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Background: To establish a preoperative prediction model of myometrial invasion of bladder cancer (BC) 
based on the radiomics characteristics of multi-parameter thin-slice enhanced computed tomography (CT) 
imaging.
Methods: Data from 100 patients with BC were analyzed retrospectively. The patients were divided 
into two groups: muscular invasive BC and non-muscular invasive BC. The tumor region was segmented 
from enhanced CT images (arterial- and venous-phase calibration maps) of all patients using Slicer-3D 
software. We extracted 1,223 texture features from tumor image data based on the shape and gray-level  
co-occurrence matrix, gray size region matrix, gray run-length matrix, adjacent gray difference matrix, and 
gray correlation matrix. The patients were randomly divided into a training group (n=70) and a verification 
group (n=30) in a 7:3 ratio. Interclass correlation coefficients >0.75, least absolute shrinkage, and selection 
operator regression were used for feature selection. The prediction model was established by combining 
Rad-score, independent clinical factors, and support vector machine (SVM), and a radiomics nomogram 
was constructed. The nomogram was tested using the consistency index, calibration curve, time-dependent 
receiver operating characteristic curve, and clinical decision curve to predict the myometrial invasion of the 
bladder preoperatively.
Results: Six radiomics features that were significantly related to myometrial invasion of BC were selected 
to construct a predictive model. The area under the curve (AUC) values of training group and verification 
group based on SVM were 0.898 (95% CI: 0.820–0.976) and 0.702 (95% CI: 0.495–0.909), respectively. 
Single factor and multiple factor analysis showed that albuminuria (95% CI: 0.243–2.206, P=0.0014) 
and metabolic syndrome (95% CI: 0.850–2.935, P<0.001) were independent influencing factors of BC 
myometrial invasion. Clinical factors and 11 radiomics features were used to construct a comprehensive 
model for predicting the pathological grade of BC (radiomics + clinical). After a comprehensive comparison, 
we found that the overall effectiveness of the model (radiomics + clinical) was the highest (AUC =0.8457).
Conclusions: Based on the multi-parameter thin-layer enhanced CT radiomics feature can be used as a 
potential independent predictor of BC myometrial invasion, the model based on parameters can initially 
quantitatively characterize the risk of myometrial invasion, and has excellent potential for predicting 
myometrial invasion of BC.
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Introduction

Bladder cancer (BC) is the most common and fatal tumor 
in the urinary system. Uroepithelioma is the most common 
histological type of BC, and it is more common in older 
men (1-3). Studies showed that 70% to 75% of patients 
with primary BC are limited to mucosa and submucosa, 
called non-muscular invasive BC (NMIBC). Radiotherapy, 
chemotherapy, and transurethral cystectomy are often used. 
The 5-year survival rate is 96% (4).

Nevertheless, about 25% to 30% of patients diagnosed 
with muscular infiltrating BC (MIBC) are often treated 
with radical cystectomy. The 5-year survival rate is only 
33% and 75% (3,5). Data also showed that about 50% 
to 70% of patients with NMIBC suffer recurrences of 
the bladder tumor within 18 months after surgery or 
even progress to MIBC (6). Therefore, to achieve early 
preoperative prediction of MIBC, it is critical to select 
surgical methods and subsequent treatment. At present, 
there are very few reports predicting the risk of MIBC 
before surgery, and there are no specific indicators for 
predicting MIBC. However, there are many studies on 
the survival and treatment of MIBC. Measurements of 
PD-L1 and O-6-methylguanine methyltransferase are 
used in MIBC surgery, demonstrating adequate predictive 
ability (1,7). At present, the evaluation of preoperative 
MIBC depends on cystoscopic biopsy; however, this is an 
invasive examination accompanied by the risk of urethral 
infection and injury. Furthermore, because of the amount 
and location of samples, the accuracy of preoperative 
biopsy is low. Therefore, there is an urgent need to identify 
a new preoperative non-invasive diagnostic method to  
detect MIBC.

