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Background: RNA binding proteins (RBPs) play an important role in a variety of cancers. However, 
their mechanisms in cancer progression are still limited especially in colorectal adenocarcinoma (COAD). 
Integrated analysis of RBPs will provide a better understanding of disease genesis and new insights into 
COAD treatment. 
Methods: The gene expression data and corresponding clinical information for COAD were downloaded 
from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was used to screen for 
RBPs associated with COAD recurrence, and multivariate Cox proportional hazards regression analyses were 
used to identify genes that were associated with COAD recurrence. A nomogram was constructed to predict 
the recurrence of COAD, and a receiver operating characteristic (ROC) curve analysis was performed to 
determine the accuracy of the prediction models. The Human Protein Atlas database was used in prediction 
models to confirm the expression of key genes in COAD patients. 
Results: A total of 177 differentially expressed RBPs was obtained, comprising 123 upregulated and 54 
downregulated. GO and KEGG enrichment analysis showed that the differentially expressed RBPs were 
mainly related to mRNA metabolism, RNA processing and translation regulation. Seven RBP genes (TDRD6, 
POP1, TDRD7, PPARGC1A, LIN28B, LRRFIP2 and PNLDC1) were identified as prognosis-associated genes 
and were used to construct the prognostic model. 
Conclusions: We constructed a COAD prognostic model through bioinformatics analysis and the 
nomogram can effectively predict the 1-year, 2-year, and 3-year survival rate for COAD patients.
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Introduction 

Colorectal cancer (CRC) is the third most frequently 
diagnosed malignancy and one of the leading causes 
of cancer-related mortality worldwide (1).  Colon 
adenocarcinoma (COAD) is a common type of CRC (2). 
Even with the significant progress that has been attained in 
recent COAD research, the data show that the morbidity 
and mortality rates of COAD are increasing (3). Findings 
have demonstrated that COAD can be successfully treated 
when identified at an early stage (4). In the pathogenesis 
of COAD, accumulation of genetic and epigenetic 
alterations transforms normal colonic epithelial cells to 
adenocarcinoma cells (5). Therefore, it is required to 
systematically study the genetic and epigenetic alterations 
in COAD to identify potential diagnostic markers and 
therapeutic targets.

RNA-binding protein (RBPs) regulates gene expression 
at the post-transcriptional level mainly through interaction 
with target RNA (6-8). A large number of studies have 
shown that RBPs participate in RNA metabolism and 
play an important role in the regulation of RNA stability, 
modification, localization, translation and alternative 
splicing (9,10). Moreover, a recent study found that RBPs 
can interact directly with chromatin to regulate gene 
expression at the epigenetic level (11).

Considering the extensive and important role of RBP in 
post-transcriptional regulation, changes in RBP expression 
will inevitably lead to the occurrence of various diseases. A 
total of 1,542 RBPs have been identified by high throughput 
screening in human cells, however, the role of these RBPs 
in the occurrence and development of COAD has not been 
examined (12).

In this study, we obtained COAD expression profile 
data through TCGA database. Through preprocessing 
and differential analysis of the data, we obtained RBPs 
that were differentially expressed in COAD patients and 
normal samples. Then, the Cox analysis was performed to 
determine the RBPs that are significantly related to COAD 
survival, and a COAD risk model was then constructed. 
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses of 
the risk model genes were then carried out to reveal the 
potential functional mechanism of RBPs in COAD. Finally, 
the expression level of the risk model genes was identified, 
and it was determined that some genes were appropriate 
for use as potential prognostic biomarkers. We present the 
following article in accordance with the TRIPOD reporting 

checklist (available at http://dx.doi.org/10.21037/tcr-21-40).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Patient and public involvement

The data of all cancer samples and normal samples in this 
study are from The Cancer Genome Atlas (TCGA), and all 
the data in this database is publicly available for anyone in 
the research community to use.

Dissemination policy

The results of the trial will be widely disseminated to health 
professionals, commissioners, policy-makers, colorectal 
adenocarcinoma (COAD) patient and the general public. 
The study results will be disseminated to a wide clinical 
audience through publication in a high-impact international 
scientific journal.

Identification of differentially expressed RBPs 

The transcriptome data and corresponding clinical 
information for 473 COAD samples and 41 normal samples 
were downloaded from TCGA. The transcriptome data 
were preprocessed using the Bioconductor-limma R  
package (13). False discovery rate <0.05 and |log2 fold 
change (FC)| ≥1 were used as the criteria for differential 
RPBs (DE-RPBs) screening. The average count value of all 
DE-RPBs was greater than 1.

