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Introduction

Gast r i c  cancer  (GC)  i s  the  f i f th  mos t  common 
cancer worldwide, with almost one million new cases  
every year. Over half of them occur in Eastern Asia, China 
particularly (1). Although the incidence of GC has declined 

and the treatment of GC has seen dramatic progress over 
the years, it remains the third leading cause of cancer-
related death worldwide (2). So far, surgical resection is the 
only way to cure GC. However, 20% of patients lost their 
chance of surgery at the first clinic visit because of distant 
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metastasis (3). In those cases, chemotherapy becomes the 
main treatment they can rely on. At present, chemotherapy 
for GC is still dominated by conventional chemotherapeutic 
drugs such as platinum and fluorouracil. The molecularly 
targeted drugs remain scarce (4). Therefore, it is warranted 
to learn the underlying biological variation for developing 
more efficient therapeutic strategies.

 Current ly,  carc inoembryonic  ant igen (CEA) , 
cancer antigen 19-9 (CA19-9), and cancer antigen 72-4  
(CA72-4) are the most common diagnostic markers for 
GC (5-7). However, the appliance of these biomarkers 
cannot meet the clinical requirements because of their 
low sensitivity (8,9). As for the treatment of GC, several 
tumor-specific proteins have been identified as therapeutic 
targets, including EGFR, HER-2, VEGFR, mTOR, 
PD-1, and PD-L1 (10-12). Still to this day, only three 
molecularly targeted drugs (trastuzumab, ramucirumab, and 
pembrolizumab) have been approved and marketed for GC 
treatment worldwide. Besides, a large number of molecules 
have been reported to be related to clinical outcomes of 
GC, including cancer-associated genes and non-coding 
RNAs (13-15). However, there are still no reliable prognosis 
biomarkers due to the heterogeneity of GC (16). Hence, it 
is meaningful to seek novel and reliable biomarkers for GC.

Recently, with the advancement of sequencing platforms 
and the establishment of public databases such as The 
Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO), many bioinformatics analysis studies on 
GC have been published in these years. For example, using 
GEO data sets, Zheng et al. identified 7 hub genes that 
affect the prognosis of GC, including COL4A1, COL1A2, 
COL6A3, VCAN, THBS2, TIMP1, and SERPINH1 (17). 
Similarly, another study identified 9 key genes (COL1A1, 
CDKN3, COL1A2, COL3A1, NDC80, TPX2, TOP2A, 
TIMP1, and CEP55) correlated with the pathogenesis of 
GC (18). Beyond these differentially expressed genes, non-
coding RNAs, including lncRNAs (long non-coding RNAs) 
and miRNAs (microRNAs), were also reported to be related 
to the pathogenesis and prognosis of GC (19-22).

Although an increas ing  number  of  integrated 
bioinformatics analyses on GC have appeared recently, 
the results differed between these studies because of the 
different analysis methods. In our study, we focused on 
DEGs (differentially expressed genes) which affected 
the prognosis of GC and obtained eight hub genes. This 
study might provide potential prognostic biomarkers and 
treatment targets for GC. 

We present the following article in accordance with the 

MDAR checklist (available at https://dx.doi.org/10.21037/
tcr-20-3540).

Methods

Data procession

We downloaded the gene expression profiling datasets from 
TCGA database. The selection criteria were that samples 
contained complete RNA sequencing data and clinical 
information. According to the selection criteria, 407 samples 
were involved in this study, which was composed of 375 
GC primary tumor specimens and 32 solid normal tissue 
specimens. The data were analyzed by the DeSeq2 package 
and edgeR package in the R language (23,24). Differentially 
expressed genes (DEGs) were defined by |log2FC| ≥1, and 
adjust P value <0.05. Overlapping DEGs between these two 
kinds of algorithms were retained for further analyses.

Survival analysis

A total of 367 GC patients from TCGA database were 
enrolled in survival analysis, including 234 (63.8%) men and 
133 (36.2%) women. The median age was 67 (range, 35–90 
years). Survival outcomes were calculated from the date of 
surgery to the date of last follow-up or the date of death. 
Follow-up data were downloaded from the TCGA database. 
Before statistical analysis, DeSeq2 package was used to 
transform the raw dataset to the normalized gene expression 
level. According to the median expression of a specific gene, 
the patients were divided into two groups. Log-rank test 
and Kaplan-Meier curve were conducted by the survival 
package in the R language to evaluate the prognostic value 
of all overlapping DEGs (25). DEGs which showed a 
significant correlation with overall survival (P<0.05) were 
referred to robust DEGs.

