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Background: The role of immune-related long noncoding RNAs (irlncRNAs) in breast cancer (BRCA) is 
still unclear. Recently, studies have performed analyses based on the expression of irlncRNAs, however, in 
the present study, we used a novel method that did not require the specific expression levels of lncRNAs of 
BRCA patients.
Methods: We downloaded transcriptome and clinical data of BRCA patients from The Cancer Genome Atlas 
(TCGA), obtained immune genes from the Immport database, and extracted immune genes and lncRNAs 
for correlation analysis. Then, the differential expression of irlncRNA pairs (IRLPs) was determined and the 
prognostic signature was established by the IRLPs. The immune cell abundance of the TCGA-BRCA cohort 
was downloaded from the Tumor IMmune Estimation Resource (TIMER) database, and the relationship 
between the risk score of the IRLP signature and immune cell abundance was analyzed. Finally, we explored 
the relationship between risk scores and drug sensitivity based on the R package pRRophetic.
Results: Univariate cox regression results showed that 33 IRLPs had significant effects on the overall 
survival (OS) of BRCA patients. Then 22 IRLPs were obtained via lasso regression for further analysis. 
Multivariate regression analysis obtained 12 IRLPs to establish the IRLP prognostic signature. The model 
showed that this IRLP signature could act as a prognostic biomarker for BRCA patients. Kaplan-Meier (KM) 
survival analysis indicated that low-risk patients of IRLP’s signature had a better OS (P<0.001). Advanced 
status BRCA patients may have higher risk scores, and univariate and multivariate cox regression analyses 
showed that risk scores were independent prognostic factors of clinical features (P<0.001). The results of 
the relationship between risk scores and immune infiltration showed that M1 macrophages were higher in 
the low-risk group (P=0.00015), while M2 macrophages were higher in the high-risk group (P=0.0015). The 
high-risk group had a greater sensitivity to chemotherapeutic agents such as cisplatin, docetaxel, doxorubicin, 
and gemcitabine.
Conclusions: In present study, we used a novel method that did not require the specific expression levels 
of lncRNAs of BRCA patients, which can be used as a novel model for predicting the prognosis of BRCA 
patients.
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Introduction

Breast cancer (BRCA) is the most common type of cancer 
in females worldwide. BRCA is highly heterogeneous, and 
there are significant differences in etiology, pathological 
manifestations, and the prognosis of individuals (1). Despite 
the developments of diagnostic methods and therapeutic 
regimens, the outcome of BRCA is still unsatisfactory, 
especially for progressed patients (2). Apart from being 
highly heterogeneous, the main reasons for this outcome 
may include metastasis, therapy resistance, and immune 
inhibition (3-5). Therefore, it is urgent to further 
understand the underlying mechanisms of these processes in 
BRCA, which may unveil potential therapeutic methods for 
advanced and refractory BRCA patients to lengthen their 
lifespan.

Long noncoding RNAs (lncRNAs) are a type of RNA 
which are characterized by more than 200 nucleotides in 
length, but do not code proteins. Recently, the dysregulation 
of lncRNAs has been observed in multiple cancer types, 
including colorectal cancer, lung cancer, and bladder cancer 
(6-8). Furthermore, lncRNAs act as important regulators 
of the progression of various cancers types (6,9,10). For 
BRCA, Liang et al.’s study indicated that lncRNA BCRT1 
can promote BRCA progression via inhibiting the miR-
1303/PTBP3 axis (11). Shi et al. demonstrated that lncRNA 
DILA1 can induce tamoxifen resistance via decreasing cyclin 
D1 degradation (12). However, Kim et al.’s study showed 
that lncRNA MALAT1 can inhibit BRCA metastasis (13). 
From these findings, we can conclude that lncRNAs may 
have dual roles in cancer processes.

To date, a number of studies have proven that the tumor 
microenvironment (TME) plays a significant role in BRCA 
progression (14-16). Apart from immune cells and stromal 
cells of the TME, several regulators such as lncRNAs 
have essential roles in the TME (17). Xu et al. showed that 
lncRNA SATB2-AS1 could regulate the tumor metastasis 
in colorectal cancer (18). LncRNA NEAT1 accelerates the 
progression of aggressive endometrial cancer by miR-361-
regulated networks and TME-related genes (19). From 
these studies, lncRNAs may directly or indirectly affect the 
TME to regulate tumor processes. LncRNAs that regulate 
immune cell infiltration have been called immune-related 
lncRNAs (irlncRNAs). Several studies have proven that 
some irlncRNAs can be observed in BRCA patient samples 
such as lncRNA OSTN-AS1 and lncRNA TCL6 (20,21), 
and both of them affect the TME via regulating immune 
cell infiltration. Additionally, lncRNA TCL6 led to poor 

outcomes of BRCA patients (21), but the relationship 
between immune cell infiltration, lncRNAs, and drug 
resistance was not investigated. Compared with these 
studies, we explored the association between irlncRNAs 
and immune cell infiltration. We also constructed a novel 
modeling algorithm, estimated the predictive value, and 
explored drug sensitivity, as well as diagnostic sensitivity 
and specificity for BRCA patients.

