
plays a pivotal role in the growth and progression of 
LUSC (28,29). Infiltrating immune and stromal cells 
are primary non-tumor constituents of the TME that 
can affect cell proliferation and therapeutic resistance. 
Several bioinformatics tools have been developed for the 
assessment of cell types in tumor tissues. Specifically, the 
ESTIMATE algorithm has proven effectiveness for the 
calculation of immune/stromal scores in lung cancer (30). 
In this study, the groups categorized according to immune/
stromal scores showed a significant association with OS. 
Moreover, our prognostic model showed a close correlation 
of risk score with a poor prognosis (P value =0.0083), 
which was evidenced by a favorable result (AUC =0.728) 
in the ROC analysis. The survival analysis for immune/
stromal scores indicated the important influence of non-
tumor components on the pathogenesis of LUSC. In recent 
studies, mining a signature of prognostic value related to 
the TME has attracted much attention (12-14). 

A total of 824 common upregulated DEGs were 
subjected to further analysis. The functional enrichment 
assessment of these genes was consistent with the findings of 
previous research that immune response and inflammatory 
response are the significantly enriched BP terms (31-33).  
Meanwhile, several typical carcinogenesis-related pathways 
were among the significantly enriched pathways, such as 
the TGF-beta and the NF-kappa B signaling pathways. 
The former plays a key role in cell proliferation, interstitial 
production, differentiation, apoptosis,  embryonic 
development, organ formation, immune function, and 
inflammatory response (34). Meanwhile, the NF-kappa B 
signaling pathway is involved in pathological processes such 
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as infection, inflammation, immune response, apoptosis, 
and tumor formation, as well as cell cycle regulation and cell 
differentiation through target gene expression products (35).  
In the PPI analysis of common upregulated DEGs, the 

genes of the module 1 network were mainly enriched in the 
pathway terms regarding GPCR, which is related to cancer 
progression. GPCRs are responsible for the activation 
of receptor tyrosine kinases, which are over-expressed in 

Figure 4 Survival analysis to examine the correlations of individual differentially expressed genes (DEGs) with a poor prognosis of lung 
squamous cell carcinoma (LUSC) using data from The Cancer Genome Atlas. Kaplan-Meier survival curves were created for the DEGs, 
followed by the log-rank test. (A) The survival curve of BHMT2, P=0.024. (B) The survival curve of FES, P=0.0018. (C) The survival curve 
of HSPB7, P=0.0014. (D) The survival curve of LPAL2, P=0.032. (E) The survival curve of NOVA2, followed by the log-rank test, P=0.049. 
(F) The survival curve of SEMA3B, P=0.029.
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Figure 5 Differentially expressed genes of prognostic value were verified using Gene Expression Omnibus datasets. Kaplan-Meier survival 
analysis was performed for the prognostically significant DEGs, followed by the log-rank test. Statistically significant genes (P<0.05) are 
shown. (A) Kaplan-Meier survival curve of BHMT2 (GSE17710), P=0.027. (B) Kaplan-Meier survival curve of FES (GSE4573), P=0.00022. 
(C) Kaplan-Meier survival curve of HSPB7 (GSE4573), P=0.0001. (D) Kaplan-Meier survival curve of LPAL2 (GSE4573), P=0.0019. (E) 
Kaplan-Meier survival curve of NOVA2 (GSE4573), P=0.016. (F) Kaplan-Meier survival curve of SEMA3B (GSE4573), P=0.0075.

numerous carcinomas (36). In the functional assessment of 
both module 2 and module 3 networks, immune system-
related pathways were involved in the top enriched pathway 

