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Background: Breast cancer (BC) is one of the most common cancers worldwide and patients with lymph 
node metastasis always suffer from a worse prognosis. Tumor mutation burden (TMB) has been reported as a 
potential predictor for tumor behaviors. However, the correlation between TMB and lymph node metastasis 
of BC remains unclear. This study aimed to explore TMB-related biomarkers to predict the lymph node 
metastasis in BC patients.
Methods: A total of 949 BC patients with RNA-seq data, mutation data and clinical data were obtained 
from The Cancer Genome Atlas (TCGA) database. We visualized mutation data by “maftools” package. We 
calculated TMB of each patient and investigated its association with lymph node metastasis. BC patients 
were divided into lymph node positive and negative groups and we respectively identified TMB-related 
and lymph node-related differentially expressed genes (DEGs) to figure out intersected genes. Functional 
enrichment analysis and protein-protein interaction (PPI) network were performed to observe relevant 
biological functions. We constructed a TMB-related signature for predicting lymph node metastasis through 
Logistic regression analysis. A validation database (GSE102484) from the Gene Expression Omnibus (GEO) 
database was downloaded to verify the accuracy.
Results: Single nucleotide polymorphism (SNP) occupied the highest proportion in variant types while 
C>T appeared most frequently in single nucleotide variant (SNV). TMB was regarded as negatively 
correlated with lymph node metastasis in BC (P=0.003). We identified 125 common DEGs through venn 
diagram, which were enriched in vesicle localization, calcium signaling pathway and salmonella infection. A 
TMB-related signature based on six genes (BAHD1, PPM1A, PQLC3, SMPD3, EEF1A1 and S100B) had 
reliable efficacy for predicting lymph node metastasis in BC and was proven as an independent predictive 
factor. The accuracy of this signature was further validated by GSE102484 database.   
Conclusions: Our results indicated that TMB was associated with lymph node metastasis of BC. We built 
a TMB-related signature consisting of six genes which might function as a novel biomarker for predicting 
lymph node metastasis in BC.

Keywords: Breast cancer (BC); tumor mutation burden (TMB); lymph node metastasis; predictive signature; 

bioinformatics

Submitted Dec 20, 2020. Accepted for publication Mar 22, 2021.

doi: 10.21037/tcr-20-3471

View this article at: http://dx.doi.org/10.21037/tcr-20-3471

2246

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr-20-3471


2230 Wang et al. TMB-related signature for lymphatic metastatic BC

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(5):2229-2246 | http://dx.doi.org/10.21037/tcr-20-3471

Introduction

Breast cancer (BC) is one of the leading malignancies 
among females worldwide, with 279,100 estimated new 
cases and 42,690 estimated deaths in 2020 (1). In spite of 
the development of medical technologies, large amounts 
of BC patients were still diagnosed with lymph node 
metastasis (2). Lymph node status was identified as an 
important prognostic factor in BC and patients with lymph 
node metastasis had a worse survival outcome than those 
without metastatic status (3,4). Moreover, BC patients with 
lymph node metastasis often suffer from sentinel lymph 
node biopsy or axillary dissection, taking a risk of many 
serious complications, such as lymphedema, chyle leak, 
seroma formation and so on (5-7). Therefore, it is urgent 
for clinicians to search for potential biomarkers to predict 
the lymph node metastasis in BC.   

Tumor mutation burden (TMB) refers to the total 
quantity of non-synonymous point mutations per coding 
region in the tumor gene (8). Recently, TMB has been 
regarded as an effective biomarker for predicting response 
to immune checkpoint inhibitors in multiple cancer types, 
such as melanoma, non-small cell lung cancer and advanced 
urothelial cancer (9-11). Besides, an increasing number of 
researchers begin to explore the relationship between TMB 
and BC. It was discovered that TMB was closely related 
with immune-mediated survival in BC (12). According 
to Park, high TMB was associated with good overall 
survival and functioned as an independent prognostic 
factor in HER2-positive metastatic BC (13). Barroso-Sousa 
suggested that BC patients with high TMB were more 
likely to benefit from PD-1 inhibitors (14).

