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Background: This study applied a complex bioinformatics analysis to explore the hub regulators and immune 
network to further elucidate the molecular mechanisms of lung adenocarcinoma (LUAD) immune regulation.
Methods: LUAD immunological microenvironment features and microenvironment-related differential 
expression genes (DEGs) were identified by ESTIMATE algorithm and linear models for microarray 
analyses (LIMMA), respectively. CIBERSORT and Igraph algorithms were applied to construct the LUAD-
related immunocyte infiltration and regulatory network. Kaplan-Meier survival analysis, and univariate and 
multivariate Cox analysis were used to predict independent risk factors and screen for the hub genes. In 
addition, hub genes-correlated gene set enrichment analysis (GSEA), tumor mutation burden (TMB), and 
clinic pathological relation analyses were also performed. 
Results: Stromal, immune, and microenvironment comprehensive features (ESTIMATE score) were 
associated with overall survival (OS) in LUAD patients (all, P<0.05). T-cell activation, chemokine 
activity, and immune effect or dysfunction gene ontology maps were associated with the LUAD immune 
microenvironment. The immune infiltration cell subtypes mast cells (masT-cells) resting [The Cancer 
Genome Atlas (TCGA): P=0.01; Gene Expression Omnibus (GEO): P=1.79e−05] and activated T-cells 
(CD4 memory) (TCGA: P<0.01; GEO: P=8.52e−05) were found to have an important role in the immune 
cell regulatory network. Finally, ITGAL [univariate hazard ratio (HR) =0.80, 95% confidence interval (CI): 
0.69–0.93, P<0.01; multivariate HR =0.59, 95% CI: 0.40–0.86, P=0.01] and KLRB1 (univariate HR =0.78, 
95% CI: 0.69–0.89, P<0.01; multivariate HR =0.72, 95% CI: 0.58–0.90, P<0.01) were correlated with the 
T-cell receptor signaling pathway and anaplastic lymphoma kinase (ALK) fusion (ITGAL: P=0.034; KLRB1: 
P=0.050), and were considered as candidate biomarkers. A significant relation between KLRB1 expression 
level and TMB (P=3.6e−05) was identified, while no relation was detected for ITGAL (P=0.11).
Conclusions: The T-cell activation and activated T-cell (CD4 memory) pathways were predominantly involved 
in LUAD immune microenvironment regulation. The expression levels of ITGAL and KLRB1 were significantly 
correlated with the T-cell receptor signaling pathway and LUAD TMB, and were independent risk factors for OS. 
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Introduction

Lung cancer is a relatively common malignancy, and global 
cancer statistics indicate that the incidence is increasing 
yearly (1,2). In the United States in 2019 there were 
approximately 116,000 newly diagnosed lung cancers in 
females and 112,000 in males (1). However, with advances 
of medical technology, delay-adjusted incidence rates in 
males decreased 2.9% from 2008 to 2015, and decreased 
1.5% in females from 2006 to 2015 (3). Mortality rates 
also decreased for lung cancer patients: from 2012 to 2016 
the mortality rate decreased 4.3% for males and 3.1% for 
females (1). In countries with more advanced healthcare and 
education systems, there has been a decline in the incidence 
of new lung cancer cases of about 3% annually from 2008 
through 2016. In addition, data has suggested that lung 
cancer-specific survival has improved in large part due to 
advances in immune-targeted treatments (4).

The use of immunotherapies, including those targeted at 
anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4)  
and programmed death-1 (PD-1)  and i ts  l igands  
(PD-L1 and PD-L2), has become an important treatment 
for many solid tumors, including lung cancer. Nishio  
et al. demonstrated that treatment with pembrolizumab, 
a humanized monoclonal antibody against PD-1, was 
well-tolerated and improved progression-free survival 
(PFS) and overall survival (OS) in Japanese patients (5). 
Quoix et al. reported that treatment with TG4010, an 
immunosuppressive agent targeting CD16, CD56, and 
CD69 triple-positive activated lymphocytes (TrPAL), 
combined with chemotherapy, improved PFS of patients 
with advanced non-small cell lung cancer (NSCLC) (6). 
Hui et al. also reported that pembrolizumab improved long-
term OS in patients with advanced NSCLC (7). 

