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Background: Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer (LC). 
However, the early-stage diagnostic rate is still low, and the 5-year overall survival (OS) rate remains poor. 
The present study aimed to identify critical genes as diagnostic and prognostic markers and small-molecule 
drugs for combating LUAD using a systematic bioinformatics analysis. 
Methods: Five gene expression profiling datasets were systematically integrated and analyzed. First, gene 
coexpression modules were identified, and differentially expressed genes (DEGs) were screened. Second, the 
functional changes of these DEGs were systematically investigated. Third, the protein-protein interaction 
network, high correlation module and key genes were identified. Fourth, prognosis and diagnostic analyses 
were performed. Fifth, small-molecule drugs were predicted for guiding LUAD therapy. 
Results: Finally, 12-gene and 2-gene signatures were identified as diagnostic and prognostic markers. 
The areas under the curves (AUCs) of two signatures associated with 3-year survival were 0.686 and 0.603, 
respectively. The AUCs of two signatures were over 95% and 94% in diagnostic model, separately. Eleven 
small-molecule drugs were found and irinotecan was simultaneously predicted in three drug databases. 
Conclusions: The present study identified some key dysregulated genes involved in LUAD and potential 
drugs by a comprehensive analysis, which provides novel insights into the pathological mechanism involved 
in LUAD and may shed light on the diagnosis, prognosis and treatment of LUAD patients.

Keywords: Lung adenocarcinoma (LUAD); biomarker; diagnosis; prognosis; small-molecule drug

Submitted Mar 24, 2021. Accepted for publication Jul 14, 2021.

doi: 10.21037/tcr-21-526

View this article at: https://dx.doi.org/10.21037/tcr-21-526

3646

^ ORCID: 0000-0002-4077-0216.

https://crossmark.crossref.org/dialog/?doi=110.21037/tcr-21-526


3620 Chen et al. Diagnostic and prognostic markers for LUAD

© Translational Cancer Research. All rights reserved.   Trransl Cancer Res 2021;10(8):3619-3646 | https://dx.doi.org/10.21037/tcr-21-526

Introduction

Lung cancer (LC), one of the most common malignancies, 
is the leading cause of cancer-related deaths worldwide (1). 
Especially in recent years, the morbidity and mortality of 
LC have been increasing year by year, and LC has ranked 
first among all malignancies for many years in some 
countries such as China (2019 National Cancer Report 
from China National Cancer Center). Non-small cell lung 
cancer (NSCLC) is the most predominant pathological 
type, constituting more than 80% of LCs (2), of which lung 
adenocarcinoma (LUAD) is the major histological subtype 
and accounts for more than 40% of LCs (3,4). Annually, 
LUAD results in more than 600,000 deaths all over the 
world (5). Despite recent advances in molecular diagnosis 
and multimodality therapies, the 5-year overall survival (OS) 
rate of LUAD patients in all stages is only approximately 
15% (3,6). LUAD patients diagnosed at an early stage 
have a higher 5-year OS rate with 70–90% (7). However, 
no more than 20% of LUAD patients are diagnosed in a 
timely manner at an early stage (8), and 35–50% of patients 
diagnosed and treated at an early stage will relapse after 
surgical resection (9), which indicates a very poor prognosis. 
To improve the survival rate of LUAD patients, it is vital to 
uncover the underlying molecular mechanisms of LUAD 
and identify potential molecular diagnostic and prognostic 
biomarkers and/or therapeutic targets to combat LUAD.

Currently, the diagnosis and prognosis of LUAD 
patients are mainly evaluated on the basis of many clinical 
and pathological features. Due to the high heterogeneity of 
LUAD, many clinical variables correlating with prognosis 
bring difficulty in predicting clinical outcomes upon 
detecting LUAD at an early stage (10). Recently, several 
molecular factors such as gene mutation and overexpression 
have been used to guide the clinical care of LUAD patients 
(3,11). For example, EGFR mutations and ALK fusions have 
been used as targets of molecular targeted therapy (3,12,13). 
However, EGFR and ALK alterations were found in only 
a small fraction of LUAD patients, and the majority of 
LUAD patients frequently harbored activating mutations 
such as KRAS, BRAF and ERBB2 (14) and loss-of-function 
mutations and deletions such as TP53, RB1 and CDKN2A 
(3,15,16). So far, few targeted molecular therapies have 
been clinically used for such alterations, and few prognostic 
biomarkers have been identified to predict clinical 
outcomes. Therefore, more knowledge of additional genes 
altered in LUAD is required to further guide the diagnosis, 
treatment and prognosis of LUAD.