GO and KEGG functional enrichment analyses

The biological functions of these DE-RPBs including 
molecular functions, biological processes and cellular 
components ,  were systematica l ly  s tudied by GO  
enrichment (14). The potential biological pathways of DE-
RPBs were detected using KEGG database (15). All GO 
and KEGG pathway enrichment analyses were carried out 
using the Bioconductor-cluster Profiler and enrichplot 
packages with a P value less than 0.05 (16).

PPI network construction and module screening 

START (https://string-db.org/) was used to detect the 

https://string-db.org/
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protein-protein interaction (PPIs) among all DE-RPBs, 
and the network was constructed using Cytoscape 3.8.0  
software (17). Then the subnetwork was selected from PPI 
network by using MCODE (Molecular Complex Detection) 
plugin and Cytoscape. P value <0.05 was considered 
significant.

Prognostic model construction and survival analysis

Univariate Cox regression analysis was used to evaluate the 
prognostic value of DE-RPBs. DE-RPBs related to overall 
survival time (P<0.05) was selected DE-RPBs related to 
overall survival time (P<0.05) was selected for subsequent 
analysis. A risk signature was formulated according to the 
multivariate Cox proportional hazards regression analyses. 
The risk-score for each COAD patient was calculated as 
follows: 

Risk-score = beta-gene1 × exp-gene1 + beta-gene2 × exp-
gene2 + beta-gene × exp-gene 

The samples were randomly divided into the train 
group and the test group, and the train group and the test 
group were divided into the high-risk group and the low-
risk group according to the middle risk value. Beta-gene 
represents the regression coefficient that derived from the 
multivariate Cox regression analysis. Exp-gene represents 
the expression of genes. 

Independent prognostic analysis

The patient’s age, gender, cancer stage, and other information 
was preprocessed and then integrated with the risk value. 
Then, single-factor and multi-factor independent prognostic 
analyses of the train group and test group were performed by 
utilizing the “survival” package in R (version 3.6.3).

Nomogram construction

A nomogram for individualized prediction of overall survival 
was generated based on the results of the multivariate 
analysis (Cox model) to predict 1-, 2-, and 3-year overall 
survival. The nomogram plots were generated using the 
“rms” package of R software (version 3.6.3). The total 
points were calculated, and the 1-, 2-, and 3-year patient 
survival rates were predicted based on the total points.

Prognostic model gene expression validation

The expression levels of prognostic model genes in COAD 

and normal samples were verified by the Human Protein 
Atlas (HPA) database. This is a web-based database that 
provides protein expression in normal samples, cancer 
samples, cells, and blood.

Statistical analysis

Most of the statistical analyses were performed using the 
bioinformatic tools mentioned above. When we conducted 
differential expression analysis, only RBPs with |log2 FC| 
≥1 and P<0.05 were considered as statistically significant. 
The univariate and multivariate Cox regression analyses 
were performed utilizing the “survival” package in R (version 
3.6.3). Cox P<0.05 was regarded as statistically significant 
for survival analysis. Boxplot generation were conducted 
using the R packages “ggplot2”, “ggpubr,” and “ggsignif”. 
A survival curve created using the R packages “survival” and 
“survminer” was utilized to estimate the differences in the 
overall survival between high-risk and low-risk COAD.

Results

Identification of differentially expressed RBPs

The transcriptome data and corresponding clinical 
information for 473 COAD samples and 41 normal samples 
were downloaded from TCGA. After preprocessing 
and difference analysis of the raw data of the 1,542  
RBPs (12), we found that there were 123 upregulated and 
54 downregulated RBPs (Figure 1A,B). 