Emerging evidence has revealed a close relation between 
immune system dysfunction and NSCLC, and immune 
checkpoint inhibitors are considered as a second-line treatment 
option for patients who have failed chemotherapy (8).  
However, the significant heterogeneity had revealed 
between the lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC) in term of their genomic 
and clinical attributes. For example, the subtype and 
prediction model constructed based on gene expression can 
accurately assess the response to the checkpoint of CD274 
(programmed death ligand 1) in patients with LUSC and 
LUAD (9). Studies of the effectiveness of immunotherapies 
have shown the importance of interactions between the 
tumor microenvironment and cancer cell heterogeneity (10).  
Identifying the truly cancer-specific biomarkers or 

neoantigens can help to elucidate the immune adaptation, 
cancer cells escape, and thus is important to develop the 
individualized therapy. Especially, LUAD can be considered 
as a treatable cancer if targeting to the driver biomarkers (3).

Thus, this study applied a complex bioinformatics 
analysis to explore the hub regulators and immune network, 
and to further elucidate the molecular mechanisms of 
LUAD immune regulation.

Methods

Analysis of LUAD immunological microenvironment 
features

In order to determine tumor purity and the degree of 
immune infiltration, the ESTIMATE algorithm (https://
bioinformatics.mdanderson.org/estimate/) and gene 
expression signatures was used (11). The algorithm 
calculates a stromal and immune score of each tissue sample 
which predicts tumor stromal and immune infiltration, and 
then produces the ESTIMATE score, a comprehensive 
score reflecting the tumor microenvironment, which reflects 
the  tumor purity (11). The RNA-seq fragments per kilobase 
of exon per million fragments mapped reads (FPKM) from 
The Cancer Genome Atlas (TCGA)-LUAD project were 
downloaded using the R Package “TCGA biolinks” (12).  
Raw Affymetrix microarray data of GSE31210 was 
downloaded from Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) (13). The download included 
data of 246 tumor samples, including 11 ALK fusion tumor 
samples, 20 KRAS mutation samples, 127 epidermal growth 
factor receptor (EGFR) mutation samples, and 68 EGFR/
KRAS/ALK- tumor samples. In addition, the GSE31210 
dataset matching the GPL570-Affymetrix Human Genome 
U133 plus 2.0 Array platform (Affymetrix, Santa Clara, CA, 
USA) was also downloaded. For each sample, the stromal 
score, immune score, and TCGA-LUAD and GSE31210 
estimated scores were calculated using the ESTIMATE 
algorithm in the “ESTIMATE” R package. Kaplan-Meier 
survival analysis using the stromal, immune, and ESTIMATE 
scores was performed using the “survminer” package, and an 
optimal cutoff point for each variable was calculated using the 
“maxstat” algorithm. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Data processing and identification of co-differentially 
expressed genes

Based on the cutoff point of ESTIMATE score, TCGA-

https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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LUAD and GSE31210 tumor samples were divided 
into a higher risk group and a lower risk group. In order 
to facilitate comparative analysis, FPKM data were 
transformed into transcripts per kilobase million (TPM) 
(14,15), using the formula:

6FPKMTPM 10
FPKMi

j

i
j

 
 = ×
 
 ∑

 [1]

where i is total exon fragments and j is mapped reads. 
Differential expression analysis of TPM normalized 
TCGA-LUAD data was performed using the “DESeq2” 
R package (16). Raw GSE31210 data were subjected 
to background correction, quantile normalization, and 
Log2 transformation of the expression level, then a linear 
model for microarray analyses (LIMMA) algorithm was 
used to identify differential expressed genes (DEGs) (17). 
Importantly, the raw data were background-adjusted, 
normalized, and log-transformed using the robust multi-
array average (RMA) method, and missing values in the 
microarray dataset were calculated using the K-Nearest 
Neighbor (KNN) classifier method. For multiple probes 
mapped to the same gene symbol, the average value was 
considered the gene expression value (17,18). For statistical 
effectiveness, the P value of the false discovery rate (FDR) 
was adjusted using the Benjamini-Hochberg method, and 
subsequently used to detect the gene expression fold-change 
(FC). In this study, genes satisfying the standard criterion 
of |log2FC| >1.5 and adjusted P value <0.05 in both 
the TCGA-LUAD project and microarray dataset were 
consider DEGs (16-18). Venn diagrams were drawn, and 
intersections of DEGs from the TCGA-LUAD project and 
microarray dataset were considered co-DEGs.

Gene function enrichment analysis

Gene Ontology (GO) functional enrichment analysis 
was performed using “GO plot”, “Annotation Hub”, 
and “Cluster Profiler” of the R package (19,20). These 
components of R package allow extraction of biological 
process (BP), molecular function (MF), and cellular 
composition (CC) among DEGs from large lists of genomic 
studies and databases (19,20). GO terms associated with 
a value of P<0.05 were considered to be significantly 
enriched.