Current researches mostly focused on the role of TMB 
in predicting clinical outcomes of BC, the correlation 
between TMB and tumor biological characteristics, 
such as lymph node metastasis, remained unclear. It 
was reported that tumor progression, such as lymphatic 
metastasis was regulated by both tumor escape mechanism 
and dysfunction of immune system, which highlighted 
the significant role of immune system in tumor biological 
behaviors  (15 ,16 ) .  Moreover,  tumor  inf i l t ra t ing 
lymphocytes (TILs) were observed to participate in the 
regulation of lymph node metastasis, including CD8(+) 
T cells and Foxp3(+) Tregs (17). Meanwhile, as to 
TMB, many researchers considered TMB as an effective 
biomarker for predicting immune response owing to its 
potential function of increasing neoantigens and inducing 
TILs infiltration (18,19). According to Mei, high TMB 

level in BC patients was positively related with the amount 
of TILs (20). However, whether TMB can influence the 
immune cell infiltration and further regulate lymph node 
metastasis in BC is still lack of evidence, which deserves 
further investigation.

With the development of  sequencing and chip 
technologies, an increasing number of public databases 
are emerging, such as The Cancer Genome Atlas (TCGA) 
database and Gene Expression Omnibus (GEO) database. 
Researchers around the world upload their research data 
to these public databases, promoting information sharing 
and accelerating medical development. In the present study, 
we obtained mutation data, transcriptome data and clinical 
data from the TCGA database. The TMB value of each BC 
sample was calculated and the correlation between TMB 
and lymph node metastasis was investigated. We identified 
TMB-related and lymph node-related differentially 
expressed genes (DEGs) respectively to extract common 
DEGs. Functional enrichment analysis and protein-protein 
interaction (PPI) network were performed to explore 
the biological roles of common DEGs. A TMB-related 
signature including six genes was constructed for predicting 
the lymph node metastasis in BC and external verification 
was further conducted. After a comprehensive analysis, we 
believed that the TMB-related signature had potential in 
predicting the lymph node metastasis in BC. We present the 
following article in accordance with the STROBE reporting 
checklist (available at http://dx.doi.org/10.21037/tcr-20-
3471).

Methods

Data acquisition

We obtained the BC mutation data, transcriptome data 
and clinical data from TCGA database (https://portal.gdc.
cancer.gov/), comprising 460 lymph node negative samples 
and 489 lymph node positive samples, which served as the 
training dataset. We employed “maftools” R package to 
analyze the Masked Somatic Mutation data, which were 
processed via VarScan software. Transcriptome data were 
acquired from HTseq-FPKM platform while clinical data 
contained age, gender, pathological stage and AJCC-
TNM stage. We also obtained a gene expression profile 
(GSE102484) from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/), comprising 
300 lymph node negative samples and 383 lymph node 
positive samples, which functioned as the validation dataset. 

http://dx.doi.org/10.21037/tcr-20-3471
http://dx.doi.org/10.21037/tcr-20-3471
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The platform for GSE102484 was the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array. All data were publicly available and patients with data 
deficiency were excluded. The clinical characteristics of BC 
patients in training and validation datasets are summarized 
in Table 1. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

TMB value calculation and correlation with lymph node 
metastasis

TMB was calculated by the ratio of total mutation amounts 

to human exon length (38 Mb) and was regarded as the 
frequency of tumor gene mutations, consisting of insertions 
or deletions, coding errors and base substitutions. We 
conducted correlation analysis between TMB and different 
lymph node status. Wilcoxon rank-sum test and Kruskal-
Wallis test were respectively used for two or more groups.

Differential analysis, functional enrichment analysis and 
PPI network construction

We divided BC samples into lymph node positive and 
negative groups to identify lymph node-related DEGs. 

Table 1 Clinical characteristics of breast cancer patients in training and validation datasets

Variable
Number, n (%)

TCGA database GSE102484 database

Age 0 patient missing 0 patient missing

≤58 years 481 (50.7) 541 (79.2)

>58 years 468 (49.3) 142 (20.8)

Gender 0 patient missing 0 patient missing

Female 938 (98.8) 683 (100.0)

Male 11 (1.2) 0 (0)

Stage 13 (1.3) patients missing 0 patient missing

I 162 (17.1) 175 (25.6)

II 550 (58.0) 328 (48.0)

III 208 (21.9) 174 (25.5)

IV 16 (1.7) 6 (0.9)

T 1 (0.1) patient missing 0 patient missing

T1 248 (26.1) 276 (40.4)

T2 557 (58.7) 377 (55.2)

T3 109 (11.5) 24 (3.5)

T4 34 (3.6) 6 (0.9)

N 0 patient missing 0 patient missing

N0 460 (48.5) 300 (43.9)