In recent years, with the development of medical image 
information processing technology, a large number of 
radiological features related to specific cancer have been 
extracted from images to provide clinicians with profound 
information that the human eye cannot directly obtain; 
these data assist clinicians in the diagnosis of cancer 
characteristics, creating an intense area of research (8-10). 
Lambin first proposed radiomics. The term refers to high-
throughput extraction of radiological features converted 
into computable spatial data and texture classification using 
supervised or unsupervised methods; the technique has a 
solid ability to quantify heterogeneity (11). Many studies 
showed excellent effectiveness in differential diagnosis and 
pathological grading of diseases through imaging combined 
with machine learning algorithms (12). Investigators 

suggested that diffusion weighted imaging (DWI)-based 
radiological characteristics are independent predictors of 
progression-free survival (PFS) in MIBC patients (13). 
Although the role of magnetic resonance imaging (MRI) in 
the diagnosis of BC has been reported (14), conventional 
images with echo-plane MRI sequences cannot recognize 
primary tumors. They may not be accurate in identifying 
local staging (15). In addition, MRI requires long 
acquisition times, high economic costs, and involves many 
scanning parameters, while computed tomography (CT) is 
faster and less expensive. Enhanced thin-slice CT images 
can reveal lesions more clearly, and they do not often omit 
edge texture information. Therefore, in this study, we built 
a prediction model based on multi-parameter CT combined 
with clinical risk factors to predict whether BC has invaded 
the myometrium before surgery accurately. We also 
developed a nomogram including radiological features and 
clinical risk factors. 

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-426).

Methods

Patients

We gathered data of 100 patients with BC diagnosed 
after surgery in the first affiliated Hospital of Suzhou 
University from January 2014 to January 2018, including 
50 cases of NMIBC and 50 cases of MIBC. According to 
the proportion of 7:3,100 patients were randomly divided 
into training and verification groups. The training group 
included 70 patients, and the verification group included 
30 patients. Of these, 35 patients with MIBC were in the 
training group and 15 patients with MIBC were in the 
verification group. The clinical data in the training and 
verification groups showed no significant differences in the 
distribution of clinical characteristic variables between the 
two groups (Table 1, P>0.05).

The corresponding preoperative multi-parameter CT 
data were collected, including arterial and venous phases. 
Using a semi-manual outline, two physicians delineated 
the three-dimensional (3D) tumor region of interest 
(ROI) from the calibrated CT images of each patient. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Committee of the first affiliated Hospital of 
Suzhou University (2021162). All patients gave written 

https://dx.doi.org/10.21037/tcr-21-426
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Table 1 General information of patients in training group and verification group

Clinical features
Training group (n=70) Verification group (n=30)

MIBC (n=35) NMIBC (n=35) P MIBC (n=15) NMIBC (n=15) P

Age 70.00±10.99 66.2±13.52 0.202 64.67±10.57 64.47±7.01 0.952

Gender 0.042 1

Male 31 (88.6) 24 (68.6) 12 (80.0) 12 (80.0)

Female 4 (11.4) 11 (31.4) 3 (20.0) 3 (20.0)

BMI 22.49±3.09 23.43±2.94 0.196 25.84±3.90 24.03±3.33 0.183

Urine PH 6.16±0.76 6.17±0.74 0.937 6.03±0.69 6.03±0.67 1

Neutrophils 3.54±1.22 3.64±1.73 0.780 3.62±0.66 3.18±1.05 0.181

Lymphocyte 1.67±0.55 1.80±0.64 0.388 1.93±0.58 1.79±0.70 0.579

NLR 2.22±0.78 2.27+1.52 0.851 1.99±0.51 2.04±1.12 0.047

Urinary infection 0.019 0.716

Yes 29 (82.9) 20 (57.1) 9 (60.0) 10 (66.7)

No 6 (17.1) 15 (42.9) 6 (40.0) 5 (33.3)

Hematuria 0.364 0.702

Yes 30 (85.7) 27 (77.1) 10 (66.7) 11 (73.3)

No 5 (14.3) 8 (22.9) 5 (33.3) 4 (26.7)

Proteinuria 0.008* 0.028*

Yes 23 (65.7) 12 (34.3) 10 (66.7) 4 (26.7)

No 12 (34.3) 23 (65.7) 5 (33.3) 11 (73.3)

Number 0.502 1

Single 31 (88.6) 29 (82.9) 14 (93.3) 14 (93.3)

Multiple (≥2) 4 (11.4) 6 (17.1) 1 (6.7) 1 (6.7)

Diameter (mm) 28.58±13.50 20.63±11.29 0.009* 30.80±17.00 14.40±3.54 0.001*

MS 0.006* 0.002*

Yes 18 (51.4) 7 (20.0) 10 (66.7) 2 (13.3)

No 17 (48.6) 28 (80.0) 5 (33.3) 13 (86.7)

HBP 0.032 0.726

Yes 22 (62.9) 13 (37.1) 7 (46.7) 8 ()

No 13 (37.1) 22 (62.9) 8 (53.3) 7 ()