Functional enrichment analysis

First, we performed Gene Ontology (GO) analysis on the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID, version 6.8) to elucidate the biological 
function of these robust DEGs (26,27). BP (Biological 
process), MF (molecular function), and CC (cellular 
component) were performed, respectively, P<0.05 and count 
>2 were considered as statistically significant. Then, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
were carried out utilizing the KEGG Orthology-Based 

http://dx.doi.org/10.21037/tcr-20-3540
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Annotation System (KOBAS, version 3.0) (28). Corrected 
P<0.05 was defined as statistically significant.

PPI network and module screening

For robust DEGs, the Search Tool for the Retrieval of 
Interacting Genes (STRING, version 10.5) online database 
was utilized to build protein-protein interaction (PPI) 
network. Then, we presented it by Cytoscape software 
(version 3.6.1). Also, the Molecular Complex Detection 
(MCODE) algorithm was applied to screen neighborhoods 
of densely connected proteins. 

Identification of hub genes

CytoHubba in the Cytoscape software was utilized to 
screen hub genes among these robust DEGs (29). Both of 
MCC (maximal clique centrality) and DMNC (density of 
maximum neighborhood component) were computed, and 
the overlapping genes were filtered out as hub genes of GC.

Statistical analysis

Survival analysis was performed by the Survival package in 
the R software. Survival plots were showed by the Kaplan-
Meier method, and the significance was calculated by the 
log-rank test. P<0.05 was defined as statistically significant.

Ethical statement

The study was conducted in accordance with the 

Declaration of Helsinki (as revised in 2013). All information 
from TCGA is available and free for public, so the 
agreement of the medical ethics committee board is not 
necessary.

Results

Identification of DEGs

407 samples from TCGA database were enrolled in this 
study, including 375 GC primary tumor samples and 32 
solid normal tissue samples. We screened DEGs using the 
DeSeq2 package and edgeR package, respectively. The 
cut-off criteria were corrected P<0.05 and |log2FC| >1. 
Overall, 5,770 DEGs were screened by DeSeq2 package, 
including 3,118 up-regulated and 2,652 down-regulated 
genes. A total of 5,991 DEGs were screened by edgeR 
package, including 3,479 up-regulated and 2,512 down-
regulated genes. Figure 1A,B showed the volcano plots of 
DEGs for each method. We further intersected the results 
and obtained 5,468 overlapping DEGs, including 2,994 up-
regulated and 2,474 down-regulated genes (Figure 1C).

Identification of robust DEGs associated with overall 
survival of GC

Log-rank test for all the overlapping DEGs was performed 
to explore the robust DEGs that were associated with the 
survival performance of GC patients. The cut-off criteria 
were P<0.05. Finally, we obtained 238 significantly robust 
DEGs, including 140 up-regulated and 98 down-regulated 
genes (Table S1). 

Figure 1 Identification of DEGs. (A) The volcano plots of the DEGs by DeSeq2. (B) The volcano plots of the DEGs by edgeR. (C) Venn 
diagrams of the DEGs between the DeSeq2 and edgeR. DEG, differentially expressed gene.
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GO and KEGG pathway analysis

GO analysis and KEGG analysis were performed to explore 
the potential biological function of the above robust DEGs. 
The GO analysis involved three categories: MF, BP, and 
CC. In MF category, the up-regulated DEGs were enriched 
in cytokine activity and protein heterodimerization activity. 
As for BP, the up-regulated DEGs were significantly 
enriched in nucleosome assembly, chemokine-mediated 
signaling pathway, skeletal system development, and 
immune response. For CC, the up-regulated DEGs 
were enriched in the nucleosome, centromeric region, 
extracellular space, and extracellular region (Figure 2A). 
About down-regulated DEGs, they were enriched in steroid 
hormone receptor activity, lipid binding, and kinase binding 
in the MF category. In BP category, the down-regulated 
DEGs were significantly enriched in steroid hormone-
mediated signaling pathway, response to calcium ion, 
response to the drug, and monocyte chemotaxis (Figure 2B). 

As for KEGG pathway analysis, the most significant 
pathways of the up-regulated DEGs were systemic lupus 
erythematosus, cytokine-cytokine receptor interaction, 
alcoholism, and jak-STAT signaling pathway (Figure 2C). 
For down-regulated DEGs, the most significantly enriched 
pathways were the intestinal immune network for IgA 
production, retinol metabolism, metabolism of xenobiotics 
by cytochrome P450, bile secretion, and chemical 
carcinogenesis (Figure 2D).

PPI network and modules analysis

To characterize the interaction between the robust DEGs, 
we constructed the PPI network using STRING database 
and presented it by Cytoscape. Overall, there were 82 edges 
and 140 nodes in this network, including 48 up-regulated 
and 34 down-regulated genes (Figure 3A). Subsequently, 
three key modules were extracted utilizing MCODE 
(Figure 3B,C,D). Module 1 was mainly concerned with 
the chemokine signaling pathway. Module 2 was mainly 
concerned with nucleosome assembly. Besides, module 3 
involved ECM-receptor interaction.