Gene expression analysis based on gene expression 
profiles is an important traditional method of investigating 
the differences in gene expression under different cell 
statuses, and a large number of differentially expressed genes 
(DEGs) associated with LUAD have been identified (17-20),  
such as AKT1, DDR2 and FGFR1. Some genetic factors 
including K-ras, FGF22 and LAPTM4B, as biomarkers, have 
also been investigated to predict the prognosis in LUAD 
patients (21-23). However, most DEGs reported in different 
studies vary greatly, and only a few consistent DEGs have 
been identified. In addition, few identified diagnostic and 
prognostic markers have been widely accepted for routine 
clinical use, and widely acceptable consistent key genes as 
biomarkers urgently require identification. 

Increasing LUAD-related gene expression data allows 
us to do the important work of identifying consistent key 
genes involved in LUAD by systematically integrative 
analysis. In this study, five LUAD-related gene expression 
profile datasets from the NCBI Gene Expression Omnibus 
(GEO) and The Cancer Genome Atlas (TCGA) databases 
were systematically integrated by bioinformatics methods 
including weighted gene coexpression network analysis 
(WGCNA), differentially expressed gene analysis (DEGA), 
functional enrichment analysis, and protein and protein 
interaction (PPI) network construction. Subsequently, 
diagnostic and prognostic analyses of identified critical 
genes were performed to identify diagnostic and prognostic 
candidates associated with LUAD patients. Last, potential 
small-molecule drugs related to key genes were identified to 
guide the treatment of LUAD.

We present the following article in accordance with the 
TRIPOD reporting checklist and the MDAR checklist 
(available at https://dx.doi.org/10.21037/tcr-21-526).

Methods

The flow chart of systematic bioinformatics analysis in the 
current study is displayed in Figure 1.

Data collection

Five LUAD-related gene expression datasets were 
reanalyzed by systematic bioinformatics methods in this 
study. Among these datasets, four microarray datasets were 
retrieved from the NCBI GEO database (https://www.
ncbi.nlm.nih.gov/geoprofiles/), including GSE10072 (19), 
GSE7670 (24), GSE19804 (20) and GSE102511 (25). 
The GSE10072, GSE7670 and GSE19804 datasets were 
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Figure 1 Flow chart of the bioinformatics analysis in the present study. LUAD, lung adenocarcinoma; TCGA, the cancer genome atlas; 
GEO, gene expression omnibus; DEGA, differentially expressed gene analysis; DEGs, differentially expressed genes; WGCNA, weighted 
gene coexpression network analysis; PPI, protein-protein interaction; MCODE, molecular complex detection; GO, gene ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; RP, reaction pathway; DO, disease ontology; LASSO, least absolute shrinkage and selection.

Datasets retrieve
LUAD-related gene expression data were retrieved from the TCGA 
and GEO databases and preprocessed.

TCGA database

NCBI GEO database

DEGs identification
DEGs were identified using DEGA 
in each LUAD-related dataset.

WGCNA
Gene co-expression modules were identified 
using WGCNA in each LUAD-related dataset.

Common DEGs identification
Overlapping genes of DEGs were 
identified.

Key module identification
The most significant module was identified 
in each LUAD-related dataset.

Functional analysis
GO, KEGG, RP and DO 
analyses were performed

Common DEGs identification
Common DEGs were identified in the 
most significant modules.

Identification of interactive relationship among DEGs
Interactive relationships among DEGs were identified using PPI network on the basis of interactive 
information from STRING database.