Triglyceride 1.49±0.87 1.37±0.66 0.510 1.82±0.91 1.81±1.18 0.985

HDL-C 1.21±0.29 1.31±0.58 0.368 1.14±0.25 1.14±0.24 0.988

Diabetes mellitus 0.399 0.481

Yes 18 (51.4) 14 (40.0) 8 (53.3) 6 (40.0)

No 17 (48.6) 21 (60.0) 7 (46.7) 9 (60.0)

*, significant difference. Data presented as mean ± SD or n (%). BMI, Body mass index; MIBC, muscular infiltrating bladder cancer; 
NMIBC, non-muscular invasive bladder cancer; NLR, neutrophil-to-lymphocyte ratio; MS, metabolic syndrome; HBP, high blood pressure; 
HDL-C, High density lipoprotein cholesterol.
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informed consent.

Selection criteria

Inclusion criteria were as follows: (I) BC diagnosed 
pathologically after surgery with complete clinical and 
imaging data; (II) enhanced CT examinations of abdomen 
and pelvis performed on the same type of CT machine 
within two weeks before surgery, and the bladder was filled 
well; and (III) the diameter of the focus ≥1 cm, with the 
ability to examine an area of interest. Exclusion criteria 
were as follows: (I) CT showing poor bladder filling or the 
smallest diameter of the tumor <1 cm; (II) major organ 
dysfunction, such as kidney, liver, or heart; and (III) other 
inflammatory diseases or psychiatric disorders.

A total of 100 patients were enrolled and were randomly 
divided into training and verification groups according to 
the proportion of 7:3. The patient recruitment pathway is 
shown in Figure 1.

Image processing and data acquisition

All patients underwent abdominal pelvic (bladder) 
arteriovenous phase CT examinations using Siemens 64-
row spiral CT at our hospital. Afterimage reconstruction, 
the uncompressed Digital Imaging and Communications in 
Medicine (DICOM) format data were uploaded to a picture 
archiving and communication system (PACS) system. 
The arterial phase and venous thin-layer image data of all 
patients were downloaded from the PACS system. The thin-
slice images of the arterial and venous phases were imported 
into Slicer 3D software in DICOM format. The arterial- 
and venous-phase images were calibrated and combined 
into one image. Under the condition that the pathological 
results were unknown, a senior physician with more than 
five years' experience in urological imaging diagnosis and 
a urologist resident used the threshold and sphere brush 
functions of the texture analysis Slicer 3D software to 
outline the half-manual ROI of the bladder tumor lesions 

Bladder cancer confirmed by pathology (372)

The number is determined by searching our case database for discharge 

diagnosis of “bladder cancer”

Include cases (n=245)

Include cases (n=146)

Include cases (n=133)

Include cases (n=100)

There is no complete imaging and clinical data (n=127)

CT shows poor bladder filling (n=99)

Images were of insufficient quality (n=33)

People with other inflammatory diseases and mental disorders (n=13)

Figure 1 The flow chart of patient screening.
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and showed them in the form of 3D imaging. The sketched 
3D images were processed using unified smoothing. We 
selected gray-level dependence matrix, Shape2D, gray-
level co-occurrence matrix (GLCM), Shape3D, First-order, 
gray-level run-length matrix (GLRLM), gray-level size 
zone matrix, and neighboring gray-tone difference matrix 
feature parameters. Set resampling and filtering criteria 
were as follows: resampled voxel size (1, 1, 1), LoG kernel 
sizes (1, 1.5, 2, 2.5), and wavelet-based features (Figure 2). 
For multiple lesions, considering the heterogeneity among 
different individuals, only the most significant lesions were 
included.

Data processing and feature extraction

The Pyradiomics package based on Python was used to 
extract 3D image features from all segmented images, 
including first-order features, second-order features, high-
order features, and wavelet-based features: (I) first-order 
features such as histogram features can describe the global 
characteristics of the whole ROI that are closely related to 
the frequency distribution of image gray-scale; (II) second-

order features such as those based on GLCM can describe 
the local distribution of image gray-scale; (III) high-order 
features such as those based on GLRLM can describe the 
regional distribution characteristics of gray-scale of an 
image. In the present study, 80 features were extracted from 
the specific gray-level tumor ROI of each mode, of which 
1,223 features were extracted from first-order statistics (18 
features), Shape3D (16 features), Shape 2D (14 features), 
GLCM (24 features), GLRLM (16 features), gray-level size 
zone matrix (16 features), neighboring gray-tone difference 
matrix (five features), and gray-level dependence matrix  
(14 features). To facilitate the processing of a large amount 
of data, the radiomics features were numbered as X1, X2, …
X1223. The preprocessing of characteristic data is essential. 
First, all the null values were processed and replaced by the 
median. To avoid over-fitting the model, two radiologists 
sketched the image data with ROI. The extracted texture 
parameters’consistency was evaluated using the intra-
class correlation coefficient (ICC >0.8). P<0.05 indicated 
that the correlation was good. The mean values of two 
groups of parameters were included in the study. The 
dimensions of radiomics 1,223 features were reduced using 