Screening for hub genes and survival analysis of hub genes

We further screened the hub genes among robust DEGs 
with cytoHubba. MCC and DMNC were computed to 
identify hub genes. The top 10 genes were selected based 
on the two algorithms. Then, we intersected the results 

by Venn diagram and obtained 8 overlapping hub genes, 
including CCR8, HIST1H3B, HIST1H2AH, HIST1H2AJ, 
NPY, HIST2H2BF, GNG7, and CCL25 (Figure 4A). 

Besides, the survival package in R language was utilized 
to perform the Kaplan-Meier analysis. As shown in  
Figure 4B-I, patients with higher expression levels of 
HIST1H3B, HIST1H2AH, HIST1H2AJ, HIST2H2BF, and 
CCL25 show worse OS, while those with lower expression 
levels of CCR8, NPY, and GNG7 show worse OS.

Discussion

Owing to the high heterogeneity of GC, it still lacks 
effective therapeutic targets. Although a large number of 
studies had been performed to identify the driving genes of 
GC, there were still no reliable biomarkers and drug targets 
up to now. In recent years, public databases, such as TCGA 
and GEO, provided a platform to screen the molecular 
targets of the tumor. Bioinformatics analysis studies of GC 
have been increasingly reported (17-20). However, because 
of the limited sample size and impertinent methods, the 
plentiful DEGs might show no biological roles and clinical 
significance. Therefore, we introduced the survival analysis 
at the beginning of our study to obtain clinically significant 
DEGs. According to the gene expression profiles of TCGA 
and the survival analysis, 238 robust DEGs were filtered 
out, consisting of 140 up-regulated and 98 down-regulated 
genes. The up-regulated DEGs were mainly enriched 
in systemic lupus erythematosus, cytokine activity, and 
alcoholism, while down-regulated DEGs were mainly 
enriched in steroid hormone receptor activity, immune 
response, and metabolism. Through the construction of 
the PPI network, eight hub genes were finally screened out, 
including CCR8, HIST1H3B, HIST1H2AH, HIST1H2AJ, 
NPY, HIST2H2BF, GNG7, and CCL25.

CCR8 and CCL25 belong to the CXC subfamily of 
chemokines, which are important for cell migration. CCR8 
(Chemokine (C-C motif) receptor 8) is preferentially 
expressed in the thymus, participating in regulating 
monocyte chemotaxis and thymic cell apoptosis. Villarreal 
et al. have shown that CCR8 is elevated in tumor-resident 
Tregs, and mAb therapy targeting CCR8 significantly 
inhibited tumor growth in the colorectal cancer model (30). 
Additionally, CCR8 was shown to enhance cell migration, 
invasion, and EMT in bladder cancer (31). In GC, a 
recent study elucidated that CCR8 was highly expressed 
and associated with the OS of GC patients (32). CCL25 
[Chemokine (C-C motif) ligand 25], along with its specific 
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receptor CCR9 (chemokine receptor 9), has been well 
reported to regulate gut mucosal immunity (33). Moreover, 
several studies demonstrated that CCL25/CCR9 was 
implicated in proliferation, migration, and anti-apoptosis of 
cancer cells (34,35). Interestingly, Chen et al. revealed that 
CCL25/CCR9 promoted tumor growth in early-stage of 
CRC, while suppressed cell invasion and metastasis in the 

late-stage (36). Further studies are warranted for elucidating 
the role of CCL25 in GC.

HIST1H3B,  HIST1H2AH,  HIST1H2AJ ,  and 
HIST2H2BF belong to core histones. Two copies of each 
of the core histones compose histone octamer, which 
further form nucleosomes along with approximately 146 
bp of DNA. It is well established that histone modifications 

Figure 3 PPI network and hub clustering modules. (A) The PPI network of robust DEGs; (B) module 1; (C) module 2; (D) module 3. Red 
circles represent up-regulated genes and blue circles represent down-regulated genes. PPI, protein-protein interaction.
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Figure 4 Prognostic value of eight hub genes. (A) Venn diagram of overlapped hub genes based on two methods. (B-I) Kaplan-Meier 
survival analysis of CCR8, HIST1H3B, HIST1H2AH, HIST1H2AJ, NPY, HIST2H2BF, GNG7, and CCL25.

played a significant role in tumor initiation and progression 
(37,38). However, the effects of histone expression levels 
alteration on tumors remain largely unknown (39,40). 
In the present study, we investigated that HIST1H3B, 
HIST1H2AH, HIST1H2AJ, and HIST2H2BF were up-
regulated in GC and were related to the poor prognosis of 

GC patients. 
Neuropeptide Y (NPY) is a 36 amino acids peptide, 

which is widely produced in nervous systems. Beyond 
regulating several physiological processes, such as 
cognitive function and cardiovascular regulation, NPY 
was also revealed to promote proliferation, migration, and 
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vascularization and in several tumors (41-45). Concerning 
GC, a recent bioinformatics analysis based on GEO 
database showed that NPY was elevated in GC and was 
correlated with poor survival (17). However, in our analysis, 
NYP was down-regulated in GC and high expression of 
NYP was related to better survival. 