GO and KEGG enrichment analysis of differentially 
expressed RBPs

In order to explore the function and molecular mechanism 
of these differentially expressed RBPs, we performed 
GO and KEGG enrichment analysis on upregulated 
and downregulated RBPs, respectively. Upregulated 
differentially expressed RBPs (UP-DE-RBPs) were 
significantly enriched in biological processes associated 
with ncRNA processing, RNA phosphodiester bond 
hydrolysis, and ribosome biogenesis. In the cellular 
component enrichment analysis, UP-DE-RBPs were 
significantly enriched in cytoplasmic ribonucleoprotein 
granule, ribonucleoprotein granule, and nucleolar part. 
The molecular function analysis showed that UP-DE-
RBPs were significantly enriched in catalytic activity, acting 
on RNA, ribonuclease activity, and translation regulator 
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activity (Figure 2A,B). Downregulated differentially 
expressed RBPs (DOWN-DE-RBPs) were significantly 
enriched in biological processes associated with defense 
response to virus, regulation of cytoplasmic translation, 
and regulation of translation. In cellular component 
enrichment analysis, DOWN-DE-RBPs were significantly 
enriched in endolysosome membrane, apical dendrite, and 
mitochondrial matrix. The molecular function analysis 
showed that DOWN-DE-RBPs were significantly 
enriched in mRNA 3'-UTR AU-rich region binding, AU-
rich element binding and mRNA 3'-UTR binding and  
(Figure 2C,D). In regard to the KEGG enrichment analysis, 
the UP-DE-RBPs were mainly enriched in ribosome 
biogenesis in eukaryotes, mRNA surveillance pathway, and 
RNA transport (Figure 2E,F). The DOWN-DE-RBPs 
were mainly enriched in progesterone-mediated oocyte 
maturation, oocyte meiosis, and hepatitis C (Figure 2G,H).

PPI network construction

In order to more clearly understand the mechanism of these 
DE-RBPs, we used the STRING database and Cytoscape 
software to construct a PPI network (Figure 3A). This PPI 
network contained a total of 145 nodes and 596 edges. Next, 
we used the plug-in MODE in Cytoscape to analyze the PPI 
network to identify the potential key subnetwork. Finally, 
we determined the first three important subnetworks. 

Subnetwork 1 included 21 nodes and 195 edges, subnetwork 
2 included 13 nodes and 38 edges, and subnetwork 3 
included 5 nodes and 10 edges. An overall analysis was 
conducted by integrating these three key subnetworks 
into a network (Figure 3B). The GO and KEGG analyses 
showed that the subnetwork 1 genes were mainly enriched 
in ncRNA processing, preribosome, snoRNA binding, and 
ribosome biogenesis in eukaryotes. The subnetwork 2 genes 
were significantly enriched in DNA alkylation, cytoplasmic 
ribonucleoprotein granule, and catalytic activity acting on 
RNA. The subnetwork 3 genes were significantly enriched 
in RNA splicing via transesterification reactions with bulged 
adenosine as nucleophile, perikaryon, and the mRNA 3'-
UTR AU-rich region binding.

Prognosis-related RBP screening

We conducted a univariate Cox regression analysis of 177 
differentially expressed RBPs and found that TDRD6, 
POP1,  TDRD7,  LUZP4,  PPARGC1A,  LIN28B, 
PABPC1L, LRRFIP2, ZC3H12C, RBM47, CELF4, and 
PNLDC1 were significantly related to survival (Figure 4A). 

Prognosis-related genetic risk score model construction and 
validation

To further determine the RBPs with the greatest potential 

Figure 1 Differentially expressed RBPs. (A) RBPs expression heat map. Red represents high expression, and green represents low expression. 
(B) RBPs expression volcano graph, red dot represents up-regulation, green dot represents down-regulation, and black dot represents no 
significant change in expression level. P value <0.05, |log2 fold change (FC)| ≥1. RBP, RNA binding protein.
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Figure 2 GO and KEGG pathway enrichment analyses. (A,B) BP, CC and MF enrichment analysis of upregulated differentially expressed 
RBPs. (C,D) BP, CC and MF enrichment analysis of downregulated differentially expressed RBPs. (E,F) KEGG enrichment analysis of 
upregulated differentially expressed RBPs. (G,H) KEGG enrichment analysis of downregulated differentially expressed RBPs. The abscissa 
of A, E, E, G bar graph is the number of genes enriched in GO, and the abscissa of B, D, F, H bubble chart is the ratio of the number of 
genes that are enriched in the KEGG pathway to the differentially expressed RBPs. RBP, RNA binding protein.

A

F

B

G

C

H

D

E



1967Translational Cancer Research, Vol 10, No 5 May 2021

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(5):1962-1974 | http://dx.doi.org/10.21037/tcr-21-40

prognosis ability, multivariate Cox regression analyses were 
used to identify seven RBPs: TDRD6, POP1, TDRD7, 
PPARGC1A, LIN28B, LRRFIP2, and PNLDC1. The 
seven RBPs were analyzed and used to construct a predictive 
model (Figure 4B). The formula for calculating the risk-
score of COAD patient is as follows:

Risk-score = (-1.9076×ExpTDRD6) + (-0.5828×ExpPOP1) 
+ (-0.6433×ExpTDRD7) + (-0.5888×ExpPPARGC1A) 
+ (1.2823×ExpLIN28B) + (-0.8568×ExpLRRFIP2) + 
(0.3925×ExpPNLDC1)