Imaging Threshold ROI Segmentation

3D Smoothing

A B C

D E

Figure 2 Semi-automatic three-dimensional segmentation of bladder tumor and the process of ROI drawing, the whole process was 
completed by 3D Slicer image editing software. The image is the original image of the patient after preoperative enhanced CT arteriovenous 
phase calibration (A). By setting the critical value of the image density parameter (Threshold), there is a significant difference between the 
density of bladder tumor and the density of surrounding tissue, which can better distinguish the tumor from (B). The outline of the tumor 
was drawn, including the mass boundary, and the image brush function (sphere brush) was used to outline the continuous semi-automatic 
section of (C). The 3D image (D) was obtained after the complete cutting of the tumor and the desired 3D image of the bladder tumor after 
smoothing (E).
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the Z-score so that all features were normalized to [–1, 1], 
and the operation efficiency was improved. The data set 
was randomly divided into ten points to prevent over-fitting 
in the machine learning algorithm, combined with ten-
fold cross-validation; seven groups were taken as training 
data and three groups as test data. We used operator least 
absolute shrinkage and selection operator (LASSO) and 
stepwise regressions to screen radiomics features from 
the training group and obtain practical features. Logical 
regression, decision tree, support vector machine (SVM), 
and Adaboost algorithm were used to build the model. The 
accuracy, sensitivity, specificity, and AUC were used as the 
evaluation indexes of the model.

Selection and assignment of clinical-related factors

To construct the prediction model of bladder myometrial 
infiltration and perfect the model, we added gender, age, 
neutrophil-to-lymphocyte ratio (NLR), urinary pH, urinary 
tract infection, hematuria, albuminuria, body mass index 
(BMI), hypertension, diabetes, high-density lipoprotein 
(HDL-C), triglycerides, location, quantity, diameter, 
and other clinical traits. We screened out independent 
risk factors using univariate and multivariate analyses. 
Considering that we required substantial amounts of 
data and complex parameters to improve the operation 
efficiency and intuitive display, all the study parameters 
were assigned. The postoperative pathological diagnosis 
of bladder tumor with NMIBC was marked as “1” at the 

time of classification and otherwise was marked as “2”. For 
the assignment of other clinical-related factors, please see  
Table 2. For the assignment of radiomics features, see 
https://cdn.amegroups.cn/static/public/tcr-21-426-1.xls.

Prediction model construction

The construction of the model was based on the optimal 
feature set of each ROI, and the final muscle penetration 
prediction model was constructed. The radiomics feature 
prediction model with the highest prediction efficiency 
was selected by comparing the accuracy, sensitivity, 
specif icity,  the area under the receiver operating 
characteristic (ROC) curve (AUC). To verify the four 
predictive models' predictive ability, the 10-fold cross-
validation method was used, and 100 iterations were 
carried out. The predictive efficacy evaluation indicators 
included sensitivity, specificity, accuracy, and AUC. To 
establish a radiomics model of multiple logistic regression 
analysis based on radiomics markers and clinical features, 
all models were built on the training group and were tested 
on the verification group. The area under the ROC curve 
was used to test the model's performance and calculate 
its specificity, sensitivity, and accuracy. By comparing the 
clinical feature prediction model based on clinical feature 
index, the radiomics model based on image-marking, and 
the comprehensive model combined with clinical index, 
the comprehensive model with the best prediction ability 
was selected.