We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-783).

Methods 

Raw data

Transcriptome data and clinical data of 1,109 BRCA 
samples and 113 normal samples were extracted from The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/). An immune-related gene list was collected from the 
Immport website (https://www.immport.org/). Immune cell 
abundance of the TCGA-BRCA cohort was downloaded 
from the Tumor IMmune Estimation Resource database 
(TIMER, https://cistrome.shinyapps.io/timer/).

Obtaining irlncRNAs

We extracted the lncRNAs of the TCGA-BRCA cohort 
from the RNAseq expression matrix, and analyzed 
the correlation between immune genes and lncRNAs. 
The threshold values of correlation analysis were set as 
coefficient R >0.4 and P value <0.001 (Spearman).

Screening differentially expressed immune-related 
lncRNAs (irlncRNAs)

The differences in irlncRNAs were analyzed (tumor vs. 
normal) via the limma package in R software (https://www.
r-project.org/). The filtering standards were log-fold change 
|logFC| >0.5 and false discovery rate (FDR) <0.05. The 
ggplot2 package was used to generate the heatmap plot and 
volcano plot.

Construction of immune-related lncRNA pairs (IRLPs)

The differentially expressed IRLPs were paired one by one. 
In each IRLP, the expression of the former lncRNA was 
higher than that of the latter lncRNA, then we recorded the 

http://dx.doi.org/10.21037/tcr-21-783
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expression of this IRLP as 1, or otherwise recorded as 0.

Construction of a prognostic signature for IRLPs

Firstly, we performed univariate cox regression on all IRLPs 
(screening P value <0.001), then we used lasso regression to 
obtain a more refined signature by constructing a penalty 
function. Finally, multivariate cox regression (stepwise 
method) was used to construct a prognostic signature based 
on the screening genes of lasso regression. The Kaplan-
Meier (KM) method was used to generate the survival curve. 
The maximum Youden index (sensitivity + specificity-1) 
of the 1-year receiver operating characteristic (ROC) was 
identified as the best cutoff value based on the R packages 
survivalROC and survminer. A nomogram and calibration 
curve of the prognosis signature were constructed via the 
R package rms. We only included patients with complete 
survival data for signature construction. P<0.05 was 
considered statistically significant. 

Correlation analysis between the risk score and immune 
cells

The correlation between the risk score of the prognostic 
signature and immune cells was analyzed based on the 
TCGA-BRCA cohort obtained from the TIMER database, 
and the correlation bubble chart between the risk score and 
immune cells was generated via ggplot2, ggtext, and scales 
packages (Spearman). P<0.05 was considered statistically 
significant.

Analysis of risk score and drug sensitivity

The R package pRRophetic is based on gene expression 
and drug sensitivity data from a large number of cancer 
cell lines, and these models are applied to gene expression 
data from primary tumor biopsies (22). We analyzed the 
relationship between the risk score of the signature and 
drug sensitivity based on the pRRophetic package. P<0.05 
was considered statistically significant.

Statistical analysis

The differential irlncRNAs were screened through the 
R package limma (https://www.r-project.org/), and the 
thresholds were set as |logFC| >1 and FDR <0.05. The 
KM plot was used to assess the differential survival between 
the different groups, and log-rank P<0.05 was considered 

statistically significant. Univariate and multivariate 
(stepwise) cox regression were used to construct the 
prognostic signature. The Wilcoxon test and Spearman 
correlation were used for difference analysis and correlation 
analysis, respectively. P<0.05 was considered statistically 
significant.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Results of IRLPs

We extracted 13,413 lncRNAs from the TCGA-BRCA 
cohort to analyze the correlation with immune genes, 
than we obtained 420 irlncRNAs. The heatmap plot 
demonstrates the top 50 up-regulated and down-regulated 
genes (Figure 1A). Differential expression analysis indicated 
that there were 130 up-regulated lncRNAs and 45 down-
regulated lncRNAs (Figure 1B). Subsequently, we paired 
175 immune-related differentially expressed lncRNAs and 
obtained a total of 10,084 IRLPs. 