After the identification of co-DEGs, extensive functional 
enrichment analysis was performed using the Metascape 
online database tool (http://metascape.org/gp/index.

html#/main/step1) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway networks were constructed 
using cutoff criteria of P<0.05 and enrichment score (ES) 
>3.0 (21). Cytoscape software (V3.5.1; http://cytoscape.
org/) was used to visualize and evaluate interactions of the 
KEGG pathway networks (22). 

Identification of candidate biomarkers

After extracting enriched genes from significant KEGG 
pathways, an automatic Kaplan-Meier survival analysis 
based on the “maxstat” algorithm was performed to 
visualize and evaluate prognostic effects and identifying 
the hub gene for the subsequent analysis. Genes enriched 
in KEGG pathway networks with a survival analytical 
P<0.05 were considered candidate genes. Univariate and 
multivariate Cox regression analyses were used to examine 
the associations of candidate genes combined with clinical 
and pathological factors (stromal score, immune score, 
ESTIMATE score, pathological stage, smoking history, 
primary tumor, lymph node status, distant metastasis status) 
and OS of patients from the TCGA-LUAD database. 
Different from the Kaplan-Meier survival log-rank test, 
Cox regression analysis allows predicting the effect (hazard) 
of risk variables as follows: H (t) = H0 (t) × exp(b1X1 + b2X2 + … 
+ bkXk). Here, X1 ... Xk are considered as predictor variables, 
and H0 (t) is the baseline effect at the time point t. Factor 
with a value of P<0.05 were defined as significant risk 
factors. 

Immunocyte infiltration and regulatory network analysis

To characterize the prognosis associated with LUAD 
immune cell subsets, CIBERSORT estimate software 
was used to quantify the immune cell fractions of the 
gene expression matrices derived from LUAD samples. 
The advantage of the CIBERSORT algorithm is that is 
uses the ν-support vector regression (ν-SVR) method to 
reduce data noise from high-dimensional genomic matrices 
owing to multicollinearity, and thus accurately captures 
the infiltration of various immune cell subtypes (23). 
Subsequently, an automatic Kaplan-Meier survival analysis 
of immune cell subtypes was constructed to detect the 
cell populations significantly associated with survival and 
prognosis. To increase the credibility of the results, analyses 
were performed using immune cell subsets from TCGA-
LUAD and GEO-LUAD tissue expression profiles, and 
common immune cell subtypes with a significant prognostic 

http://metascape.org/gp/index.html#/main/step1
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value were extracted. Spearman correlation analysis was 
used to examine correlations of immune cell subtypes, and 
P values were calculated. Based on the correlation values, 
immune cell association networks were constructed using a 
graph algorithm (Igraph; https://github.com/igraph).

Gene set enrichment analysis (GSEA) and detection of 
tumor mutation burden (TMD)

GSEA, based on Molecular Signature Database gene sets, 
was performed to identify hub gene correlated regulatory 
pathways involved in LUAD pathogenesis. Here, GSEA 
analysis stratified by the cut-point of each hub gene 
expression level calculated by the “maxstat” algorithm. 
Based on weighted Kolmogorov-Smirnov-like statistics, ES 
and normalized enrichment scores (NES) were calculated to 
reflect the correlation of gene sets with phenotype (24).

To gain further insight into the TMB involved in LUAD 
pathogenesis in response to hub genes expression, somatic 
mutation analysis was performed based on the Wilcoxon 
signed-rank test. The somatic variants of TCGA-LUAD 
567 tumor samples were obtained from “TCGA biolinks” 
as the raw mutation count. For estimates, the files were 
aligned to the genome of hg38 GRCh38 (25).

Validation of hub gene expression and clinical-pathological 
variables

The expression profiling of TCGA-LUAD with the 
different levels of the immune score, stromal score, and 
ESTIMATE score were used to validate the candidate 
biomarkers; the KRAS/EGFR mutation, pathological 
stage, and tissue differential expression. In addition, hub 
gene expression levels and corresponding clinical features 
associated with ALK fusion and KRAS/EGFR mutations 
were extracted from the GSE31210 dataset and included in 
further differential analysis.

