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Introduction

Acute myeloid leukemia (AML) is a hematological 
malignancy characterized by neoplastic clones that are unable 
to differentiate and have unrestrained proliferation (1). 
This condition eventually leads to the disruption of normal 
hematopoiesis, bone marrow failure, and mortality if left 

untreated (1,2). Despite rapid advances in the knowledge 
of leukemogenesis, the therapeutic options remain limited, 
and the mainstream therapies for AML have remained 
largely unchanged in recent decades. Genetic mutations 
or translocations in key genes including but not limited 
to FLT3, KIT, RAS, RUNX1, MLL, CEBPA, and RARA 
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have been shown to play important roles in leukemogenesis 
(3-5). However, compared to other tumors, AML has a 
relatively low rate of recurrent somatic mutations. Besides 
genetic mutations, epigenetic dysregulation is another 
type of important regulator of leukemogenesis and AML 
development, with associated epigenetic factors including 
DOT1L, LSD1, HDACs, PRMT1, PRMT5, and BET 
bromodomain-containing proteins (6-10). Indeed, many 
inhibitors or drugs targeting epigenetic factors have entered 
clinical trials for the treatment of AML (11,12). Thus, 
targeting epigenetic factors that required for leukemogenesis 
and leukemia maintenance may represent a promising future 
therapeutic method for the treatment of AML. 

BRD9 is a bromodomain-containing protein that was 
recently identified as a subunit of SWI/SNF chromatin 
remodeling complexes (13). It functions mainly by 
binding to acetylated lysine on post-transcriptionally 
modified histone proteins to regulate transcription (13). 
In addition to regulating transcription, BRD9 also binds 
to acetylated RAD54 and is involved in the homologous 
recombination pathway, which is important for cancer 
cell survival (14). BRD9 is overexpressed in AML and 
preferably binds to enhancer regions in a cell type-specific 
manner (15). Depletion of BRD9 in AML cells leads to a 
strong proliferation defect accompanied by the induction of 
apoptosis (15). These data suggest that BRD9 is a potential 
therapeutic target in cancer, especially in AML cells. 

Although BRD9 has been shown to be important in 
several malignancies including AML (15,16), whether 
targeting BRD9 with small-molecule probes or inhibitors 
could be beneficial in AML remains unsolved. I-BRD9 
is a selective cellular chemical probe for BRD9 that 
may potently inhibit BRD9 (17). Here we showed that 
I-BRD9 treatment of AML cells resulted in decreased 
cell proliferation and increased apoptosis and ferroptosis 
without inducing differentiation. We further demonstrated 
that I-BRD9 induced several known targets of BRD9 in 
a cell-specific manner. Altogether, our data suggest that 
the targeting of BRD9 by I-BRD9 could be of potential 
use in treating AML. We present the following article in 
accordance with the MDAR checklist (available at https://
dx.doi.org/10.21037/tcr-21-42).

Methods

Cell culture

The NB4 and MV4-11 AML cell lines were purchased 
from Cellcook (www.cellcook.com). Briefly, the cells 

were maintained in RPMI1640 and IMDM medium 
supplemented with 10% fetal bovine serum. The cells were 
kept in a humidified incubator at 37 ℃ with 5% CO2. 

Cell viability assay

Cell viability was assayed using the Cell Counting Kit-
8 (CCK-8) (#BA00208, Bioss, China). Briefly, 1×104cells 
were seeded into 96-well plates and treated with different 
concentrations of I-BRD9 (#HY-18975, MCE, USA) 
for the indicated time. At the end point, 10 μL of CCK-
8 was added to each well and incubated for 2–3 h at 
37 ℃ before the absorbance was detected at 450nM on 
a microplate reader (Varioskan Flash, Thermo Fisher  
Scientific, USA). 

Regarding the inhibitor rescue assay, cells plated in 96-
well plates were first treated with 20 µM Z-VAD-FMK 
(#HY-16658B, MCE, USA), 1 µM Ferrostatin-1 (#HY-
100579, MCE, USA), 100 µM a-Tocopherol (#HY-N068, 
MCE, USA), 10 µM Necrostatin-2 (#HY-14622, MCE, 
USA), 1 µM (E)-Necrosulfonamide (MLKLi) (#HY-100573, 
MCE, USA), 5 µM Chloroquine diphosphate salt (#C6628, 
Sigma, USA), 5 nM Bafilomycin A1 (#A8510, Solarbio, 
China) for 2 h before I-BRD9 treatment. These inhibitors 
plus I-BRD9 were further incubated for 72 h and assayed 
for viability by the CCK-8 assay. 