Highly correlated module and essential genes identification
Highly correlated modules were identified using MCODE method in 
whole PPI network. Essential genes were identified using seven 
centrality methods in highly correlated module.

Expression validation of essential genes 
The expressions of essential genes were validated using gene expression data 
of 20 transcriptomes from 10 LUAD patients with early stage.

Survival analysis based on univariate Cox regression model
The relationships between essential genes and survival of LUAD patients were 
analyzed on the basis of univariate Cox regression model.

Survival analysis based on LASSO Cox regression model
The relationships between essential genes and survival of LUAD patients were 
analyzed on the basis of LASSO Cox regression model.

Diagnostic analysis based on genes related to prognosis
Diagnostic analysis of genes related to prognosis was performed using 
support vector machine classification model.

Small molecule drug identification
Small molecule drugs were identified using three small molecule databases 
including CMap, L1000FWD and DGIdb.
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generated using the Affymetrix microarray platform. The 
GSE102511 dataset was produced using the Ion Torrent 
Proton platform. The GSE10072 and GSE102511 datasets 
were from American patients with LUAD. The GSE10072 
dataset included 58 eligible tumor tissues samples and 49 
eligible normal lung tissues samples, and the GSE102511 
dataset included 16 eligible tumor tissues samples and 
15 eligible normal lung tissues samples. The GSE7670 
and GSE19804 datasets were from Taiwanese patients 
with LUAD and included 27 and 56 eligible paired tissue 
samples, separately. Given the same microarray chip 
platform (GPL96), the GSE10072 and GSE7670 datasets 
were merged into one dataset by reconstructing the gene 
expression profiles, and the new dataset was named “Dataset 
A”. The GSE19804 and GSE102511 datasets were named 
“Dataset B” and “Dataset C”, respectively.

A LUAD-related RNA-seq dataset was retrieved from 
TCGA database portal (2019, https://portal.gdc.cancer.
gov/). The inclusion criteria for the RNA-seq data were 
as follows: (I) histological diagnosis for LUAD; (II) except 
LUAD, not suffering from other malignancies; and (III) 
data with complete clinical information. Finally, totals of 
535 LUAD tissues samples and 59 non-LUAD normal lung 
tissues samples were included. The LUAD-related RNA-
seq dataset was named “Dataset D”.

These studies have been approved by the Institutional 
Review Board of the relevant participating institutions 
including the National Taiwan University and Taichung 
Veterans General Hospital (GSE19804), the Taipei Veterans 
General Hospital and Taichung Veterans General Hospital 
(GSE7670), 13 participating hospitals and National Cancer 
Institutes (GSE10072), the Aichi Cancer Center and 
Nagasaki University (GSE102511), and the National Cancer 
Institute of NIH (TCGA RNA-seq data). No additional 
approval from the ethics committee was required. The 
present study complies with the requirements of data usage 
and publishing from NCBI GEO and TCGA databases.

Data preprocessing and DEGA

All microarray data were standardized by a normalized 
microarray preprocessing procedure using the affy package 
(version 1.60.0) in Bioconductor project (version 3.9.0, 
http://www.bioconductor.org/) (26), and RNA-seq data 
were subjected to normalization using the trimmed mean 
of M-values (TMM) method based on the edgeR package 
(version 3.26.3) in Bioconductor project (27).

DEG screening of microarray data was performed 

using the limma package (version 3.32.7) in Bioconductor 
project (28). The limma package employs the voom method, 
linear modeling and empirical Bayes moderation to assess 
DEGs, which yields more robust results, even with fewer 
microarrays. The edgeR package (version 3.26.3) in 
Bioconductor project was used to screen the DEGs between 
LUAD tissue and non-LUAD normal lung tissue samples 
of TCGA RNA-seq data (27). 