N1 317 (33.4) 214 (31.3)

N2 112 (11.8) 87 (12.7)

N3 60 (6.3) 82 (12.1)

M 129 (13.6) patients missing 0 patient missing

M0 802 (84.5) 582 (85.2)

M1 18 (1.9) 101 (14.8)
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Furthermore, based on the median TMB value, TMB-
related DEGs between high and low TMB groups were 
respectively acquired in lymph node positive and negative 
groups. Differential analysis above was performed through 
“limma” package with the criterion of P value <0.05 
and false discovery rate (FDR) <0.05, which was further 
visualized by volcano plots. Subsequently, the intersection 
between lymph node-related and TMB-related DEGs 
was extracted as common DEGs through “VennDiagram” 
package and further visualized via “UpSetR” package. 
Besides, in order to explore biological functions of common 
DEGs, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis were applied via “org.
Hs.eg.db”, “clusterProfiler”, “ggplot2” and “enrichplot” 
packages. Moreover, the PPI network of common DEGs 
was conducted by STRING database (https://string-db.
org/) and presented via Cytoscape software.

TMB-related signature construction and external 
verification

We firstly conducted univariate Logistic regression analysis 
to screen for common DEGs associated with lymph node 
metastasis with P value <0.001. Then, we brought selected 
DEGs into multivariate Logistic regression analysis to 
calculate regression coefficient(β) and establish a TMB-
related signature through the formula: risk score = Σ(β * 
the expression of gene). We applied the formula above to 
calculate risk score of each sample and divided all samples 
into high and low risk groups according to the median 
risk score. The correlation between risk score and clinical 
variables was explored via Chi-square test and the expression 
of six hub genes between high and low risk groups was 
displayed via “pheatmap” package. Meanwhile, the receiver 
operating characteristic (ROC) curve was applied to assess 
the predictive value via “pROC” package and the evaluation 
of independent predictive factors was also performed 
through Logistic regression analysis. Furthermore, we 
brought all independent predictive factors into a nomogram 
through “rms” package and assessed its predictive accuracy 
via the calibration plot. A validation dataset (GSE102484) 
was further utilized for external verification. 

Expression level and relapse-free survival (RFS) analysis 
of hub genes between patients with different lymph node 
status

We investigated comparative analysis between six hub 

genes and different lymph node status via Wilcoxon rank-
sum test for two groups and Kruskal-Wallis test for more 
groups. Moreover, we performed RFS analysis of six hub 
genes respectively in lymph node positive and negative 
groups via the Kaplan-Meier Plotter mRNA BC database 
(http://kmplot.com/analysis/index.php?p=service). We 
divided patients into high and low expression groups based 
on the best cutoff and calculated relevant log-rank P values 
respectively in lymph node positive and negative groups. P 
value <0.05 was identified as statistically significant. 

Correlation of hub genes with TMB and cBioPortal 
analysis

We performed correlation analysis between six hub genes 
and TMB via Spearman correlation analysis and visualized 
the results via the “ggplot2”, “ggpubr” and “ggExtra” 
packages. Furthermore, we used cBioPortal database 
(http://www.cbioportal.org/) to acquire gene alteration 
frequencies and types of six hub genes in different BC 
studies.

Statistical analysis

We utilized R software (Version 3.6.3) and SPSS software 
(Version 24.0) to perform data analysis. The construction 
of TMB-related signature was conducted by univariate and 
multivariate Logistic regression analysis. Survival analysis 
was performed by Kaplan-Meier method and log-rank 
test. We applied differential analysis via “limma” package 
and conducted correlation analysis through Spearman 
correlation analysis. We investigated comparative analysis 
of continuous variables through Wilcoxon rank-sum test 
for two groups and Kruskal-Wallis test for more groups. 
Meanwhile, comparative analysis of categorical variables 
was conducted by Chi-square test. A P value <0.05 was 
identified as statistically significant.