Table 2 Assignment of related clinical factors

Characteristics Assignment 1 Assignment 2

Gender Female Male

Urinary tract infection No Yes

Hematuria No Yes

Albuminuria No Yes

Quantity Single Multiple

MS No MS MS

BMI BMI <25 BMI ≥25

Triglyceride (mmol/L) <1.7 ≥1.7

High blood pressure SBP <140 or DBP <90 mmHg SBP ≥140 or DBP ≥90 mmHg

Diabetes mellitus Fasting blood glucose <6.1 mmol/L, Postprandial 
blood glucose two hours <7.8 mmol/L, Random blood 
glucose <11.1 mmol/L

Fasting blood glucose≥6.1 mmol/L, Postprandial 
blood glucose two hours≥7.8 mmol/L, Random 
blood glucose ≥11.1 mmol/L

MS, metabolic syndrome; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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Statistical software and methods

The software used in this study included 3D-Slicer 
(4.10.2-Win-amd 64), R-Studio (1.2.1335), and related 
software packages. The clinical-related factors were 
analyzed using SPSS22.0 software (International Business 
Machines Corporation, IBM), and the measured data was 
expressed as x±s. T-test was used to compare the two groups 
of measurement data, and the counting data was compared 
by chi-square test. Independent risk factors were found by 
logistic regression. We compared the values of radiological 
features in the differential diagnosis of NMIBC and MIBC 
using a single-factor analysis of variance. The LASSO 
regression model was analyzed using the “glmnet” software 
package. We used the “proc” software package to draw 
ROC curves. The differences in AUC values among models 
were tested using the Delong test. P<0.05 (two-sided) was 
considered to indicate significance. The effectiveness of the 
model is expressed by the C-index, and the model is verified 
by the decision curve (DCA).

Results

Correlation analysis of clinical features

There were 70 patients in the training group and 30 patients 
in the verification group. Clinical information included 
gender, age, NLR, urinary pH, urinary tract infection, 
hematuria, albuminuria, BMI, hypertension, diabetes, 
HDL-C, triglycerides, location, quantity, diameter, and 
others. Using univariate analysis, clinical features with  
P>0.05 were excluded and included proteinuria, metabolic 
syndrome (MS), and diameter (Table 1). Multivariate analysis 
showed that only albuminuria and MS were independent 
predictors in the clinical factor model.

Correlation analysis of radiomics characteristics

Of the 1,223 radiomics features extracted from CT images 
(arteriovenous-phase calibrated images), 841 had good 
inter-group and intra-group consistency (ICC ≥0.75, mean 
=0.77, median =0.84; Figure 3A). We found significant 
differences between MIBC and MIBC in 624 radiomics 
features (P<0.05). We entered these into the LASSO 
regression model to select the most valuable features 
(Figure 3B). Finally, six features were used to construct the 
radiomics model (Table 3, P<0.05). This process used pROC 
and glmnetR software packages.

Construction and selection of the model

We used six practical features to build the model. We 
built four models: logistic regression, decision tree, SVM, 
and Adaboost. Combining the accuracy, sensitivity, and 
specificity of the four models, we found that the model 
based on SVM was the most valuable (Table 4). The SVM 
model's accuracy, sensitivity, and specificity in the training 
group were 80.005%, 82.35%, and 80.56%, respectively, 
and the AUC was 0.867 (95% CI: 0.781–0.953). In the 
verification group, the accuracy, sensitivity, and specificity 
were 73.33%, 81.82%, and 68.42%, respectively, and the 
AUC was 0.782 (95% CI: 0.615–0.949; Figure 4).

Performance evaluation of clinical prediction model and 
radiomics prediction model

Univariate and multivariate analysis  showed that 
proteinuria and multiple sclerosis were independent risk 
factors for myometrial invasion in patients with BC. 
These findings suggest that patients with albuminuria 
before surgery are more likely to develop myometrial 
invasion. Similarly, patients with multiple sclerosis 
are more likely to have myometrial invasive BC. The 
training group established a clinical predictive model 
according to two risk factors. We evaluated and verified 
the model. Compared with the clinical predictive model, 
the ROC values of the radiomics model and the clinical 
predictive model in the training group were 0.796 and 
0.747, respectively. The performance of the radiomics 
model was better than that of the clinical model, and the 
difference was not statistically significant (P=0.531). We 
added clinical factors to the radiomics model to obtain 
a comprehensive model (radiomics + clinical) and found 
that its prediction performance was the highest of the 
three models (AUC =0.8457). Figure 5A shows the AUC 
curves of the three models. It can be seen that the efficacy 
of the clinical model combined with the radiomics model 
in predicting myometrial invasion of BC was significantly 
higher than that of the clinical and radiomics single model.

We then verified the decision curve of the comprehensive 
model (radiomics + clinical) and found that between 20% 
and 100% of the high-risk threshold, both models achieved 
better net returns than all of them; however, the integrated 
model was more valuable than the radiomics model. The 
decision curve analysis of the two models is shown in  
Figure 5B.