WGCNA

Gene coexpression was analyzed using a WGCNA 
method, and WGCNA was performed using the WGCNA 
package (version 1.13) (29). First, an adjacency matrix was 
converted according to the gene expression matrix. Based 
on the adjacency matrix, the unsupervised coexpression 
relationship of each gene pair was computed by Pearson 
correlation coefficients. The soft threshold β was used 
to strengthen the correlation adjacency matrix, and the 
parameter β of each dataset was selected according to its 
scale-free topology criterion. Second, a topological matrix 
was converted according to the strengthened adjacency 
matrix, and the correlation of each gene pair was measured 
using the topological overlap measure (TOM). On the 
basis of TOM-based dissimilarity (1-TOM), the genes with 
coherent expression profiles were classified into a gene 
module using the average linkage hierarchical clustering 
method. Gene coexpression module was identified from the 
system cluster tree by a dynamic cutting algorithm. The 
modules with 75% similarity were merged into one module, 
and the representative gene in a module was identified as the 
module eigengene (ME). The correlation between the ME 
and gene module was defined as the module membership 
(MM). The gene differential expression was measured using 
the P value from t-test method between LUAD and normal 
lung tissues, and gene significance (GS) was computed by 
log10 transformation of the p value. The average GS was 
defined as the module significance (MS) of the module, and 
the MS indicated the correlation between the module and 
LUAD. A detailed description of the WGCNA method can 
be obtained from the original article (29).

PPI network construction and highly correlated module 
identification

The interactive relationships among DEGs encoding 
proteins were elucidated by constructing a PPI network, 
and the interactive relationships between gene pairs were 
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retrieved from the online STRING database (version 11.0, 
https://string-db.org/) (30). Gene pairs with a combined 
score ≥0.7 were filtered to construct the PPI network, 
and the PPI network was established and visualized using 
Cytoscape software (version 3.7.0, http://www.cytoscape.
org/) (31). Based on the topological properties of the whole 
PPI network, the highly correlated modules (subnetwork) 
were extracted from the whole PPI network using a 
Molecular COmplex DEtection (MCODE) algorithm. The 
MCODE analysis was performed using the plugin MCODE 
(version 1.5.1) in Cytoscape software (32). The threshold 
parameters were set as degree cut-off =4, node score cut-off 
=0.6, K-core =4 and max. depth =100.

Essential genes identification

Key genes were identified using seven centrality analyses 
in the PPI subnetwork (33). Seven centrality methods 
were Degree Centrality, Subgraph Centrality, Network 
Centrality, Eigenvector Centrality, Closeness Centrality, 
Betweenness Centrality and Information Centrality. The 
plugin CytoNCA (version 2.1.6) was used to perform the 
Centrality analyses in the Cytoscape software (34). The 
centrality score of each gene was computed by the centrality 
analyses, and the genes with higher centrality scores were 
identified as key genes. The intersecting genes of key genes 
were identified as the essential genes. 

Identification of LUAD-specific prognostic gene signature

The LUAD patients from the TCGA database were used 
to perform the survival analysis. The Kaplan-Meier (KM) 
estimate and log-rank (LR) test were used to evaluate the 
associations between the essential genes and the OS of 
LUAD patients in the survival package (version 2.43-3, 
https://CRAN.R-project.org/package=survival). The group 
cut off was set to 50%, and the LR P value, hazard ratio 
(HR) and 95% confidence interval (CI) were computed. A 
P<0.05 indicated the statistical significant of the association 
between an essential gene and the OS of LUAD patients. 
A univariate Cox proportional hazards regression model 
was applied to evaluate the associations between the 
essential genes and the OS of LUAD patients. The same 
characteristic parameters obtained via the LR method were 
computed, and the same significant P value criterion was 
set. A multivariate Cox hazards regression model with the 
stepwise method was applied to assess the prognostic value 
for LUAD patients using the survival package in R project. 

The essential gene combination in the optimal Cox hazard 
regression model was used for further analyses. The hazards 
model was established as follows:

Risk score = ExpDEG1*CoeDEG1 + ExpDEG2*CoeDEG2 
 [1]

+ ExpDEG3*CoeDEG3 …+ ExpDEGn*CoeDEGn

where “ExpDEGn” represented the expression level of 
DEGn and “CoeDEGn” denoted the regression coefficient 
from the multivariate Cox regression model (35). On the 
basis of the median of the above risk scores, LUAD patients 
were divided into the low-risk and high-risk groups. The 
survivalROC package (version 1.0.3) was used to construct 
the receiver operating characteristic (ROC) curve, and the 
ROC was used to measure the risk prediction rate of DEGs 
between the low- and high-risk groups.