G protein γ subunit 7 (GNG7) is a member of the large 
G protein γ family. There have been compelling suggestions 
that GNG7 functions as a tumor suppressor gene in many 
tumors , including pancreatic cancer, esophageal cancer, 
and renal cell cancer (46-48). Consistent with the previous 
studies, we elucidated that GNG7 was down-regulated in 
GC and negatively correlated with overall survival. 

In the present study, KEGG functional enrichment 
analysis indicated that SLE (systemic lupus erythematosus) 
might be associated with GC. A cohort study observed 
a significantly higher risk of GC in patients with  
SLE (49). The correlation was further confirmed by a 
recent meta-analysis (50). The underlying mechanisms 
why SLE patients were more likely to develop GC remain 
unclear. Various types of drugs used in SLE treatment, such 
as TNF-a inhibitors, corticosteroids, and nonsteroid anti-
inflammatory drugs were speculated to be implicated in this 
process (51,52).

We acknowledged some potential limitations in this 
study. First, it was a bioinformatics study using TCGA 
datasets. The lack of clinical validity remains a drawback 
of our study. Second, the sample size was small and the 
majority of patients enrolled in this study were white, which 
might be ethnically homogeneous. Therefore, more studies 
are warranted for verifying these findings in real-world 
clinical practice. 

Conclusions

Our present study disclosed eight hub genes and several 
molecular pathways of GC. These findings provided 
prognostic biomarkers and potential treatment targets for 
GC. Nevertheless, further molecular biological experiments 
are warranted to verify the function of the hub genes  
in GC.
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Table S1 Identification of robust DEGs by log-rank test

Genes P value

Up-regulated genes

LEFTY1 0.0005

TAS2R10 0.0007

SAMSN1-AS1 0.0008

LINC02657 0.0015

COL22A1 0.0019

SNORD111 0.0023

ARSE 0.0026

XPO5 0.0027

HIST1H3B 0.0028

LINC01123 0.0029

MMP20 0.0034

LOC102723385 0.0035

ACTBL2 0.0039

DDN 0.0041

STEAP2-AS1 0.0042

LOC102725072 0.0043

RBAKDN 0.0044

PSG9 0.0054

LOC286059 0.0069

PTTG3P 0.0071

RAD54B 0.0073

ORC6 0.0073

HIST1H2AJ 0.0077

PLXNA1 0.0078

NOP56 0.0079
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TMEM212 0.0098

RGSL1 0.0103

LACTB2 0.0105
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KRT40 0.0128

OVOL3 0.0128

PRR5L 0.0131

EVA1A 0.0137
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CCNYL2 0.0148

CSH2 0.0152

TPBGL 0.0156
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CTAG2 0.0158

MINAR2 0.0159
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CCR8 0.0162

CLDN9 0.0165

PCNA 0.0173

TMEM145 0.0173

MGC32805 0.0174

PNMA2 0.0175

UNC13A 0.0177

LINC01675 0.0177

PTPRU 0.0180

LINC02052 0.0181

GDPD5 0.0194

TTPA 0.0194

CCL26 0.0196

IL37 0.0199

FOXD2-AS1 0.0203

LINC02506 0.0204

SOX4 0.0210

VAC14-AS1 0.0211

HIST1H2AH 0.0211

BPIFB4 0.0211

MIR181A2HG 0.0211

LINC01205 0.0212
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KIAA2012 0.0226
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OR12D3 0.0303
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ADCY10 0.0306

LHX9 0.0309

STAM-AS1 0.0316
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LRRC37A6P 0.0322

CLCN4 0.0323

SCN2A 0.0327

IL18BP 0.0331

ATP11AUN 0.0331

MIR5194 0.0336

LINC00939 0.0337

HOXC6 0.0340

SAGE1 0.0343

FIRRE 0.0347

CXCL9 0.0349

EGF 0.0353

SUV39H2 0.0366

LINC01419 0.0368

LINC01299 0.0385

SCARNA13 0.0388

CCDC34 0.0394
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Down-regulated genes

SNORD9 0.0001

SULT2A1 0.0008
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