Flow cytometry

Edu assay
Edu incorporation was assessed after planting cells in 12-
well plates using the Click-iT™ Plus EdU Alexa Fluor™ 
647 Flow Cytometry Assay Kit (#C10635, Thermo Fisher 
Scientific, USA). Edu was added to subconfluent NB4 and 
MV4-11 to a final concentration of 10 µM, and the cells 
were incubated for 2 h before being collected, washed twice 
with phosphate buffer saline (PBS), and stained according 
to the manufacturer’s instructions. 

Apoptosis assay
Cell death flow cytometry was performed using an Annexin 
V/ propidium iodide (PI) kit (#A211-01, Vazyme, China). In 
brief, cells were treated accordingly, collected, washed twice 
with PBS, and stained with Annexin V in binding buffer for 
20 min at room temperature kept from light. After washing 
with PBS, PI was added to each sample. The samples were 
then analyzed using a BD FACSCANTO II system (BD 
Biosciences, USA). 
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Cell differentiation 

The cells were stained with CD11b (#101217, Biolegend, 
USA, 1:200 dilution), CD14 (#301812, Biolegend, USA, 
1:200 dilution), and CD38 (#303506, Biolegend, USA, 1:400 
dilution) for 20min at room temperature kept from light. 
The cells were then washed with PBS and analyzed on a BD 
FACSCANTO II system (BD Biosciences, USA). All flow 
cytometry data were analyzed with FlowJo V10. 

Western blot

To analyze protein expression, cells were directly lysed 
with loading buffer (#NP0008, Thermo Fisher Scientific, 
USA) with dithiothreitol (DTT;#R0861, Thermo Fisher 
Scientific, USA), separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), and 
blotted with PARP (#9542, Cell Signaling Technology, 
USA,1:1000 dilution), caspase 9 (#52873, Cell Signaling 
Technology, USA,1:1000 dilution), caspase 3 (#14220, 
Cell Signaling Technology, USA,1:1000 dilution) and 
Lamin B (#AF1408, Beyotime, China, 1:1,000 dilution). 
The blots were developed on a Gel Imager instrument 
(CHEMIDOCTMXRS+ System, Bio-Rad, USA). The 
intensity of bands was quantified using ImageJ. 

Real-time quantitative polymerase chain reaction  
(qRT-PCR)

Total RNA was extracted using TRIzol solution (#15596018, 
Thermo Fisher Scientific, USA). 1µg of total RNA was then 
reverse transcribed using the PrimeScript RT reagent Kit 
with gDNA Eraser (#RR047A, Takara, Japan) to produce 
cDNA. qRT-PCR was performed with SYBR Green Master 
Mix (#RR820A, Takara, Japan) and analyzed on a RT-PCR 
system (CFX96 Touch, Bio-Rad, USA). The primers used 
are listed below:

Human BRD9:  Fwd-5 ' :  GCAATGACATACAA 
TAGGCCAGA, Rev-5': GAGCTGCCTGTTTGCTCATCA;

Human  DDIT3:  Fwd-5 ' :  GGAAACAGAGTG 
GTCATTCCC, Rev-5': CTGCTTGAGCCGTTCATTCTC;

Human IER3: Fwd-5': CAGCCGCAGGGTTCTCTAC, 
Rev-5': GATCTGGCAGAAGACGATGGT;

Human SOCS3: Fwd-5': CCTGCGCCTCAAGACCTTC, 
Rev-5': GTCACTGCGCTCCAGTAGAA;

Human CDKN1A: Fwd-5': TGTCCGTCAGAAC 
CCATGC, Rev-5': AAAGTCGAAGTTCCATCGCTC;

Human CDKN2B: Fwd-5': TGTCCGTCAGAACCCAT 

GC, Rev-5': AAAGTCGAAGTTCCATCGCTC;
Human GAPDH: Fwd-5': GGAGCGAGATCCCTC 

CAAAAT, Rev-5': GGCTGTTGTCATACTTCTCATGG.

Statistical analysis

Data are presented as means with error bars representing 
standard deviation (SD). Statistical significance was 
determined by two-tailed Student's t-test comparisons if 
not stated otherwise. Significant differences are indicated by 
asterisks (*P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001).