Prognostic signature results of IRLPs

Univariate cox regression results showed that 33 IRLPs 
had significant effects on the overall survival (OS) of BRCA 
patients. The results of lasso regression indicated that  
λ =−4.7 was the optimal value, and 22 IRLPs were obtained 
for further analysis (Figure 2A,B). Multivariate regression 
analysis obtained 12 lncRNA pairs to establish the IRLP 
prognostic signature (Figure 2C).

Optimal cutoff value determination and KM survival 
analysis of the IRLP signature

The 1-year ROC curve of the IRLP signature showed that 
the area under the curve (AUC) value was 0.832 and the 
optimal cutoff value of the risk score was 1.912 (Figure 3A).  
The AUC values of 1-, 3-, and 5-year ROC curves of 
the signature were 0.832, 0.803, and 0.794, respectively 
(Figure 3B). The risk score curve and survival status map 
showed that according to the optimal cutoff value, 1,090 
BRCA patients were divided into a high-risk group (n=277) 
and low-risk group (n=813) (Figure 3C,D). KM survival 

https://www.r-project.org/
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analysis indicated that patients with low risk had a better 
OS for BRCA (log-rank P<0.001) (Figure 3E).

Relationship between signature risk scores and clinical 
features

The summary heatmap of correlation analysis between 
risk scores and clinical features (Figure 4A). The results 
demonstrated that risk scores had no significant correlation 
with age (Figure 4B); and a higher risk scores were 
correlated with higher stage (P<0.001, Figure 4C), tumor 
(T) size (P<0.001, Figure 4D), and node (N) staging (P<0.05, 
Figure 4E) of BRCA patients. Nevertheless, risk scores had 
no significant correlated with distant metastasis (Figure 4F).

Prognostic analysis of signature risk scores and clinical 
features

Univariate and multivariate cox regression analyses of risk 
scores and clinical features indicated that risk scores were 
independent prognostic factors of clinical features (P<0.001, 
Figure 5A,B). Compared with other clinical features of 
BRCA, the 1-year AUC value of the ROC curve of risk 
scores was 0.832, which was higher than T (0.729), N 
(0.654), M (0.580), stage (0.732), and age (0.794) features 

(Figure 5C). Risk scores were better prognostic factors for 
BRCA.

Relationship between risk scores and immune cells in 
BRCA 

We downloaded the results of 7 types of software which 
contained various kinds of immune cells in BRCA from the 
TIMER database, and analyzed the correlation between risk 
scores and immune cells. The bubble chart demonstrated 
the correlation analysis results of significant differences 
between risk scores and immune cells (Figure 6). 

Based on the optimal cutoff value, risk scores were 
divided into high- and low-risk groups, and the relationship 
between high and low risk and M1 macrophages and M2 
macrophages was analyzed. The results showed that the M1 
macrophage content in BRCA was higher in the low-risk 
group (P=0.00015, Figure 7A), and M2 macrophage content 
in BRCA was higher in the high-risk group (P=0.0015, 
Figure 7B). 

Results of risk scores and drug sensitivity analysis

We analyzed the half maximal inhibitory concentration 
(IC50) of some drugs which are commonly used as 

Figure 1 The difference analysis of immune-related lncRNAs. Heatmap plot of the top 50 up-regulated and down-regulated lncRNAs, blue 
and red represent low and high expression, respectively (A); Volcano plot of differential lncRNAs, green and red represent down-regulated 
and up-regulated lncRNAs, respectively (B).
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Figure 2 Prognostic signature of IRLPs. Lasso regression analysis indicated that λ =−4.7 (A) was the optimal value based on the 33 
prognostic IRLPs (B); The forest map shows 12 IRLPs of the prognostic signature. Green and red respectively represent favorable IRLPs 
and harmful IRLPs to the overall survival of breast cancer patients (C). IRLPs, immune-related lncRNA pairs.
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Figure 3 Optimal cutoff value determination and KM survival analysis of the IRLP signature. The 1-year ROC curve and the determination 
of the optimal cutoff value (A); the 1-, 3-, and 5-year ROC curves, the X-axis and Y-axis represent false positive rates and true positive rates, 
respectively (B); The risk score curve, the X-axis represents the increasing risk scores of patients, and the Y-axis represents risk scores (C); 
The survival status map, the X-axis represents the increasing risk scores of patients, the Y-axis represents survival time, and the green and red 
represent alive and dead, respectively (D); KM survival analysis of high- and low-risk patients of the IRLP signature (E). AUC, area under 
the curve; KM, Kaplan-Meier; IRLP, immune-related lncRNA pair; ROC, receiver operating characteristic.