3184 Zhou et al. Prediction model of MIBC based on thin-layer enhanced CT

© Translational Cancer Research. All rights reserved.   Trransl Cancer Res 2021;10(7):3177-3191 | https://dx.doi.org/10.21037/tcr-21-426

Establishment of radiological nomogram combined with 
clinical practice

Albuminuria, MS, and Rad-score were incorporated into 
the construction of a radiomics nomogram (Figure 6). The 
calibration curve and Hosmer-Lemeshow test showed an 
excellent correction effect in the training set (Figure 7A, 

P=0.041) and the verification set (Figure 7B, P=0.03). To 
better apply the comprehensive model to clinical practice, 
we improved the model's accuracy and drew a nomogram 
to be more intuitive. The clinical model was combined with 
the radiomics model, and six radiomics features were used 
to simplify the model, in which we reduced the dimensions 

Figure 3 Filter and screen radiomics features through intra-class correlation coefficient (ICC) and least absolute shrinkage and selection 
operator (LASSO). 841 were shown to have good inter-group and intra-group consistency (ICC ≥0.75, mean =0.77, median =0.84) (A). 
Radiological features selection using the LASSO regression model. Cross-validation is used to screen the coefficients of each feature at 
the best log (lambda). As the λ value increases, the number of features becomes less and less. Use ten-fold cross-validation to generate 
coefficients corresponding to logarithmic (λ) values (minimum variance). Draw vertical lines with six selected radiological features (B).
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Table 3 Radiological characteristics of constructing model

Radiological characteristics Coef Train (P) Test (P) 95% CI

original_shape_Flatness –2.5580 0.007 0.046 0.698–0.951

log-sigma-1-5-mm-3D_glszm_ZoneEntropy –0.2429 0.002 0.064 0.730–0.933

wavelet-HLH_glrlm_RunVariance –2.0495 0.001 0.059 0.635–0.906

wavelet-HHH_gldm
_DependenceNonUniformityNormalized

3.9635 0.004 0.029 0.812–0.961

wavelet-LLL_gldm_DependenceVariance 2.0187 0.005 0.248 0.586–0.924

wavelet- LLL_glszm_ZoneEntropy 7.5914 0.002 0.011 0.842–0.963
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of six image parameters and expressed them as Rad-scores, 
as follows:

R a d - s c o r e s :  L o g - s i g m a - 1 - 5 - m m - 3 D _ g l s z m _
ZoneEntropy*-0.2429

+wavelet-HLH_glrlm_RunVarianc*-2.0495
+waveletHHH_gldm_DependenceNonUniformityNor

malized*3.9635
+wavelet_LLL_gldm_DependenceVariance*2.0187
+wavelet- LLL_glszm_ZoneEntropy*7.5914
-original_shape_Flatness*-2.5580
The decision curve analysis showed that the radiomics 

nomogram combined with clinical factors had a higher 
overall net benefit in distinguishing myometrial invasion 
from non-myometrial invasion than the clinical factor 
model and the radiomics model.

Discussion

BC is a common malignant tumor of the urinary system. 
Identification of the muscular layer's infiltration is critical 
for the choice of treatment and outcome evaluation (16). 
A cystoscopic biopsy is often performed; however, there is 
a risk of urethral infection, injury, and implant metastasis 
(17,18). Over recent decades, many efforts have been 
made to develop diagnostic and predictive tools for MIBC; 
nevertheless, BC's recurrence and mortality rates remain 
high. In recent years, medical radiomics have shown great 
potential in the clinical diagnosis and prediction of BC. 
Many radiomics features related to specific cancers have 
been extracted from images, providing clinicians with 
profound information that human eyes can not directly 
obtain and help them diagnose cancer characteristics, 
becoming a current research hotspot. Studies showed that 

radiomics features predict the outcome and differentiation 
of MIBC (19,20). Other studies found that imaging 
parameters such as MRI distinguished BC from cystitis and 
aided differentiation of pathological grades of BC (21,22). 
There is an urgent need to develop objective and non-
invasive techniques to distinguish NMIBC from MIBC 
before surgery and provide information to determine the 
necessity and adequacy of adjuvant therapy.

Radiological features based on enhanced CT were 
constructed and validated to predict myometrial invasion in 
patients with BC before surgery. We developed a predictive 
nomogram that includes radiomics features and clinical risk 
factors. There are two primary innovations in our study: (I) 
based on multi-parameter thin-layer CT, a large number of 
radiomics features were extracted, and a radiomics feature 
set was constructed to characterize the tumor heterogeneity 
differences between NMIBC and MIBC quantitatively; 
(II) based on feature recursive algorithm selection and 
the classification strategy of SVM, the feature subset with 
optimal prediction efficiency was identified, and a prediction 
model was constructed to achieve accurate prediction.