Results

I-BRD9 inhibits AML cell proliferation 

To explore the potential beneficial effect of targeting BRD9 
by I-BRD9, we used two AML cell lines, NB4 and MV4-11.  
NB4 cells reportedly over-express BRD9 (15). And our 
expression analysis showed that MV4-11 cells expressed a 
similar level of BRD9 compared to NB4 cells (Figure 1A). 
These cells were treated with 4 and 8 µM of I-BRD9 for 
24, 48, 72, and 96 h. According to the CCK8 assay, I-BRD9 
dose-dependently inhibited NB4 and MV4-11 cell growth; 
however, MV4-11 cells appeared to be more sensitive to 
I-BRD9 (Figure 1A). To test the specificity of I-BRD9, 
we further used the SU-DHL-4 cell line, which shows 
low BRD9 expression (Figure 1A). Treatment of I-BRD9 
in SU-DHL-4 cells showed a marginal effect on cell 
growth. Together these data suggest the on-target effect of 
I-BRD9 on BRD9 over-expression cells lines. The growth 
inhibitory effect of I-BRD9 in AML cells was accompanied 
by increased cell death as shown by Annexin V/PI staining 
(Figure 1B), and cell cycle arrest, as shown by decreased Edu 
incorporation (Figure 1C). Since cell death and cell cycle 
arrest could be a consequence of AML cell differentiation, 
we further checked whether I-BRD9 treatment led to cell 
differentiation. We did not observe any indication of cell 
differentiation induced by I-BRD9, as there was no increase 
in the expression of several myeloid differentiation markers, 
including CD11b, CD14, and CD38 (Figure 1D). These 
data suggested that the targeting of BRD9 by I-BRD9 
in AML cells induced cell cycle arrest and cell death 
independent of triggering cell differentiation. 

Z-VAD rescues I-BRD9 induced cell death

To further understand the mechanism by which I-BRD9-
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induced cell death, we tested several cell death pathway 
inhibitors to determine the type of cell death induced by 
I-BRD9 treatment. NB4 and MV4-11 cells were treated 
with Z-VAD-FMK (Z-VAD), Ferrostatin-1 (Fer-1), 
a-Tocopherol, Necrostatin-2 (Nec-2), (E)-Necrosulfonamide 
(MLKLi), Chloroquine (CQ), and Bafilomycin A1 (Baf) 2 
h before I-BRD9 treatment, and then co-incubated with 

I-BRD9 for 72h. According to the CCK8 assay, apoptosis 
inhibitor Z-VAD-FMK and ferroptosis inhibitor Fer-1 
significantly rescued I-BRD9-induced cell death in both 
cell lines (Figure 2A,B). In NB4 cells, a-Tocopherol, another 
inhibitor of ferroptosis, also significantly rescued cell death 
(Figure 2A,B). Furthermore, in both cell lines, Z-VAD-FMK 
resulted in a stronger rescue than Fer-1. These observations 

Figure 1 I-BRD9 inhibits NB4 and MV4-11 cell growth. (A) CCK-8 viability assay for NB4, MV4-11, and SU-DHL4 cells treated with 4 
and 8 μM I-BRD9 for 96 h (n=3, mean ± SD, two-tailed t-test); qPCR analysis of BRD9 in NB4, MV4-11, and SU-DHL4 cells (n=3, mean 
± SD, two-tailed t-test). (B) Flow cytometry Annexin V/PI analysis of NB4 and MV4-11 cell death induced by 8 μM I-BRD9 treatment for 
48 h (n=3, mean ± SD, two-tailed t-test). (C) Flow cytometry Edu assay analysis of NB4 and MV4-11 cell proliferation following treatment 
with 8 μM I-BRD9 for 48 h (n=3, mean ± SD, two-tailed t-test). (D) Flow cytometry analysis of CD11b, CD14 and CD38 expression 
in NB4 and MV4-11 cells treated with 8 μM I-BRD9 for 24, 48 and 72 h (n=3, mean ± SD, two-tailed t-test). *, P<0.05; **, P<0.01; ***, 
P<0.001; ****, P<0.0001. CCK-8, Cell Counting Kit-8; qPCR, quantitative polymerase chain reaction; SD, standard deviation.
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were further confirmed by Annexin V/PI staining, which 
showed a stronger rescue of I-BRD9 induced cell death by 
Z-VAD-FMK than Fer-1 and a-Tocopherol (Figure 3A). 
These data suggested that I-BRD9 mainly induced apoptosis 
and, to a lesser extent, ferroptosis in AML cells. This was 
further supported by the observation that I-BRD9 treatment 

resulted in an increase in apoptosis markers, such as the 
cleaved forms of PARP, caspase 3, and caspase 9 in MV4-11  
cells, which were rescued by Z-VAD-FMK (Figure 3B). 
I-BRD9 also decreased the expression of the BRD9 
protein, without significantly affecting other BRDs, 
such as BRD1, BRD2, and BRD3, indicating that cell 

Figure 2. Z-VAD-FMK rescues I-BRD9-induced cell death. (A) CCK-8 viability assay in MV4-11 cells treated with the indicated inhibitors 
and 8 μM I-BRD9 for 72 h (n=3, mean ± SD, two-tailed t-test,). (B) CCK-8 viability assay in NB4 cells treated with the indicated inhibitors 
and 8 μM I-BRD9 for 72h (n=3, mean ± SD, two-tailed t-test). *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. CCK-8, Cell Counting 
Kit-8; SD, standard deviation.
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death was specifically induced by the inhibition of BRD9  
(Figure 3C).