Results

Visualization of BC mutation profiles

We utilized waterfall plot to exhibit high-frequency 
mutated genes in BC, such as TP53 (34%), PIK3CA (33%), 
TTN (16%), CDH1 (13%) and GATA3 (12%) (Figure 1A).  
Besides, missense mutation ranked first in variant 
classification, single nucleotide polymorphism (SNP) 
appeared more frequently than insertion or deletion and 

https://string-db.org/
https://string-db.org/
http://www.cbioportal.org/
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Figure 1 Summary of mutation information in BC. (A) Visualization of mutation profiles in BC samples. Waterfall plot exhibiting mutation 
types of each gene in each sample, with barplot representing mutation burden. (B) Mutation information distinguished by different 
classifying standards and variant burden, classification in inclusive samples. (C) Co-occurance and mutual exclusion among top 25 mutated 
genes. BC, breast cancer.
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Figure 2 Correlation between TMB and lymph node metastasis in BC. (A) TMB was negatively correlated with lymph node metastasis. (B) 
TMB expression in different lymph node status. TMB, tumor mutation burden.
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C>T was considered as the most common single nucleotide 
variant (SNV). Meanwhile, the median variation was 
estimated to be 29 and variant types were also shown via 
box plot (Figure 1B). Furthermore, the co-occurance and 
mutual exclusion among top 25 mutated genes were also 
displayed (Figure 1C).

TMB correlated with lymph node metastasis

Clinical information was acquired and merged with TMB 
value to further explore the correlation between TMB and 
different lymph node status of BC. We discovered that 
TMB was negatively correlated with lymph node metastasis 
in BC (P=0.003) (Figure 2A). Moreover, N1 group had 
lower TMB level than N0 group (P<0.001) and N2 group 
(P=0.018) (Figure 2B). 

Identification of DEGs

We performed differential analysis to screen for lymph 
node-related and TMB-related DEGs between lymph node 
positive and negative groups. According to TMB-related 
DEGs, 8,751 DEGs (2,522 up-regulated and 6,229 down-
regulated) and 9,354 DEGs (3,636 up-regulated and 5,718 
down-regulated) were respectively identified in lymph node 
positive and negative groups, while 763 lymph node-related 
DEGs (455 up-regulated and 308 down-regulated) was 
confirmed. Differential expression was displayed through 
volcano plots (Figure 3) and 125 common DEGs were 
extracted as the intersection of three datasets above via 
Venn diagram (Figure 4A).

Functional enrichment analysis and PPI network of 
common DEGs

After acquiring 125 common DEGs, we utilized the Upset 
diagram for further detailed analysis. Based on median 
TMB value, 16 simultaneously up-regulated and 104 
simultaneously down-regulated common DEGs were 
identified in lymph node positive and negative groups, 
while 5 other common DEGs were regulated reversely 
(Figure 4B). We conducted functional enrichment analysis 
to further investigate significant pathways of 125 common 
DEGs. GO analysis indicated that common DEGs were 
enriched in vesicle localization, the membrane of lysosome, 
vacuole and lytic vacuole, GTPase regulator activity among 
biological process (BP), cellular component (CC) and 
molecular function (MF) categories respectively (Figure 4C).  
KEGG analysis demonstrated that calcium signaling pathway 
and salmonella infection were mainly enriched (Figure 4D). 
Subsequently, we searched 125 common DEGs in STRING 
database with the interaction score of 0.150 and constructed 
a PPI network with disconnected nodes hided, which was 
further visualized via Cytoscape software (Figure 4E). The 
PPI network of common DEGs contained 101 nodes and 
498 edges, with simultaneously up-regulated, simultaneously 
down-regulated and reversely regulated common DEGs 
marked in pink, blue and green respectively (Figure 4F). 

Construction and verification of the TMB-related 
signature

We firstly performed univariate Logistic regression analysis 
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Figure 3 Identification of TMB-related and lymph node-related DEGs. (A) The volcano plot of TMB-related DEGs in lymph node positive 
and negative groups. (B) The volcano plot of lymph node-related DEGs. TMB, tumor mutation burden; DEGs, differentially expressed 
genes.
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to select 29 genes associated with lymph node metastasis 
among 125 common DEGs, with P value <0.001. We 
further brought selected 29 genes into multivariate Logistic 
regression analysis and utilized “Forward: LR” to establish 
a TMB-related signature of six genes for predicting lymph 
node metastasis (Table 2). The risk score of TMB-related 
signature was calculated via regression coefficient(β) and 
expression level of six hub genes, which was identified as 
follows: risk score= expBAHD1*(0.054)+ expPPM1A*(0.069)+ 
expPQLC3*(0.024)+ expSMPD3*(0.104)+ expEEF1A1*(-0.001)+ 
expS100B*(-0.010) (Figure 5). Subsequently, we calculated risk 
score of each sample and divided all samples into high and 
low risk groups. As shown in the heat map, risk score was 
significantly associated with age (P<0.05), stage (P<0.001) 
and lymph node status (P<0.001) in TCGA database. 
Meanwhile, the expression of BAHD1, PPM1A, PQLC3 
and SMPD3 was higher in high risk group while EEF1A1 
and S100B presented opposite trends (Figure 6A,B). 
Furthermore, the ROC curve indicated reliable predictivity 
of six-gene signature with the area under curve (AUC) 