LASSO Cox regression model analysis was performed 
using the glmnet package (version 4.0-2) based on R. The 
formula used to calculate the risk score is the same as that 
in the multivariate Cox hazards regression model, and the 
statistical methods are the same as those in the multivariate 
Cox hazards regression model.

Diagnostic analysis of prognostic genes

Diagnostic analysis of prognostic genes was performed 
using the support vector machine (SVM) method. The 
SVM classification model was constructed using the e1071 
package (version 1.7-3) based on R. The radial basis 
function was applied in the SVM kernels, and the mRNA 
profiles were classified using 100 independent repetitions 
of 10-fold cross-validation. The specificity, sensitivity and 
accuracy were calculated.

Identification of candidate small-molecule drugs

Potential small-molecule drugs of the candidate prognostic 
genes were searched using three databases including CMap 
(https://portals.broadinstitute.org/cmap/) (36), L1000FWD 
(http://amp.pharm.mssm.edu/L1000FWD/) (37) and 
DGIdb (http://www.dgidb.org/) (38). The intersection 
of identified small molecules was indicative of potential 
candidate adjuvant drugs for use in LUAD patients.

Expression validation of essential genes by transcriptome 
sequencing data

To verify the expression of essential genes between LUAD 
tissue and normal lung tissue by bioinformatics methods, 
the transcriptomes of 10 nonsmoking LUAD patients of 
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35–50 years old (5 male and 5 female LUAD patients in 
early stages) from Xuanwei City (one of the areas with the 
highest morbidity and mortality of LC in China) in China 
were sequenced. All tissues were obtained from The First 
People’s Hospital of Yunnan Province. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the 
Institutional Review Board of The First People’s Hospital 
of Yunnan Province (No. 2017YY227). Informed consent 
was taken from all the patients.

Transcriptome sequencing data were generated using 
the Illumina HiSeq2500 platform with the paired-end 
sequencing method by Beijing Novogene Technology Co., 
Ltd. DEGs between LUAD tissues and normal lung tissues 
samples were screened using the DESeq2 (version 1.24.0) 
package in Bioconductor project (39), and |logFC|>1 and 
FDR<0.01 were set as the cut-off criteria.

Statistical analysis

We performed data analysis according to the characteristics 
of each dataset on the basis of R software (version 3.6.3). 
For microarray datasets, DEGs were screened using the 
unpaired t-test in the limma package and a |Log2(fold 
change) (logFC)|>1 and a false discovery rate (FDR) 
<0.05 (P<0.05) were set as the cut-off criteria. For RNA-
seq dataset, the quantile-adjusted conditional maximum 
likelihood (qCML) method in the edgeR package was 
used to identify DEGs, and the statistical significant of the 
difference was set for |logFC|>1.5 and FDR<0.01 on the 
basis of large-scale samples. The construction of prognostic 
signature was performed by univariate and multivariate 
COX regression analyses. Survival analysis was conducted 
by KM method and LR test, and P<0.05 indicated that the 
difference was statistically significant. Diagnostic analysis 
was performed using the SVM method. Gene coexpression 
analysis was performed using WGCNA, and gene 
significance was indexed by log10 transformation of the P 
value of the t-test measuring differential expression between 
LUAD and normal lung tissue samples. The expressions 
of key DEGs in prognostic and diagnostic signatures 
were analyzed using the paired-sample datasets including 
GSE7670 and GSE19804, and the paired t-test method was 
used to compare the expression difference between tumor 
samples and normal samples. A P<0.05 indicated that the 
difference was statistically significant in two groups.