Statistical analysis

To sum up the statistical methods being mentioned in 
previous analyses. No descriptive statistics were used. 
Kaplan-Meier survival analysis and log-rank test was used 
to compare the OS among subgroups stratified by a single 
variable. Univariate and multivariate Cox proportional 
hazards models were used to investigate factors associated 
with OS. All independent variables were entered into both 
univariate and multivariate models, and variables which 

were significant in both univariate and multivariate models 
were considered factors associated with OS, and associations 
were reported as hazard ratio (HR) and 95% confidence 
interval (CI). Pearson and Spearman correlation coefficients 
were calculated, and used to determine the degree of 
correlation between variables. For the GSEA analysis, ES, 
NES, FDR, and q-value were reported. The statistical 
significance level for all tests was set at a two-tailed value 
of P<0.05. All analyses were done using R version 3.5.2 
statistical software.

Results 

LUAD immunological microenvironment features

Kaplan-Meier survival analyses were performed using TCGA-
LUAD and GEO-LUAD data for determination of LUAD 
microenvironment score (table available at: https://cdn.
amegroups.cn/static/public/tcr-20-2275-1.pdf) (Figure S1). 
The results showed that immunological microenvironment 
features including the stromal score (TCGA: HR =0.65, 
P=0.003; GEO: HR =1.63, P=0.151), immune score (TCGA: 
HR =0.58, P<0.001; GEO: HR =1.96, P=0.048), and 
ESTIMATE score (TCGA: HR =0.65, P=0.003; GEO: 
HR =1.83, P=0.046) were positively correlated with a better 
prognosis of patients with LUAD (Figure 1A,B). 

Differential microenvironment score-related differential 
gene detection

Based on the cutoff points using ESTIMATE score and 
prognostic information, and Linear Models for Microarray 
Data (LIMMA) powers differential expression analyses,  
250 DEGs (7 down-regulated, 243 up-regulated) were 
identified in the comparison between higher ESTIMATE 
score and lower ESTIMATE score samples in TCGA-LUAD 
patients. In GEO-LUAD patients, 511 DEGs were identified 
(102 down-regulated, 409 up-regulated) (Figure 1C,D  
and table available online: https://cdn.amegroups.cn/static/
public/tcr-20-2275-2.pdf). 

DEG functional enrichment analysis

The GO enrichment analysis results of DEGs identified in 
the TCGA-LUAD group are as follows: (I) with respect to 
ESTIMATE score-related DEGs, the BP maps included 
T-cell activation (gene count =46; P=3.20e−27), leukocyte 
cell-cell adhesion (gene count =36; P=4.03e−25), and 
regulation of leukocyte cell-cell adhesion (gene count =33; 

https://github.com/igraph
https://cdn.amegroups.cn/static/public/tcr-20-2275-1.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-1.pdf
https://cdn.amegroups.cn/static/public/TCR-20-2275-supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-2.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-2.pdf
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P=2.20e−23). Based on the BP network, 3-block clusters of 
T-cell activation related to immune inflammatory response, 
leukocyte proliferation, and regulation of immune effectors 
processes were detected. (II) The MF maps of significantly 
enriched in immune microenvironment-related DEGs 
included chemokine activity (gene count =12; P=2.79e−13), 
chemokine receptor binding (gene count =13; P=5.76e−13), 
and signaling pattern recognition receptor activity (gene 
count =8; P=7.77e−08). (III) The CC maps of significantly 
enriched in immune microenvironment-related DEGs 
included the external side of the plasma membrane (gene 
count =44; P=3.78e−33), specific granule (gene count 
=14; P=3.10e−09), and collagen trimer (gene count = 8; 
P=5.54e−06) (Figure 2A,B,C and table available online: 
https://cdn.amegroups.cn/static/public/tcr-20-2275-3.pdf).

In summary, the DEGs analysis indicated that immune 
microenvironment-related DEGs are predominantly 
involved in the regulation of T-cell activation, chemokine 
activity, and immune effector dysfunction.

Identifying candidate biomarkers from immunological 
microenvironment feature

A total of 83 co-DEGs were identified in the TCGA-
LUAD and GEO-LUAD groups (Figure 2D). Metascape 
analysis indicated that the primary areas of enrichment 
were immunodeficiency (gene count =4; P=8.0e−06), cell 
adhesion molecules (CAMs) (gene count =7; P=7.0e−07), 
NF-kappa B signaling pathway (gene count =6; P=2.0e−05), 
tumor necrosis factor (TNF) signaling pathway (gene count 
=3; P=0.002), and chemokine signaling pathway (gene 
count =12; P=1.0e−12) (Figure 2E). A visualization of the 
significant interactions among these pathways is shown 
in table available online: https://cdn.amegroups.cn/static/
public/tcr-20-2275-4.pdf.