chemotherapeutic agents in BRCA based on the R package 
pRRophetic. The results indicated that doxorubicin 
(P=0.0011, Figure 8A), cisplatin (P=0.032, Figure 8B), 
docetaxel (P=0.061, Figure 8C), and gemcitabine (P=2e-07, 
Figure 8D) had lower IC50 values in BRCA patients with 
low risk, suggesting that these drugs have better efficacy in 
the low-risk group.

Discussion 

With the better understanding of the association between 
lncRNAs and the immune system (23,24), more and 
more evidence indicates that lncRNAs can not only act as 
diagnostic biomarkers, but also prognostic signatures for 
cancer patients. Several studies have focused on using coding 
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Figure 4 Relationship between signature risk scores and clinical features. Summary heatmap of difference analysis of clinical features and 
risk scores (A); correlation analysis of risk scores with age (B), stage (C), tumor size (D), node staging (E), and distant metastasis (F) of breast 
cancer patients. 

genes and noncoding RNAs to construct models to assess 
the prognostic and diagnostic values for BRCA (25-27).  
Most of the signatures in these studies were determined via 
quantifying transcriptional expression levels. In the present 
study, instead of using transcriptional expression levels, we 
used immune-related gene pairing to generate a reliable 
model with lncRNA pairs. 

We downloaded transcriptome and clinical data of 
BRCA patients from TCGA, obtained immune genes from 
the Immport database, and extracted immune genes and 
lncRNAs for correlation analysis. Then, the differential 
expression of IRLPs was determined and the prognostic 
signature was established by the IRLPs. The immune cell 
abundance of the TCGA-BRCA cohort was downloaded 

from the TIMER database to analyze the relationship 
between the risk score of the IRLP signature and immune 
cell abundance. Finally, we explored the relationship 
between risk scores and drug sensitivity based on the R 
package pRRophetic. Shen et al. used the transcriptional 
expression levels of 11 irlncRNAs as a biomarker for 
predicting the prognosis of BRCA patients (28). It is now 
known that lncRNAs are the most abundant non-coding 
RNAs, with a number of significant biological functions. 
Our study indicated that we could select significant IRLPs 
from the initial identification differentially expressed 
irlncRNAs (DEirlncRNA). We could detect significant 
differential expression of IRLPs but not every lncRNA. 
Clinicians can take advantage of this novel model to 
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Figure 5 Prognostic analysis of signature risk scores and clinical features. Forest map of univariate cox regression analysis of risk scores 
and clinical features (A); Forest map of multivariate cox regression analysis of risk scores and clinical features (B); ROC curve of risk scores 
and clinical features, the X-axis and Y-axis represent false positive rates and true positive rates, respectively (C). ROC, receiver operating 
characteristic.

divide patients into low or high risk for BRCA. Since 
these lncRNAs are related to immune-related genes, they 
may have a deep influence on the TME of BRCA. In our 
study, we found that the IRLPs TMPO−AS1|SIAH2−
AS1, AP000695.1|AP005131.2, AL121832.2|AC109322.1, 
A C 0 0 7 6 3 7 . 1 | R O C R ,  L I N C 0 1 2 3 5 | U 6 2 3 1 7 . 4 , 
LINC01235|ROCR,  LINC01235|MAGI2−AS3 , 
LINC01235|U62317.1, AC005041.3|AP005131.2, 
CYTOR|MIR200CHG, AC004585.1|AL645608.7, and 
AP005131.2|AC245014.3 had significant roles in the 
prognosis of BRCA patients via univariate analysis. We 
further performed multivariate analysis which showed that 
TMPO−AS1|SIAH2−AS1, AL121832.2|AC109322.1, 
AC007637 .1|ROCR,  LINC01235|MAGI2−AS3, 
CYTOR|MIR200CHG, and AC004585.1|AL645608.7 had 