Results

DEGs identification and functional analysis

To identify DEGs involved in LUAD, DEGA was 
performed. According to |logFC|>1 and FDR <0.05, totals 
of 623 (Dataset A, 189 upregulated and 434 downregulated), 
1,387 (Dataset B, 424 upregulated and 963 downregulated), 
1,343 (Dataset C, 492 upregulated and 851 downregulated) 
DEGs were identified. According to |logFC|>1.5 
and FDR <0.01, 11,450 (8,940 upregulated and 2,510 
downregulated) DEGs were identified. Overlapping analysis 
showed that 235 common DEGs (74 upregulated and 161 
downregulated) were identified (available online: https://
cdn.amegroups.cn/static/public/tcr-21-526-1.pdf).

To better understand the roles of 235 common DEGs 
in LUAD, functional enrichment analyses including 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, Reactome pathways (RP) and 
Disease Ontology (DO) analyses were performed using the 
online STRING database (version 11.0) and clusterProfiler 
package (version 3.12.0) in Bioconductor project (30,40). 
GO analysis showed that 235 dysregulated genes were 
separately significantly enriched in 163 upregulated and 
537 downregulated biological processes (BPs) (P<0.05), 
18 upregulated and 29 downregulated molecular functions 
(MFs) (P<0.05), and 22 upregulated and 36 downregulated 
cellular components (CCs) (P<0.05). The top 5 GO terms 
with the most significant P values are shown in Table 1. 
Among the enriched BPs, upregulated BPs were mainly 
related to the cell cycle process, and downregulated BPs 
were mainly associated with the biological regulation  
(Table 1). KEGG pathway analysis showed that 2 upregulated 
pathways including the cell cycle (P=0.00062) and ECM-
receptor interaction (P=0.0101) were significantly enriched 
(Table 1), and no significantly downregulated pathways 
were enriched. RP analysis showed that 235 dysregulated 
genes were separately enriched in 1 upregulated and 
1 downregulated pathways (Table 1), and the 2 RPs 
were upregulated collagen degradation (P=0.0068) and 
downregulated hemostasis (P=0.0045), respectively. DO 
analysis showed that up- and down-regulated DEGs were 
separately associated with 32 and 9 diseases, and the top 5 
DO terms are listed in Table 1. All upregulated DO terms 
were significantly associated with many types of cancers, and 
the most significantly upregulated DO term was non-small 
cell lung carcinoma (P=0.000764424) (Table 1). 

https://cdn.amegroups.cn/static/public/tcr-21-526-1.pdf
https://cdn.amegroups.cn/static/public/tcr-21-526-1.pdf
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Table 1 Functional terms enriched by common DEGs

Term ID Term description Observed FDR

Biological process

Up-regulated

GO:1903047 Mitotic cell cycle process 21 5.01E-12

GO:0022402 Cell cycle process 23 1.11E-10

GO:0051301 Cell division 14 1.91E-06

GO:0000280 Nuclear division 11 2.81E-06

GO:0007059 Chromosome segregation 10 1.51E-05

Down-regulated

GO:0051239 Regulation of multicellular organismal process 67 1.36E-13

GO:0009653 Anatomical structure morphogenesis 51 1.80E-10

GO:0050793 Regulation of developmental process 56 2.61E-10

GO:0072359 Circulatory system development 32 2.61E-10

GO:0001944 Vasculature development 25 4.38E-10

Molecular function

Up-regulated

GO:0005515 Protein binding 45 0.00063

GO:0042802 Identical protein binding 20 0.00099

GO:0042803 Protein homodimerization activity 13 0.0016

GO:0046983 Protein dimerization activity 16 0.0021

GO:0005488 Binding 61 0.0034

Down-regulated

GO:0005539 Glycosaminoglycan binding 12 0.00024

GO:0005102 Signaling receptor binding 31 0.00048

GO:0005488 Binding 126 0.00048

GO:0005515 Protein binding 83 0.00048

GO:0017046 Peptide hormone binding 6 0.00048

Cellular component

Up-regulated

GO:0005576 Extracellular region 28 1.14E-05

GO:0005819 Spindle 10 5.09E-05

GO:0000776 Kinetochore 6 0.00092

GO:0000940 Condensed chromosome outer 3 0.001

GO:0005615 Extracellular space 15 0.001

Table 1 (continued)
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Table 1 (continued)