A total of 36 co-DEGs considered key regulatory 
genes were identified in the KEGG pathway enrichment 
network results (P<0.05 and ES >3.0). To access potential 
biomarkers targeting immunological microenvironment 
feature and their value for predicting survival LUAD, we 
performed Kaplan-Meier survival analysis using TCGA-
LUAD data. Eight genes were found to be significantly 
correlated with prognosis: tyrosine-protein kinase (ITK; HR 
=1.34, P=0.046), neutrophil cytosol factor 1 (NCF1; HR 
=1.4, P=0.028), macrophage receptor (MARCO; HR =1.49, 
P=0.007), cytokine receptor common subunit beta (CSF2RB; 
HR =1.37, P=0.031), integrin alpha-L (ITGAL; HR =1.41, 
P=0.019), killer cell lectin-like receptor subfamily B member 

1 (KLRB1; HR =1.39, P=0.026), chemokine ligands-11 
(CCL11; HR =0.71, P=0.03), and v-set and immunoglobulin 
domain-containing protein-4 (VSIG4; HR =1.41, P=0.039) 
(Figure 3). 

Univariate and multivariate Cox regression analysis was 
performed to identify variables associated with OS, the 8 
candidate genes, and clinicopathological characteristics 
in the TCGA-LUAD group. Significant factors included 
pathologic stage (univariate HR =1.64, 95% CI: 1.40–1.92, 
P<0.01; multivariate HR =1.61, 95% CI: 1.04–2.49, 
P=0.03), pathological tumor stage (univariate HR =1.72, 
95% CI: 1.39–2.13, P<0.01; multivariate HR =1.48, 95% 
CI: 1.10–1.89, P<0.01), ITGAL (univariate HR =0.80, 
95% CI: 0.69–0.93, P<0.01; multivariate HR =0.59, 95% 
CI: 0.40–0.86, P=0.01), and KLRB1 (univariate HR =0.78, 
95% CI: 0.69–0.89, P<0.01; multivariate HR =0.72, 95% 
CI: 0.58–0.90, P<0.01) (Table 1). As the hub genes, ITGAL 
higher expression was significantly correlated with poorer 
OS (HR =1.41; 95% CI: 1.05–1.89; P=0.019), as was KLRB1 
higher expression (HR =1.39; 95% CI: 1.03–1.86; P=0.026) 
(Figure 3). 

Construction of the immune cell regulatory network

After filtering the relative values of immune cell infiltration, 
supervised clustering analysis was applied to all TCGA-
LUAD and GEO-LUAD samples. The comprehensive 
landscape interactions of tumor-immune regulatory 
networks involved in OS and Pearson correlation analysis 
coefficient are calculated according to the HR and weighted 
coefficient index from the comprehensive evaluation. 
The distinct subtypes involved in ESTIMATE score and 
landscape interactions are illustrated in plots for the TCGA-
LUAD group (Figure 4A,B) and GEO-LUAD group  
(Figure 4C,D). Based on the effects on the OS of TCGA-
LUAD and GEO-LUAD patients, key regulators were 
found to be infiltration subtypes of mast T-cells resting 
(TCGA-LUAD HR =0.66, 95% CI: 0.42–1.01, P=0.038; 
GEO-LUAD HR =0.34, 95% CI: 0.17–0.68, P=0.008), 
and activated T-cells (CD4 memory) (TCGA-LUAD HR 
=1.55, 95% CI: 1.05–2.29, P=0.026; GEO-LUAD HR =2.3, 
95% CI: 1.17–4.52, P=0.017) (Figure 4E,F; Figure S1). In 
addition, immune infiltration subtypes mast cells (masT-
cells) resting (TCGA-LUAD HR =0.01, 95% CI: 0.01–3.04, 
log-rank P=0.01, weighted coefficient index =1.97; GEO-
LUAD HR =1.88e−07, 95% CI: 5.07e−13 to 0.07, log-
rank P=1.79e−05, weighted coefficient index =4.75), and 
activated T-cells (CD4 memory) (TCGA-LUAD HR 