In order to evaluate the predictive ability of the model, 
we randomly divided 446 samples of COAD patients with 
detailed survival information into two groups, namely the 
train group and the test group. At the same time, we divided 
the train group and the test group into high-risk and low-
risk groups according to the median risk score for survival 
analysis. In the train and test groups, patients in the high-
risk group exhibited a significantly lower overall survival 
rate than low-risk group (Figure 4C,D). Then, we performed 
a time-dependent receiver operating characteristic (ROC) 
analysis to further evaluate the prognostic accuracy of this 
model. The AUC of the ROC curve for overall survival in 
the train and test groups was 0.715 and 0.681, respectively 
(Figure 4E,F). The risk-score, survival status, and expression 
heatmap of patients in the train and test groups are shown 
in Figure 5. 

Independent prognostic analysis

In order to further explore the independent prognostic 
factors of COAD, we integrated the patient’s age, gender, 
cancer stage, risk value, and other information, and 
conducted single-factor and multi-factor independent 
prognostic analyses on the train group and the test group, 
respectively. The results are shown in Figure 6A,B. In the 
single-factor independent prognostic analysis of the train 
group and the test group, the P value of age and cancer 
stage was less than 0.05, indicating that these two factors 
are significantly related to the survival of COAD patients. 
In the multi-factor independent prognostic analysis, the P 
value of age and cancer stage was less than 0.05, indicating 
that these two factors can be used as independent prognostic 
factors for COAD patients. 

Nomogram construction

In order to more accurately predict the survival rate of 
COAD patients, we constructed a nomogram using the 
expression levels and points of model genes (Figure 7). 
By corresponding to the expression level and score of 
the Cox model genes, the total points of the patient can 
be calculated. Based on the total points, the patient’s 
predicted 1-, 2-, and 3-year survival rates are intuitively 
displayed.

A B

Figure 3 PPI network and module analysis. (A) PPI network for RBPs. (B) Subnetwork 1, 2 and 3 in PPI network. Red means up-regulation, 
green means down-regulation, and connections represent interactions. PPI, protein-protein interaction; RBP, RNA binding protein.
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Figure 4 Survival analysis and risk model. (A) Univariate Cox regression analysis found RBPs that were significantly associated with survival. 
(B) Multivariate Cox proportional hazards regression analyses construct risk models. (C) Survival curves of patients in the high-risk group 
and low-risk group in the train group. (D) Survival curves of patients in the high-risk group and low-risk group in the test group. (E) ROC 
curves of the train group. (F) ROC curves of the test group. RBP, RNA binding protein.
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Figure 5 Risk score and expression analysis of seven-gene prognostic model. (A) Risk score of patients in the train group. (B) Risk score of 
patients in the test group. (C) Survival status of patients in the train group. (D) Survival status of patients in the test group. (E) Expression 
heatmap of the seven RBPs in the train group patients. (F) Expression heatmap of the seven RBPs in the test group patients. RBP, RNA 
binding protein.

Figure 6 Independent prognostic analysis. (A) Single-factor independent prognostic analysis. (B) Multi-factor independent prognostic 
analysis.
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Prognostic model gene expression validation

In order to further confirm the expression of key genes 
in COAD patients in the risk model, we used the Human 

Protein Atlas database to search for the expression of these 

seven genes. It was found that TDRD6, TDRD7, LIN28B, 

LRRFIP2, and PNLDC1 were significantly increased in 
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COAD patients (Figure 8). At present, the database does 
not contain data related to POP1 or PPARGC1A protein 
expression.

Discussion

COAD is a noncutaneous carcinoma that is common 
worldwide with high morbidity and mortality. Effective 
prevention methods are clearly underutilized. Both 
diagnostic and prognostic models that can precisely and 
accurately predict the status and survival time of COAD 
are urgently needed. In the field of COAD, there have been 
limited studies on molecular biomarkers that can predict 
disease status and prognosis (18). Through Cox analysis of 
TCGA COAD expression profile data, we constructed a risk 
model for seven genes, conducted a series of bioinformatics 
analyses on the basis of the risk model, and finally identified 
new diagnostic and prognostic markers for COAD.