essential roles in the prognosis of BRCA patients. Several 
studies have proven that lncRNA TMPO−AS1 is a cancer 
promoter for BRCA (29,30). Additionally, lncRNA TMPO−
AS1 plays a key role in ovarian cancer and bladder cancer 
(31,32). MAGI2−AS3 is a tumor suppressor for BRCA, and 
Du et al. showed that MAGI2−AS3 inhibited the migration 
and invasion of BRCA cells by sponging microRNA-
374a (33). Liu et al. showed that CYTOR can enhance the 
tamoxifen resistance of BRCA cells through sponging miR-
125a-5p (34). Besides having a significant effect on BRCA 
patients, Moradi et al. showed that CYTOR also acted 
as a diagnostic biomarker (35). Furthermore, a review by 
Liang et al. showed that CYTOR was an adverse signature 
for multiple cancer types (36). Other irlncRNAs have not 
been investigated in regards to their biological functions in 
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Figure 6 Relationship between risk scores and immune cells based on the TIMER database. Bubble chart of the X-axis represents the 
correlation R value, the right side of 0 represents a positive correlation, and the left side of 0 represents a negative correlation. The different 
colors of the Y-axis represent the calculation results of different software. TIMER, Tumor IMmune Estimation Resource (https://cistrome.
shinyapps.io/timer/).

Figure 7 Comparison of the content of macrophages between high- and low-risk groups. M1 macrophages (A); M2 macrophages (B).
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Figure 8 Relationship between risk scores and drug sensitivity. Doxorubicin (A); cisplatin (B); docetaxel (C); and gemcitabine (D). 

cancer. 
We further used lasso regressionto increase the 

predictive model accuracy and efficacy. We also improved 
the procedure of modeling by calculating every AUC 
value to identify the maximum value for an optimal model 
followed by comparison with other clinical parameters. 
The AUC values were also used to achieve an optimal point 
for model fitting instead of distinguishing the risk just by 
the median value. Apart from exploring the relationship 
between risk scores and the prognosis of BRCA patients, 
we also reanalyzed the outcome of BRCA patients based on 
clinical features such as stage, age, and gender via univariate 
and multivariate analyses. We also analyzed the relationship 
between immune cell infiltration and risk scores via multiple 
software. The final goal of cancer research is always to find 
novel potential therapeutic regimens for cancer patients, so 
we further investigated the drug sensitivity of BRCA. The 
results showed that DEirlncRNA pairs were more positively 
related to tumor-infiltrating immune cells, and have a 

positive correlation with common lymphoid progenitors, 
neutrophils, CD4+ Th2 T cells, macrophages, activated NK 
cells, macrophage M0 infiltration, but a negative correlation 
with CD4+ effector memory T cells, CD4+ central memory 
T cells, CD4+ naive T cells, B cells, and activated myeloid 
dendritic cells, among others. From the various immune 
cells of the TME for BRCA, our past study showed that 
macrophages play a key role in BRCA progression (37). 
In the present study, we mainly focused on the role of 
macrophage cell types in BRCA. The results showed that 
the high-risk group had higher M2 macrophage infiltration 
than the low-risk group, while the low-risk group had 
higher M1 macrophage infiltration. These results indicated 
that M2 macrophages may act as suppressors of BRCA 
while M1 macrophages may act as promoters of BRCA. 
Chen et al. showed that M2 macrophages promoted BRCA 
metastasis by the M2 macrophage-produced CHI3L1 
protein (38). Sousa et al. revealed that BRCA cells can 
induce macrophages toward M2 polarization (39). These 
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results indicate that BRCA can adjust the macrophage status 
to affect the tumor process. Li et al. showed that promoting 
M1 macrophages could inhibit the growth of BRCA cells 
via activating the NF-κB pathway (40). However, Guo et al.  
showed that M1 macrophages can induce BRCA stem cells 
by regulation of the Lin-28B-let-7-HMGA2 axis (41).  
These findings indicate that the roles of macrophages 
may be adjusted according to different TMEs. Wang et al.  
indicated chemotherapy and immunotherapy therapy 
responses of cancer via immune scores. Furthermore, 
a number of studies have shown that the TME has a 
significant influence on therapy response (42-44). In our 
study, our model showed that the high-risk group was 
related to sensitivity to chemotherapeutic regimens such 
as cisplatin, docetaxel, doxorubicin, and gemcitabine. Our 
results recommend clinicians to select chemotherapeutic 
regimens based on risk scores to obtain better therapeutic 
responses. 

Conclusions 

In conclusion, the present study showed that a novel 
signature constructed by irlncRNAs, that did not require 
an analysis of lncRNA expression levels, could assess the 
prognosis of BRCA patients and help clinicians to select 
chemotherapeutic regimens based on risk scores.
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