https://cdn.amegroups.cn/static/public/tcr-20-2275-3.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-4.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-4.pdf
https://cdn.amegroups.cn/static/public/TCR-20-2275-supplementary.pdf
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Figure 2 Detection of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway network with regards 
to LUAD immunological microenvironment. (A,B,C) The terms, including biological process (BP), molecular function (MF), and cellular 
composition (CC), were analyzed by the GO plot algorithm based on TCGA-LUAD DEGs. The bar color represents the absolute value 
of fold-change, the size of the dots represents the gene counts of enriched terms. (D) Venn diagram illustrating the co-DEGs among the 
TCGA-LUAD and GEO-LUAD DEGs. (E) The KEGG pathway network was identified using the MetaScape database. The size of the 
dots represents the enrichment score. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; GEO, Gene Expression Omnibus.
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Figure 3 The Kaplan-Meier survival analysis of candidate genes for TCGA-LUAD dataset. Eight genes (ITK, NCF1, MARCO, CSF2RB, 
ITGAL, KLRB1, CCL11, and VSIG4) were significantly correlated with LUAD patient prognosis. TCGA, The Cancer Genome Atlas; 
LUAD, lung adenocarcinoma.

Survival analysis: to identify the hub genes from pathway enriched genes
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ITGAL       >9.48 (231)     <9.48 (274)       KLRB1        >6.43 (226)     <6.43 (279)        CCL11      >5.19 (182)     <5.19 (323)        VSIG4       >8.76 (345)       <8.76 (160)
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P=0.046
Hazard ratio =1.34
95% CI: 0.99−1.82

P=0.019
Hazard ratio =1.41
95% CI: 1.05−1.89

P=0.026
Hazard ratio =1.39
95% CI: 1.03−1.86

P=0.03
Hazard ratio =0.71
95% CI: 0.52−0.95

P=0.039
Hazard ratio =1.41
95% CI: 1.04−1.92

P=0.028

Hazard ratio =1.4

95% CI: 1.01−1.94

P=0.007

Hazard ratio =1.49

95% CI: 1.09−2.04

P=0.031

Hazard ratio =1.37

95% CI: 1.02−1.84

=896.32, 95% CI: 0.59–1,372,396.37, log-rank P<0.01, 
weighted coefficient index =4.16; GEO-LUAD HR =0.40, 
95% CI: 0.01–5945.07, log-rank P=8.52e−05, weighted 
coefficient index =4.07) were also found to have important 
effects on the LUAD-related immune cells interaction 
network (table available online: https://cdn.amegroups.cn/
static/public/tcr-20-2275-5.pdf). 

GSEA and detection of TMB

GSEA of low- and high-expression levels of ITGAL and 
KLRB1 revealed the following: (I) the maps of the T-cell 
receptor signaling pathway (ES =0.75, NES =2.19, FDR 
q-value =0.013) and B-cell receptor signaling pathway (ES 
=0.7, NES =2.1, FDR q-value =0.011) were correlated with 
higher ITGAL expression, while the citrate cycle TCA 
cycle (ES =−0.62, NES =−2.05, FDR q-value =0.023) and 
RNA polymerase (ES =−0.59, NES =−1.97, FDR q-value 
=0.024) were correlated with lower ITGAL expression. 
(II) The maps of T-cell the receptor signaling pathway 

(ES =0.73, NES =2.07, FDR q-value =0.018) and FC 
epsilon Ri signaling pathway (ES =0.67, NES =2.04, FDR 
q-value =0.027) correlated with higher KLRB1 expression, 
while the excision repair (ES =−0.65, NES =−1.96, FDR 
q-value =0.047) and splice some (ES =−0.48, NES =−1.89, 
FDR q-value =0.040) were correlated with lower KLRB1 
expression (Figure 5A; table available online: https://cdn.
amegroups.cn/static/public/tcr-20-2275-6.pdf). Thus, 
based on the overall results of GO enrichment, immune 
cell regulatory network, and GSEA analyses, the map of 
the T-cell receptor signaling pathway was selected as the 
most important regulatory pathway. The expression level of 
enriched genes (including ITGAL and KLRB1) in the T-cell 
receptor signaling pathway are shown in Figure 5B.

TMB has been reported as a clinically validated 
biomarker involved in anti-tumor immunity that drives 
T-cell responses. As shown in Figure 5C and table available 
online: https://cdn.amegroups.cn/static/public/tcr-20-2275-
7.pdf, there was a significant difference between KLRB1 
higher expression and lower expression (P=3.6e−05), while 

https://cdn.amegroups.cn/static/public/tcr-20-2275-5.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-5.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-6.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-6.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-7.pdf
https://cdn.amegroups.cn/static/public/tcr-20-2275-7.pdf
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Table 1 Univariate and multivariate Cox regression analysis of factors associated with overall survival in LUAD patients