of 0.656 in TCGA database and 0.561 in GSE102484 
database (Figure 6C,D). Univariate and multivariate Logistic 
regression analysis proved the TMB-related signature as 
an independent predictive factor for lymph node metastasis 
in BC (Table 3, Table 4). Besides, a nomogram containing 
independent predictive factors was constructed and the 
calibration plot confirmed its effective predictivity in 
TCGA database and GSE102484 database (Figure 6E,F,G).

Differential expression of six hub genes between patients 
with different lymph node status

We performed comparative analysis between six hub 
genes and different lymph node status in BC. The results 
demonstrated that four hub genes were positively correlated 
with lymph node metastasis, including BAHD1 (P<0.001), 
PPM1A (P<0.001), PQLC3 (P<0.001) and SMPD3 
(P<0.001), while EEF1A1 (P<0.001) and S100B (P=0.001) 
exhibited negative correlation (Figure 7A). Furthermore, 
more detailed comparative analysis was conducted. The 
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Figure 4 Identification, functional enrichment analysis and PPI network construction of common DEGs. (A) The venn diagram showing 
125 common DEGs extracting from TMB-related and lymph node-related DEGs. (B) Based on median TMB value, the intersection 
relation of 125 common DEGs between lymph node positive and negative groups was displayed via the Upset diagram. (C) Gene Ontology 
(GO) functional analysis of 125 common DEGs, including biological process (BP), cellular component (CC) and molecular function 
(MF) categories. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 125 common DEGs. (E) The PPI network of 
125 common DEGs was constructed in STRING database. (F) The PPI network was further visualized via Cytoscape software with 
simultaneously up-regulated, simultaneously down-regulated and reversely regulated common DEGs marked in pink, blue and green 
respectively. PPI, protein-protein interaction; TMB, tumor mutation burden; DEGs, differentially expressed genes.
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Table 2 Construction of a TMB-related signature including six genes in TCGA database (Logistic regression analysis)

Gene
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value Coefficient

BAHD1 1.088 (1.041–1.137) <0.001 1.055 (1.007–1.105) 0.023 0.054

PPM1A 1.106 (1.059–1.155) <0.001 1.072 (1.024–1.122) 0.003 0.069

PQLC3 1.028 (1.014–1.042) <0.001 1.024 (1.010–1.038) 0.001 0.024

SMPD3 1.160 (1.077–1.249) <0.001 1.110 (1.032–1.193) 0.005 0.104

EEF1A1 0.999 (0.999–1.000) <0.001 0.999 (0.999–1.000) 0.009 -0.001

S100B 0.980 (0.968–0.991) <0.001 0.990 (0.980–0.999) 0.039 -0.010

OR, odds ratio; CI, confidence interval.

Figure 5 Construction of TMB-related signature. (A) Forest plot of univariate Logistic regression analysis for six hub genes. (B) Forest plot 
of multivariate Logistic regression analysis for six hub genes. (C) Regression coefficients of six hub genes. TMB, tumor mutation burden.
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expression levels of BAHD1 (P<0.001), PPM1A (P<0.001), 
PQLC3 (P<0.001) and SMPD3 (P<0.001) were found lower 
in N0 group than in N1 group, while EEF1A1 (P=0.008) 
and S100B (P=0.006) presented the opposite expression. 
Meanwhile, PPM1A (P<0.001), PQLC3 (P<0.001) and 
SMPD3 (P=0.002) had lower expression in N0 group than 
in N2 group, while EEF1A1 (P=0.005) and S100B (P=0.002) 
presented the opposite expression. Besides, BAHD1 
(P=0.002) had lower mRNA expression in N0 group than in 
N3 group (Figure 7B).