The GO and KEGG enrichment analyses of these DE-
RBPs showed that the UP-DE-RBPs were significantly 
enriched in RNA phosphodiester bond hydrolysis, RNA 
catabolic process, RNA stabilization, and translation 
regu la tor  ac t i v i ty.  The  DOWN-DE-RBPs  were 
significantly enriched for regulation of mRNA processing, 
regulation of mRNA metabolic process, RNA splicing, 
and mRNA 3'-UTR binding. Previous experiments 
have shown that RNA splicing, processing, localization, 

transport, and stability are directly related to the occurrence 
of COAD (19,20). Circular RNAs (circRNAs) and micro 
RNAs (miRNAs) are the most common products of RNA 
splicing, and a large number of studies have also shown that 
they play an important role in the occurrence of COAD  
(21-24). Previous experiments have shown that circRNA 
can specifically bind to RBP, which in turn affects the 
occurrence of disease (25,26). Therefore, we predict that 
these differentially expressed RBPs may intentionally bind 
with circRNA, thereby affecting the occurrence of COAD. 
The interaction between risk model genes and circRNA and 
its mechanism of action in COAD will be studied in follow-
up work.

Subsequently, we used univariate Cox regression analysis 
to identify twelve RBPs that were significantly associated 
with COAD survival. Then, these were gradually reduced 
to seven using multivariate Cox regression analysis, and 
were subsequently used to construct a COAD risk model. 
The P values of the survival curves of the train group and 
the test group are both less than 0.01, indicating that there 
is a significant survival difference between the high-risk 
group and the low-risk group. This indicates that our risk 
model can be used to predict the prognosis of COAD. The 
ROC curve of the risk model shows that our model has 
better prediction accuracy (train group AUC =0.715 and 
test group AUC =0.681). 

The COAD nomogram we constructed can predict 1-, 2-, 

Figure 7 Nomogram to predict 1-, 2- and 3-year overall survival in the COAD patient.
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and 3-year overall survival of COAD patients. According 
to the results of the model, the higher the score mean the 
lower overall survival, which provides important warning 
information for the treatment of patients. The genes in the 
nomogram can be used as the best target for our further 
study of the pathogenesis of COAD.

Finally, we conducted an immunohistochemical 
prediction of the expression levels of seven genes in the 
risk model and found that TDRD6, TDRD7, LIN28B, 
LRRFIP2, and PNLDC1 were significantly increased 
in  COAD pat ients  compared with  normal  colon 
tissue. Because the database has not yet included the 
immunohistochemical data of POP1 and PPARGC1A, we 
cannot ascertain the difference in expression between the 
two in patients and normal samples. The heat maps of the 
expression of these seven genes in the high-risk and low-
risk groups of the training and test groups showed that high 
expression of TDRD6, TDRD7, LRRFIP2, PNLDC1, 
POP1, and PPARGC1A was associated with a good 
prognosis in patients with COAD, whereas that of LIN28B 
was related to poor prognosis. 

LIN28B is highly expressed in primary tumors and 
various cancer cell lines, and numerous experiments 
have shown that LIN28B plays an important role in the 
occurrence of cancer (27-31). Studies have shown that 
high expression of LIN28B can promote the occurrence of 
COAD, cancer cell migration, and drug resistance (32,33). 
TDRD6, TDRD7, LRRFIP2, PNLDC1, POP1, and 
PPARGC1A are involved in RNA splicing and stability, 
but no previous studies have proved their relationship with 
COAD. Studies have shown that RBP can participate in 
the regulation of mRNA alternative splicing, regulation 
of mRNA stability and regulation of mRNA translation, 
thereby promoting the occurrence of cancer (34-36). 
Other studies have shown that RBP can play an anti-
tumor effect by reducing the stability of the mRNA of anti-
apoptotic proteins and inflammatory factors (37,38). These 
pathways cause different RBPs to play an antagonistic 
role in the occurrence of cancer. Our research provides a 
risk prediction model for COAD and also provides a new 
direction for in-depth study of the pathogenesis of COAD.

Although we performed detailed bioinformatics analyses 
on the expression data of TCGA COAD patients and 
normal samples, provided new prognostic indicators, 
and generated a COAD-RBPs-risk model, there are still 
deficiencies associated with the current study. First, the 
data are all from the TCGA database, and the sample data 
still requires further expansion. Second, we only analyzed 

the expression data, and after synthesizing other types of 
data, different situations may occur. Finally, we have not yet 
carried out experimental verification of the research results, 
which will be the focus of our follow-up research.

Conclusions

In conclusion, our comprehensive bioinformatics analysis 
examined the key RBP modules specifically associated with 
the overall survival of COAD patients. The constructed 
prognostic model and nomogram exhibited good predictive 
accuracy with regard to survival of COAD and these RBP 
genes could be used in clinical adjuvant treatments.
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