I-BRD9 induces common and cell type-specific target genes

As previously reported, BRD9 can bind to cell type-specific 
target genes and regulate their expression (15). Among 
these genes, several are important factors that regulate cell 
cycle progression and apoptosis. Thus, we evaluated the 
expression of BRD9, DDIT3, IER3, SOCS3, CDKN1A, 
and CDKN2B after 24 h I-BRD9 treatment in NB4 and 

MV4-11 cells. Consistent with the previous report, I-BRD9 
induced distinct gene expression in these two AML cell lines; 
for instance, IER3 expression was increased in MV4-11  
cells by I-BRD9 treatment (Figure 4), while SOCS3 
expression was much lower in NB4 cells than in MV4-11 
cells based on their normalized values. However, CDKN1A 
and CDKN2B expression were significantly increased 
in both cell line (Figure 4) and were partially rescued by 
Z-VAD-FMK, suggesting an important role of these two 
cell cycle inhibitors in regulating the phenotype induced 
by I-BRD9. Interestingly, BRD9 expression was also 
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Figure 3 I-BRD9 induces apoptosis in MV4-11 and NB4 cells. (A) Flow cytometry Annexin V/PI analysis of cell death in NB4 and 
MV4-11 cells treated with the indicated inhibitors and 8 μM I-BRD9 for 48 h (n=4, mean ± SD, two-tailed t-test). (B) Western blots and 
quantifications of PARP, Caspase 9, Caspase 3, and loading control Lamin B in MV4-11 cells pretreated with 20 µM Z-VAD-FMK and 
then co-incubated with 8 μM I-BRD9 for 48 h (n=3, mean ± SD, two-tailed t-test). (C) Western blots and quantifications of BRD1, BRD2, 
BRD3, BRD9,and loading control Tubulin in MV4-11 cells treated with 8 μM I-BRD9 for 48 h (n=3, mean ± SD, two-tailed t-test). *, 
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downregulated by I-BRD9, suggesting that BRD9 could 
regulate its own expression. Taken together, the induction 
of cell cycle inhibitors and cell death promoter genes might 
contribute to I-BRD9-induced growth inhibition. 

Discussion

The targeting of epigenetic factors is emerging as a 

promising method for the treatment of hematological 
malignancies. Several epigenetic inhibitors for AML are 
currently in clinical trials, including type I PRMTs inhibitor 
GSK3368715, PRMT5 inhibitor GSK3326595, HDACs 
inhibitors, and Dot1l inhibitor Pinometostat (11,12,18,19). 
More recently the importance of bromodomain-containing 
proteins in hematological malignancies has been recognized, 
such as BRD4, which led to the development of BRD4 
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inhibitors that have entered clinical trials for the treatment 
of AML (20). The present study focused on another 
important bromodomain-containing protein BRD9, which 
was recently shown to be crucial for AML development 
in the animal model and was also overexpressed in AML 
patients (15). We found that targeting the bromodomain-
containing protein BRD9 with the small molecule inhibitor 
I-BRD9 significantly decreased the growth of two AML 
cell lines. This was accompanied by increased cell death 
and decreased cell proliferation. Furthermore, we observed 
that MV4-11 was more sensitive to I-BRD9 compared 
to NB4. This difference observed is probably becauseI-
BRD9 induced higher expression levels of genes involved 
in promoting cell death in MV4-11 cells compared to NB4 
cells. This also fits the reported function ofBRD9 binding 
to cell-specific genes in different cell types, suggesting that 
certain AML subtypes may be more responsive to I-BRD9.

In addition to inducing apoptosis, I-BRD9 treatment also 
increased ferroptosis, although this was not its main effect. 
Ferroptosis is a novel type of regulated cell death that may 
be a complementary method to tackle cancers, especially in 
tumors in which the apoptosis induction pathway is mutated 
or blocked (21). Thus, it would be interesting to determine 
whether I-BRD9 could act in synergy with ferroptosis- 
inducing drugs, such as RSL3 (22), to strengthen its tumor-
killing effects. In summary, I-BRD9 showed a strong 
inhibitory role in AML cells, which may have applications 
in treating AML alone or in combination with other drugs. 
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