RFS analysis of six hub genes between patients with 
different lymph node status

Based on the Kaplan-Meier Plotter, we divided patients 
into high and low expression groups via the best cutoff and 
conducted RFS analysis of six hub genes respectively in 
lymph node positive and negative BC. The results indicated 

that higher expression levels of BAHD1 (P=0.020), PPM1A 
(P=0.049), PQLC3 (P=0.009), SMPD3 (P=0.037) and 
EEF1A1 (P=0.034) were associated with better RFS in 
lymph node negative group while S100B (P=0.260) showed 
no association with RFS (Figure 8A). Meanwhile, higher 
expression levels of BAHD1 (P=0.009), PPM1A (P<0.001), 
PQLC3 (P=0.043), SMPD3 (P=0.021) and EEF1A1 
(P=0.015) were associated with better RFS in lymph node 
positive group while higher S100B (P=0.033) expression 
had worse prognosis (Figure 8B).

Correlation of six hub genes with TMB and cBioPortal 
analysis

We investigated the correlation between six hub genes 
and TMB. The results demonstrated that the expression 
levels of BAHD1 (P<0.001), PPM1A (P<0.001), PQLC3 
(P<0.001), SMPD3 (P<0.001) and EEF1A1 (P<0.001) were 
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Figure 6 Verification of TMB-related signature. (A) Correlation analysis between risk score and clinical variables in TCGA database. (B) 
Correlation analysis between risk score and clinical variables in GSE102484 database. (C)Receiver operating characteristic (ROC) curve 
analysis of the TMB-related signature in TCGA database. (D) ROC curve analysis of the TMB-related signature in GSE102484 database. (E) 
A nomogram constructed for predicting lymph node metastasis, which contained independent predictive factors. (F) The calibration plot in 
TCGA database. (G) The calibration plot in GSE102484 database. *, P<0.05; **, P<0.01; ***, P<0.001. TMB, tumor mutation burden.
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Table 3 Univariate and multivariate Logistic regression analysis of predictive factors for lymph node metastasis in TCGA database

Variable
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Risk Score 2.638 (2.068–3.364) <0.001* 2.664 (2.013–3.526) <0.001*

Age (≤58 years) 1.442 (1.093–1.901) 0.010* 1.947 (1.376–2.753) <0.001*

Gender (female) 0.426 (0.109–1.661) 0.219 – –

Stage (Stage I-II) 0.018 (0.008–0.042) <0.001* 0.019 (0.008–0.047) <0.001*

T (T1) 0.416 (0.301–0.576) <0.001* 0.619 (0.424–0.903) 0.013*

M (M0) 0.065 (0.009–0.492) 0.008* 1.943 (0.208–18.151) 0.560

Age was classified as ≤58 years and >58 years; Gender was classified as female and male; Stage was classified as Stage I-II and Stage 
III-IV; T was classified as T1 and T2-T4; M was classified as M0 and M1; OR, odds ratio; CI, confidence interval; *, P value <0.05 has 
statistical significance.

Table 4 Univariate and multivariate Logistic regression analysis of predictive factors for lymph node metastasis in GSE102484 database

Variable
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Risk score 35.579 (2.865–441.816) 0.005* 21.034 (1.167–379.142) 0.039*

Age (≤58 years) 1.268 (0.876–1.837) 0.208 – –

Stage (Stage I-II) 0.012 (0.004–0.037) <0.001* 0.015 (0.005–0.048) <0.001*

T (T1) 0.242 (0.175–0.335) <0.001* 0.372 (0.258–0.538) <0.001*

M (M0) 0.285 (0.172–0.473) <0.001* 0.934 (0.478–1.825) 0.842

Age was classified as ≤58 years and >58 years; Stage was classified as Stage I-II and Stage III-IV; T was classified as T1 and T2-T4; M 
was classified as M0 and M1; OR, odds ratio; CI, confidence interval; *, P value <0.05 has statistical significance.

negatively correlated with TMB while S100B (P=0.18) 
showed no significant correlation with TMB (Figure 9A). 
Besides, we utilized cBioPortal database to acquire gene 
alteration status of six hub genes in different BC studies. 
The results suggested that gene alteration frequency of 
PQLC3 and SMPD3 was less than 2% while PPM1A and 
S100B had less than 4.5% gene alterations. Meanwhile, 
BAHD1 had less than 3% gene alterations while the 
gene alteration frequency of EEF1A1 was less than 5%. 
Moreover, deep deletion was the most common alteration 
type in BAHD1, SMPD3 and EEF1A1, while amplification 
ranked first in PPM1A, PQLC3 and S100B (Figure 9B).