Variable
Univariate regression Multivariate regression

HR (95% CI) P value HR (95% CI) P value

Age 0.95 (0.67–1.35) 0.79 1.27 (0.87–1.84) 0.22 

Pathological stage 1.64 (1.40–1.92) <0.01 1.61 (1.04–2.49) 0.03

Smoking history 1.05 (0.90–1.23) 0.50 1.09 (0.92–1.30) 0.31 

Pathological metastasis 2.00 (1.12–3.56) 0.02 0.58 (0.20–1.72) 0.32 

Pathological lymph node 1.78 (1.46–2.18) <0.01 1.15 (0.80–1.66) 0.46 

Pathological stage 1.72 (1.39–2.13) <0.01 1.48 (1.10–1.89) 0.01

CCL11 1.00 (0.92–1.10) 0.87 0.98 (0.86–1.11) 0.76 

CSF2RB 0.88 (0.77–1.01) 0.07 0.78 (0.55–1.11) 0.17 

ITGAL 0.80 (0.69–0.93) <0.01 0.59 (0.40–0.86) 0.01 

ITK 0.85 (0.75–0.96) <0.01 1.35 (0.99–1.83) 0.06

KLRB1 0.78 (0.69–0.89) <0.01 0.72 (0.58–0.90) <0.01

MARCO 0.98 (0.90–1.06) 0.65 1.14 (0.96–1.36) 0.15 

NCF1 0.90 (0.80–1.01) 0.10 1.22 (0.89–1.66) 0.22 

VSIG4 0.97 (0.87–1.08) 0.61 0.86 (0.65–1.13) 0.28 

LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval.

no statistical difference was detected in ITGAL expression 
level (P=0.11). 

Correlation of hub gene expression levels and 
clinicopathological variables

As shown in Figure 5D,E, decreased expression of ITGAL 
and KLRB1 was significantly correlated with lower 
ESTIMATE, immune, and stromal scores (all, P<0.001), 
as well as correlated with clinical stage (ITGAL: stage I vs. 
stage III, P=0.042, stage I vs. stage IV, P=0.028; KLRB1: 
stage I vs. stage III, P=0.038, stage I vs. stage IV, P=0.005). 
There was a significant difference between cancer and 
para-cancer samples in both ITGAL and KLRB1 genes (all, 
P<0.001; Figure 5F). Additionally, reduced ITGAL and 
KLRB1 gene expression in LUAD samples was significantly 
associated with ALK fusion (ITGAL: P=0.034; KLRB1: 
P=0.050), but not with EGFR and KRAS mutations  
(Figure 5G,H).

Discussion

Calculation of the microenvironment features of LUAD 

found that the stromal, immune, and ESTIMATE scores 
were correlated with patient OS. Subsequently, based 
on the cutoff value of the ESTIMATE score, an indirect 
index of the immune microenvironment, we identified 
250 DEGs in the TCGA-LUAD group based on higher 
or lower ESTIMATE score, and 511 DEGs in the GEO-
LUAD group. In addition, 83 co-DEGs were identified. 
GO enrichment analysis showed the processes primarily 
enriched in immune microenvironment-related DEGs 
were T-cell activation, leukocyte cell-cell adhesion, and 
regulation of leukocyte cell-cell adhesion. Additionally, 
primary immunodeficiency, CAMs, NF-kappa B signaling 
pathway, TNF signaling pathway, and chemokine signaling 
pathway were primarily enriched in co-DEGs.