terms. Dysregulation of the immune system leads to 
abnormal cell proliferation, resulting in the formation of 
the TME (29,37). In particular, PPI analysis of the DEGs 
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Figure 6 The top 3 significant modules from the protein-protein interaction (PPI) analysis and the KEGG pathway enrichment analysis. (A) 
The interaction network of module 1 from the PPI analysis; the color of the node represents the false discovery rate (FDR) of differentially 
expressed genes, and the size of the node represents the fold change of gene expression. (B) Significantly enriched pathway terms of the 
module 1 gene set. (C) Module 2 PPI network. (D) Significantly enriched pathway terms of the module 2 gene set. (E) Module 3 PPI 
network. (F) Significantly enriched pathway terms of the module 3 gene set.
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Figure 7 Protein-protein interaction (PPI) analysis and corresponding KEGG pathway enrichment analysis for differentially expressed 
genes (DEGs) of prognostic value. (A) PPI network of the DEGs with prognostic value; the color of node indicates the P value of unique 
genes for overall survival, and the size of the node reflects the fold change of gene expression. (B) Enriched pathways of the DEGs with 
prognostic value.
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of prognostic value revealed that the PI3K-Akt signaling 
pathway and hippo signaling pathway were significantly 
enriched, which suggested these genes are probably 
associated with the growth and progression of LUSC. 
Furthermore, to investigate the potential relation of gene 
mutation to immunological characteristics in LUSC, a total 
of 22 LUSC gene mutations were identified after querying 
online tools. FireBrowse was performed using TCGA 
datasets (Figure S3), in which IRF6 was also found to be 
included in the DEGs of immune group. IRF6 is one of 
the enriched genes of nod-like receptor signaling pathway 
that co-upregulated DEGs clustered in, which suggested an 
underlying role of IRF6 in the tumorigenesis of LUSC with 
respect to immunological characteristics, yet need a further 
exploration.

Survival analysis of the co-upregulated TME-related 
DEGs demonstrated that 94 genes were significantly 
associated with poor outcomes of patients with LUSC. 
Besides canonical cancer pathways, pathway enrichment 
analysis of these genes illustrated their close connection 
with metabolic processes. Previous studies have reported 
that glycolysis supplies cancer cells with energy, thus 
supporting unlimited proliferative activity (38,39). In 
addition, fat acid metabolism is, to some degree, involved 
in tumor formation. With regard to cell assembly, fat 
acid participates in phospholipid synthesis and vital signal 
transduction in the cell membrane, such as PI3K-Akt 
signaling. For cellular metabolism, cancer cells mainly 
utilize fat acid β-oxidation to produce ATP in order to meet 
the energy requirement, and also use nicotinamide adenine 
dinucleotide phosphate (NADPH) to maintain the balance 
of intracellular redox reactions; however, the mechanism 
needs further investigation (40,41). ALDH3B1 and ADH1B 
are major genes linked to the pathways of gluconeogenesis 
and fatty acid degradation (42,43). In patients with 
LUSC, tobacco exposure for a certain duration may lead 
to chemical carcinogenesis; however, unfortunately, this 
conclusion could not summarized with a statistically non-
significant result in the pathway enrichment analysis. 
KEAP1 and NFE2L2 can encode interacting proteins that 
mediate the cytoprotective response to oxidative stress 
and exogenous stimuli, the Kaplan-Meier survival curves 
of KEAP1 and NFE2L2 suggested their expression level 
were significantly associated with prognosis of patients 
with LUSC (Figures S4 and S5). However, the mutation 
of KEAP1 and NFE2L2 could not predict the prognosis of 
LUSC patients (Figures S6 and S7).

With respect to the 6 verified TME-related DEGs with 

prognostic value, the identifier FES is the only known 
member of a specific subfamily of non-receptor protein-
tyrosine kinases. Previous reports indicated the involvement 
of these kinases in the regulation of cytoskeletal 
rearrangement and inside-out signaling accompanying 
receptor–ligand, cell-matrix, and cell-cell interactions 
(44,45). NOVA2 is possibly a regulator of RNA splicing or 
metabolism in a defined subset of developing neurons, as 
well as a binder of single-strand RNA. Diseases associated 
with NOVA2 include paraneoplastic polyneuropathy 
(46,47). LPAL2 is the distinguishing protein moiety of 
lipoprotein(a). Each transcript of LPAL2 displays open 
reading frame truncation and is a candidate for nonsense-
mediated decay (44). HSPB7 encodes a small heat shock 
family B member which is able to heterodimerize with 
similar heat shock proteins. As part of the p53 pathway, 
HSPB7 performs a possible tumor-suppressive function, 
and its association with renal cell carcinoma has also been 
uncovered (48). The membrane function of SEMA3B is 
involved in the growth cone guidance during neuronal 
development, and SEMA3B expression is suggestive of 
carcinogenic progression in endometrial cancer (49). 
Finally, BHMT2 has been reported to be related to the 
progression of hepatocellular carcinoma (50). The genes 
described above might serve as prognostic biomarkers 
for patients with LUSC, and this finding needs to be the 
subject of further clinical study.