To effectively solve the problem of gray-scale differences 
between different thin layers of CT that cause severe 
impacts on the results of texture feature extraction, we 
first identified the largest tumor layer in multi-parameter 
enhanced CT images and completely outlined the whole 
tumor ROI. The three-dimensional ROI was used, which 
improved the resolution efficiency over two-dimensional 
regions of interest because the three-dimensional ROI 
considers all available slices. Whole tumor analysis appears 
to be a better indicator of tumor heterogeneity than the 
maximum cross-sectional area (23). Then, we extracted 
1,223 radiomics features. Feature redundancy significantly 

Table 4 Comparison of prediction performance of four models

Machine algorithm Group Accuracy (%) Sensitivity (%) Specificity (%) 95% CI AUC

Logistic 
regression

Train 74.28 70.70 79.31 0.692–0.899 0.796

Test 73.33 76.90 70.59 0.605–0.950 0.778

Decision tree Train 80.00 82.35 80.56 0.781–0.953 0.867

Test 73.33 81.82 68.42 0.615–0.949 0.782

SVM Train 81.42 76.19 89.28 0.820–0.976 0.898

Test 70.00 69.23 66.67 0.495–0.909 0.702

Adaboost Train 74.28 65.71 82.85 0.641–0.844 0.743

Test 63.33 53.33 73.33 0.459–0.808 0.633

SVM, support vector machine; Adaboost, adaptive boosting.
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affects the model’s prediction performance; therefore, 
we sought to reduce redundancy and the degree of over-
fitting of the model to effectively improve the model’s 
all-around performance and generalization ability to 
predict myometrial invasion model BC. Based on 1,223 
features extracted, the SVM-RFE method was used to 
select the optimal feature subset, which we then used to 
describe the image difference between NMIBC and MIBC 
quantitatively. We then showed that the optimal features 
selected using this feature selection method improved the 
model’s prediction accuracy for muscle invasion of BC 
to 81.42%, and AUC increased to 0.898. Two of the six 
optimal features were gray-level difference matrix (GLDM) 
features, which quantify the gray-scale dependence in the 
image. Based on the gray-scale dependence in the quantized 
image, these features more effectively quantify the 
heterogeneity between NMIBC and MIBC. This finding 
suggests that image parameters can more effectively record 
and reflect the differences between NMIBC and MIBC, 
which can be used for feature extraction and prediction 
model construction.

The radiological features were screened from the 

training group using LASSO regression and stepwise 
regression. The six useful features that constitute the 
imaging labels represent different textures and intensities 
in the image, reflecting the tumor tissue's heterogeneity. 
The “wavelet-LLL_gldm_DependenceVariance” reflects 
the variance of the size of dependencies in the measured 
ROI in CT images. The higher the eigenvalue, the finer 
the texture. In myometrial invasive BC, the eigenvalue was 
smaller (P=0.005, 95% CI: 0.586–0.924). “waveletHHH_
gldm_DependenceNonUniformityNormalized” reflects the 
similarity of the correlation in the whole image. The lower 
the value, the higher the homogeneity of the correlation in 
the image. The characteristic value was lower in the MIBC, 
indicating that the tumor has a higher homogeneity with 
the bladder myometrium. The tumor tissue has invaded 
and mixed with the myometrium (P=0.029, 95% CI: 
0.812–0.961). The “wavelet-LLL_glszm_ZoneEntropy” 
and “log-sigma-1–5-mm-3D_glszm_ZoneEntropy” are 
randomness in measuring region size and gray-scale 
distribution; higher values indicate higher heterogeneity 
in texture patterns. In NMIBC, its value is higher, which 
can be understood as the tumor not invading the muscular 