After filtering the results by KEGG pathway network 
criterion, Kaplan-Meier survival analysis and univariate/
multivariate Cox regression analysis identified ITK, NCF1, 
MARCO, CSF2RB, ITGAL, KLRB1, CCL11, and VSIG4 
genes as candidate biomarkers, and subsequently ITGAL 
and KLRB1 were considered predictor genes for LUAD OS. 
A LUAD-related immune cell regulatory network based 
on the OS of TCGA-LUAD and GEO-LUAD patients 
was constructed, and the immune infiltration subtypes of 
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Figure 4 Immunocyte infiltration analysis and regulatory network construction. (A,B) The immunocyte infiltration and the regulatory 
network analysis of TCGA-LUAD data. (C,D) The immunocyte infiltration and the regulatory network analysis of GEO-LUAD data. The 
dot size represents the log-rank P-value of the immune cell interaction network. (E,F) Kaplan-Meier survival analysis of masT-cells resting 
and activated T-cells (CD4 memory). TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; GEO, Gene Expression Omnibus; 
masT-cells, mast cells.
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Figure 5 The Gene set enrichment analysis (GSEA), tumor mutation burden, and clinic-pathological relevance analysis of ITGAL and 
KLRB1 genes. (A) ITGAL- and KLRB1-correlated GSEA pathways. (B) Running enrichment genes of the ITGAL- and KLRB1-correlated 
T-cell receptor signaling pathway. (C) Tumor mutation burden analysis for ITGAL and KLRB1 gene expression levels. (D) Hub genes 
expression difference analysis in response to the level of stromal, immune, and ESTIMATE infiltration. (E) Hub genes expression difference 
analysis in response to LUAD clinical stage. (F) Hub genes expression difference analysis among cancer and para-cancer tissue. (G,H) Hub 
genes expression difference analysis based on KRAS/EGFR mutation and ALK fusion mutation status.
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masT-cells resting and activated T-cells (CD4 memory) was 
identified. Correlation with GSEA enrichment results, the 
T-cell receptor signaling pathway was found to be primarily 
correlated with ITGAL and KLRB1 higher expression, and 
KLRB1 expression level was correlated with LUAD patient 
TMB. In addition, the expression level of both ITGAL and 
KLRB1 was correlated with clinicopathological features and 
ALK fusion.

After many relevant studies, immune-cancer dysfunction has 
become an accepted concept and immune checkpoint therapy 
(ICT) has become a common treatment for NSLSC (26). 
Due to tumor heterogeneity, LUAD patients can detect 
tumor markers for ICT (27).The anti-tumor function of 
peripheral T-cells, which shuttle back and forth between 
the tumor and systemic circulation, has received  attention 
recently (28). Profiling of peripheral blood T-cell receptors 
has been found to have predictive value with respect to 
the prognosis of patients with advanced lung cancer (29). 
Immunotherapies, which are at the forefront of lung cancer 
therapeutics, are directed towards boosting host anti-tumor 
immunity, and T-cells play an important role (30). Zhang et 
al. showed that the high infiltration of T-cell presence in the 
tumor microenvironment is correlated to chemo-resistance 
in mesenchymal lung cancer cells (31). Furthermore, a 
recent study showed that targeting the DNA damage 
response promotes anti-tumor immunity through STING-
mediated T-cell activation in small cell lung cancer (32).

ITGAL encodes the LFA-1 (aLb2) subunit of integrin, 
which is highly expressed in microglia, the spleen, bone 
marrow, and most immune cell populations (33). The 
results of the current study suggests that inherited variations 
of ITGAL can affect the expression level or function of 
encoded proteins, and thus may be potentially associated 
with cancer prognosis (34). Similarly, Boguslawska et al. 
showed that the expression signature of ITGAL is correlated 
with poor survival (35). Other study showed that ITGAL 
is involved in regulating triple-negative breast cancer cell 
migration through regulation of the actin cytoskeleton (36). 
Vendrell et al. also reported that under expression of ITGAL 
was correlated with survival of R0 Dukes B and C colorectal 
carcinomas patients (37). 

The KLRB1 gene which encodes the CD161 receptor 
is located on chromosome 12 and is part of the natural 
killer gene complex (NKC) (38). Abnormal up-regulation 
of KLRB1 has been related to inflammatory syndromes, 
such as cryptococcosis-associated immune reconstitution 
inflammatory syndrome (39). A meta-analysis revealed 
a positive association of KLRB1 gene expression with 

favorable outcomes of NSCLC (40). In patients with 
myocardial infarction KLRB1 mRNA expression was found 
to be significantly down-regulated as compared to patients 
with angina patients and healthy controls (41). Gentles et 
al. found that KLRB1 mainly reflects the level of leukocytes 
infiltration in tumor tissues and is a good prognostic gene (42). 
Another study reported that expression of KLRB1 on human 
specific T-cells in the blood and cerebrospinal fluid (CSF) 
might be related to the compartmentalized inflammatory 
process in the central nervous system of patients with 
multiple sclerosis (43).

In summary, we found that the T-cell activation and 
activated T-cell (CD4 memory) pathways were predominantly 
involved in LUAD immune microenvironment regulation. 
The expression levels of ITGAL  and KLRB1  were 
significantly correlated with the T-cell receptor signaling 
pathway and LUAD TMB, and were independent risk factors 
for OS. 
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Figure S1 Overall survival analysis of immune cell infiltration for TCGA-LUAD and GEO-LUAD patients. TCGA, The Cancer Genome 
Atlas; LUAD, lung adenocarcinoma; GEO, Gene Expression Omnibus.
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