Facing the poor situation that targeted therapy lacks 
sufficient efficacy in the treatment of LUSC, there is 
an urgent need for novel high-throughput sequencing 
technology and analysis strategy to identify more effective 
molecular signature in LUSC. Patients with LUSC may 
benefit from a combination treatment of chemotherapy 
and targeted therapy. Besides, the CIK treatment can 
also provide supportive options. Moreover, the immune 
checkpoint strategy appears to be a promising way for the 
treatment of LUSC in the coming days.

In contrast with previous studies that paid attention to 
the activation of intrinsic gene in oncogenesis, this work 
focused on the gene signature of the TME in LUSC, 
which supports the progression of LUSC, thus influencing 
the prognostic outcomes of patients. The current work 
may offer a novel perspective on the intricate interactions 
of LUSC with its TME. However, we were unable to 
comprehensively analyze survival with regard to other 
prognosis-associated factors, due to the lack of detailed 
treatment information. Further, biases may have been 
introduced by the fact that all cases in this study were 

https://cdn.amegroups.cn/static/public/TCR-21-401-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-401-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-401-supplementary.pdf
http://www.malacards.org/card/paraneoplastic_polyneuropathy
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acquired from a single cohort. Finally, except for the 6 
confirmed TME-related prognostic genes, the remaining 
candidate biomarkers for LUSC still need to be validated 
through investigations involving reverse transcription-
polymerase chain reaction and western blot.

Conclusions

In conclusion, the immune and stromal scores of LUSC 
tissue samples were calculated using the ESTIMATE 
algorithm. A total of 94 TME-associated genes were found 
to be related to an unfavorable prognostic outcome in a 
LUSC cohort from the TCGA database. Among them, 6 
potential biomarkers (BHMT2, FES, HSPB7, NOVA2, 
LPAP2, and SEMA3B) were verified using Gene Expression 
Omnibus datasets, and may be considered to be a candidate 
gene signature for predicting the prognosis of patients 
with LUSC. This study is the first to demonstrate the 
significance of these genes in the prognosis of LUSC, and 
they should be studied more extensively to shed more light 
on and to gain a deeper understanding of the correlation 
that potentially exists between the TME and prognosis in 
LUSC. Additionally, strategically, this study evidenced that 
mining TME-related genes from big-scale data may offer 
new perspectives in efforts to discover more biomarkers 
which have prognostic value for LUSC and other cancers.
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Supplementary 

Figure S1 The correlations between immune score and prognosis of lung adenocarcinoma. Kaplan-Meier survival analysis was performed in 
accordance with the high- and low immune score group of lung adenocarcinoma patients in TCGA.

Figure S2 The correlations between stromal score and prognosis of lung adenocarcinoma. Kaplan-Meier survival analysis was performed in 
accordance with the high- and low stromal score group of lung adenocarcinoma patients in TCGA.

Figure S3 The gene mutations of lung squamous cell carcinoma were identified with online tool FireBrowse using TCGA datasets.
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Figure S4 The association of KEAP1 with prognosis of lung squamous cell carcinoma. Kaplan-Meier survival curves was plotted according 
to the median value of KEAP1 expression of lung squamous cell carcinoma patients from TCGA.

Figure S5 The association of NFE2L2 with prognosis of lung squamous cell carcinoma. Kaplan-Meier survival curves was plotted according 
to the median value of NFE2L2 expression of lung squamous cell carcinoma patients from TCGA.

Figure S6 The effect of KEAP1 mutation on prognosis of lung squamous cell carcinoma. Kaplan-Meier survival analysis was implemented 
based on the KEAP1 mutation of lung squamous cell carcinoma patients from TCGA.
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Figure S7 The effect of NFE2L2 mutation on prognosis of lung squamous cell carcinoma. Kaplan-Meier survival analysis was implemented 
based on the NFE2L2 mutation of lung squamous cell carcinoma patients from TCGA.