Discussion

With the rapid development of sequencing technology, an 
increasing number of researchers begin to investigate the 
potential role of TMB in the occurrence and development 

of BC. Voutsadakis reported that the TMB expression 
was higher in HER2-positive subtype than in luminal and 
triple-negative subtypes (21). Similar to Voutsadakis, Xu 
suggested that elevated TMB expression was identified in 
HR-negative or HER2-positive BC (22). Besides, many 
sequencing researches were performed in triple-negative 
breast cancer (TNBC) and discovered the association 
between high TMB expression and better prognosis. 
Karn indicated that early TNBC patients with high 
TMB were more likely to achieve pathological complete 
response (pCR) and TMB was regarded as an independent 
predictive factor for pCR (23). According to Barroso-
Sousa, higher TMB expression was associated with better 
progress free survival in metastatic TNBC patients treated 
with anti-PD-1/L1 (24).

However, the majority of current studies paid attention 
to the predictive function of TMB for clinical outcomes 
in BC, the correlation between TMB and lymph node 
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Figure 7 Correlation between six hub genes and lymph node status in BC. (A) BAHD1, PPM1A, PQLC3 and SMPD3 were positively 
correlated with lymph node metastasis while EEF1A1 and S100B were negatively correlated with lymph node metastasis. (B) The expression 
levels of six hub genes had statistical difference in different lymph node groups. BC, breast cancer.
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Figure 8 Relapse-free survival (RFS) analysis of six hub genes in lymph node positive and negative groups. (A) Among the lymph node 
negative group, the higher expression levels of BAHD1, PPM1A, PQLC3, SMPD3 and EEF1A1 were associated with better RFS while 
S100B had no association with RFS. (B) Among the lymph node positive group, the higher expression levels of BAHD1, PPM1A, PQLC3, 
SMPD3 and EEF1A1 were associated with better RFS while higher S100B expression had worse RFS.
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Figure 9 Correlation of six hub genes with TMB and cBioPortal analysis. (A) BAHD1, PPM1A, PQLC3, SMPD3 and EEF1A1 were 
negatively correlated with TMB while S100B had no significant correlation with TMB. (B) According to the cBioPortal database, deep 
deletion was the most common alteration type in BAHD1, SMPD3 and EEF1A1, while amplification ranked first in PPM1A, PQLC3 and 
S100B.

0	 50	 100	 150
TMB

0	 50	 100	 150
TMB

2.5% 

2% 

1.5% 

1% 

0.5%

1.5% 

1% 

0.5%

1.5% 

1% 

0.5%

4% 

3% 

2% 

1%

4% 

3% 

2% 

1%

5%

4% 

3% 

2% 

1%

Mutation data 
CNA data

Mutation data 
CNA data

Mutation data 
CNA data

Mutation data 
CNA data

Mutation data 
CNA data

Mutation data 
CNA data

Mutation	 Amplification	 Deep Deletion	 Multiple Alterations

BAHD1

SMPD3

PQLC3

S100B

PPM1A

EEF1A1

A
lte

ra
tio

n 
Fr

eq
ue

nc
y

A
lte

ra
tio

n 
Fr

eq
ue

nc
y

A
lte

ra
tio

n 
Fr

eq
ue

nc
y

A
lte

ra
tio

n 
Fr

eq
ue

nc
y

A
lte

ra
tio

n 
Fr

eq
ue

nc
y

A
lte

ra
tio

n 
Fr

eq
ue

nc
y

0	 50	 100	 150
TMB

0	 50	 100	 150
TMB

0	 50	 100	 150
TMB

0	 50	 100	 150
TMB

20 

15 

10

5 

0

20 

15 

10

5 

0

–5

30 

20 

10

0

2000 

1000

0

200 

100

0

300

200 

100

0

R=–0.13 P=7.3e–05

R=–0.19 P=2.5e–09

R=–0.2 P=2.3e–10

R=–0.18 P=2e–08

R=–0.11 P=0.00039

R=–0.044 P=0.18

B
A

H
D

1
S

M
P

D
3

P
P

M
1A

E
E

F1
A

1

P
Q

LC
3

S
10

0B

A

B



2243Translational Cancer Research, Vol 10, No 5 May 2021

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(5):2229-2246 | http://dx.doi.org/10.21037/tcr-20-3471

metastasis is still ambiguous. Among BC patients, those 
with lymph node metastasis were under a threat of wider 
surgical margin, more serious complications and higher 
chemotherapy toxicity, suffering from a worse prognosis 
(25-27). Therefore, it is of great significance to further 
investigate the relationship between TMB and lymph node 
metastasis in BC.