Figure 5 ROC curve of the three models (Radiomics, Clinical and Radiomics + clinical) and The decision curve analysis of the two 
models (Clinical and Radiomics + clinical). Compared with the ROC curve of the three models, the efficacy of the comprehensive model 
combined with clinical factors was significantly higher than that of the image group model and clinical model (A). The red line and the 
blue line represent the net benefits of the comprehensive model and the imaging model, respectively. It can be seen that the benefit of 
the comprehensive model is the best. The Y-axis represents net income; the X-axis represents threshold probability. The curve shows that 
between about 20% and about 100% of the high-risk threshold, both models can achieve better net returns than all, but the comprehensive 
model is more valuable (B).
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layer, and the heterogeneity between the tumor and the 
muscular layer is high (P=0.02, 95% CI: 0.842–0.963 or 
P=0.02, 95% CI: 0.730–0.933). The “wavelet-HLH_glrlm_
RunVariance” is a measure of the change in run-length, and 
the eigenvalue was smaller in MIBC (P=0.059, 95% CI: 
0.635–0.906). The “original_shape_Flatness” flatness shows 
the relationship between the largest and smallest principal 
components in an ROI shape. This value was higher in 
myometrial infiltration (P=0.007, 95% CI: 0.698–0.951). 
We constructed the four prediction models based on the 
training group and tested them in the verification group 
to achieve robust classification performance. Based on 
the accuracy, sensitivity, specificity, and AUC value of the 
model, the comprehensive effect of the model based on the 
SVM feature recursion algorithm was the best among the 
four models. The accuracy, specificity, and AUC value of 
the SVM model were the highest. For specific comparisons, 
see Table 4. In the model training group based on SVM, the 

accuracy, sensitivity, specificity, and AUC were 81.42%, 
76.19%, 89.28%, and 0.898, respectively 95% CI: 0.820–
0.976. The accuracy, sensitivity, specificity, and AUC value 
in the verification group were 70.006%, 69.23%, 66.67%, 
and 0.702, respectively. 95% CI: 0.495–0.909. Based on the 
verification group, the overall effectiveness of the image 
group model based on SVM was better.

We included clinical data from 100 patients. Univariate 
and multivariate analyses showed that only albuminuria, 
MS, and diameter were significant independent predictors. 
Patients with albuminuria and MS before surgery were 
more likely to have MIBC after surgery. Considering that 
there was some overlap between diameter and shape in 
imaging features, it was not considered a related factor for 
constructing the clinical model. We established a clinical 
factor model by combining the clinical characteristics 
of albuminuria and MS as significant factors. The 
clinical factor model achieved a higher AUC value for 

Figure 6 Nomogram for predicting myometrial invasion of BC. Description: each variable is on its axis. Draw each vertical line up to the 
Point axis to determine the number of points for each variable. We added the points of each variable and positioned them on the total points 
axis. Draw a vertical line down to find out the possibility of clinical myometrial invasive BC.
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distinguishing NMIBC from MIBC (0.747 in the training 
group and 0.80 in the verification group).To further improve 
the prediction model, we successfully constructed a new 
radiological-clinical prediction model based on radiological 
characteristics and clinical factors and developed a 
nomogram (Figure 6). The radiological-clinical nomogram 
had an excellent predictive value for distinguishing NMIBC 
from MIBC and calibrating them to obtain the calibration 
curve shown by Figure 7.

The novelty of this study can be summarized as follows: 
(I) this is the first study to use multi-parameter thin-
layer enhanced CT radiological features to predict the 
myometrial invasion of bladder tumor before surgery; 
(II) the features based on signal intensity histogram and 
three-dimensional ROI were used to reflect the intensity 
and spatial changes of various maps to characterize the 
heterogeneity of tumors better; (III) the methods of sample 
rebalancing and feature selection were used to enhance 
the prediction performance; (IV) combined with clinical 
specific factors, a radiological-clinical prediction model was 

constructed, and a predictive nomogram was developed.
The radiological features based on multi-parameter 

enhanced CT have great potential for predicting BC 
recurrence. This study was a retrospective analysis. There 
are some limitations, including low original sample size, 
slightly different drug metabolic cycles in patients with CT 
enhancement, and individual differences in the diffusion of 
contrast agents. In a follow-up study, we will collect more 
CT data from eligible patients to increase the collection 
of myometrial infiltration samples and carry out a more 
comprehensive analysis and verification of these findings.

Conclusions

Based on the multi-parameter thin-layer enhanced CT 
radiomics feature can be used as a potential independent 
predictor of BC myometrial invasion, the model based 
on parameters can initially quantitatively characterize the 
risk of myometrial invasion, and has excellent potential for 
predicting myometrial invasion of BC.

Figure 7 The calibration curve shows the goodness of fit of the nomogram. The calibration curve of the nomogram was constructed by 
using the training group (A) and the calibration curve of the nomogram constructed by the verification group (B). The 45° dashed line 
represents the ideal prediction, and the black line represents the prediction performance of the nomogram. The closer the black line is to 
the ideal prediction line, the better the prediction effect of the model is.
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