It was demonstrated that tumor-mediated immune 
dysfunction played an important role in accelerating 
tumor progression, including lymphatic metastasis (28-30).  
According to Zuckerman, the down-regulation of 
immune-related genes and up-regulation of tumor-
promoting genes were observed in BC patients with lymph 
node metastasis (31). Besides, Kohrt demonstrated that 
CD1a dendritic cells were lower in tumor-involved axillary 
nodes than tumor-free axillary nodes in BC and dendritic 
cells in axillary nodes were closely related with disease-free 
survival (32). As to TMB, it has been known as a potential 
predictor for tumor-related immunological response due 
to the emerging neoantigens from gene alterations and 
increased infiltration of immune cells (33,34). Based on 
above researches, we hypothesize that TMB may take part 
in the regulation of lymph node metastasis in BC through 
influencing immune cell infiltration and more detailed 
researches should be performed for further verification.

In our study, we downloaded mutation, transcriptome 
and clinical data from TCGA database and calculated TMB 
value of each patient. We merged TMB value and clinical 
data and discovered that TMB was negatively associated 
with lymph node metastasis in BC. Subsequently, TMB-
related and lymph node-related DEGs were identified 
respectively and we extracted common DEGs from them. 
We further conducted functional enrichment analysis 
and constructed a PPI network of common DEGs. The 
membrane of lysosome and vacuole, vesicle localization 
and GTPase regulator activity were mainly enriched in GO 
analysis, while calcium signaling pathway and salmonella 
infection were mainly enriched in KEGG analysis. The 
roles of vesicle localization, calcium signaling and salmonella 
infection in regulating BC metastasis have been explored 
in some researches (35-37). Furthermore, we established 
the TMB-related signature of six genes, including BAHD1, 
PPM1A, PQLC3, SMPD3, EEF1A1 and S100B, via 
univariate and multivariate Logistic regression analysis. The 
predictive accuracy of this signature was assessed reliable in 
both TCGA database and GSE102484 database. 

The function of six hub genes in BC was previously 

investigated in many researches. Singh verified that 
SMPD3 part ic ipated in  the  encoding of  neutra l 
sphingomyelinase 2 (nSMase2) enzyme and nSMase2 
regulated BC invasion via enhancing the exosome-
mediated secretion of miR-10b (38). Lin discovered that 
EEF1A1 had gene alterations in 27% BC patients and 
could protect tumor cells from proteotoxic injuries via 
enhancing heat shock responses (39). Li identified that the 
promoter regulatory element of EEF1A1 was regulated 
by MALAT1 and over-expressed MALAT1 played an 
important role in the metastasis of BC (40). In addition, 
the decreased EEF1A1 expression via curcumol attributed 
to the suppression of BC metastasis (41). The function of 
S100B for inhibiting tumor migration was found in ER-
negative BC and high expression of S100B was associated 
with better distant metastases-free survival in BC (42). 
Over-expressed PPM1A was demonstrated to restrain the 
progression of triple negative BC through suppressing 
cell cycle and reducing the phosphorylation of CDK and 
Rb (43). The researches of BAHD1 in BC remained rare 
while Goryca identified that the mutation of BAHD1 took 
part in promoting the metastasis of colorectal cancer (44). 
The role of PQLC3 in tumorigenesis and progression was 
still unclear and deserved further investigation.  

In this study, we discovered that TMB was negatively 
correlated with lymph node metastasis and constructed a 
TMB-related signature based on six genes for predicting 
lymph node metastasis in BC, which might provide novel 
sights for clinicians. With the further investigation of 
TMB, we would like to explore other potential roles of 
TMB-related signature in BC, such as predicting immune 
response, survival status and so on. However, there are 
still some limitations in our study. On one hand, the 
samples involved in our study is limited and clinical trials 
of large samples should be further conducted to evaluate 
the predictivity of the TMB-related signature. On the 
other hand, our study was lack of experiments in vitro or 
in vivo, which should be performed to verify the biological 
functions of six hub genes.

Conclusions

In summary, our study suggested that TMB was negatively 
correlated with lymph node metastasis in BC. A TMB-
related signature including six genes was further constructed 
and validated for predicting lymph node metastasis in BC, 
which may provide guidance for clinicians.
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