Term ID Term description Observed FDR

Down-regulated

GO:0005576 Extracellular region 55 1.28E-09

GO:0005615 Extracellular space 31 7.89E-07

GO:0005886 Plasma membrane 74 9.46E-06

GO:0009986 Cell surface 22 9.46E-06

GO:0031226 Intrinsic component of plasma membrane 34 3.13E-05

KEGG pathway

Up-regulated

hsa04110 Cell cycle 6 0.00062

hsa04512 ECM-receptor interaction 4 0.0101

Reactome pathway

Up-regulated

HSA-1442490 Collagen degradation 3 0.0068

Down-regulated

HSA-109582 Hemostasis 15 0.0045

Disease ontology

Up-regulated

DO:3908 Non-small cell lung carcinoma 15 0.0007644

DO:3459 Breast carcinoma 13 0.0027271

DO:0050904 Salivary gland carcinoma 5 0.0088499

DO:8850 Salivary gland cancer 5 0.0088499

DO:0060084 Cell type benign neoplasm 13 0.0088499

Down-regulated

DO:6000 Congestive heart failure 14 0.0134019

DO:6432 Pulmonary hypertension 8 0.0134019

DO:5844 Myocardial infarction 15 0.0134019

DO:3393 Coronary artery disease 17 0.0134019

DO:1936 Atherosclerosis 16 0.0261586

DEG, differentially expressed gene; FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular  
matrix.

Interactive relationships among 235 DEGs and essential 
gene identification

To elucidate the interactive relationships among 235 DEGs, 
a PPI network was constructed. At a minimum required 
interaction score = high confidence 0.7, a total of 108 DEGs 

was filtered into the PPI network, and a PPI network with 
108 nodes and 320 edges was established (Figure 2A). Three 
highly correlated modules were identified in the whole 
PPI network, and the module with the highest score (score 
=19.789) included 20 nodes and 188 edges (Figure 2B). 
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The 20 genes had high centrality scores (Table 2) and were 
identified as essential genes including UBE2C, ZWINT, 
MELK, CCNB2, RRM2, CEP55, BIRC5, TTK, KIF20A, 
CDKN3, TOP2A, NUSAP1, ASPM, CDC20, BUB1B, 
CCNB1, TYMS, MCM4, CENPF and KIF4A. These genes 
were mainly associated with many types of cancers including 
NSCLC and LUAD (Figure 2C) and were mainly enriched 
within pathways related to the cell cycle (Figure 2D). All the 
genes were highly expressed in LUAD tissue (all P<0.001) 
(Figure 2E), and every pair of genes showed a strong positive 
correlation in expression (all P<0.001) (Figure 2F).

Expression validation of 20 essential genes

To validate the differential expressions of 20 essential genes 
between LUAD and normal lung tissues, 20 transcriptomes 
from 10 nonsmoking LUAD patients in an early stage 
were analyzed. According to |logFC|>1 and FDR<0.01,  
2,360 DEGs (1,302 upregulated and 1,058 downregulated) 
were identified (available online: https://cdn.amegroups.
cn/static/public/tcr-21-526-2.pdf).  Except TYMS ,  
19 DEGs were consistent with the results from integrative 
data, and the expressions of 19 DEGs were visualized using 
the heatmap shown in Figure 2G. Similarly, there were 
stronger positive correlations in expression among these 
genes (all R2>0.55, most P<0.001) (Figure 2H). The RNA-
seq data have been deposited in the NCBI Short Read 
Archive (Accession number: PRJNA561283). Given the 
high consistency of the identified DEGs, the 20 DEGs were 
selected for further analyses.

Consensus clustering of 20 essential genes and relationships 
with distinct clinical outcomes and clinicopathological 
features

To investigate the relationships between 20 essential genes 
and distinct clinical outcomes and clinicopathological 
features, consensus clustering was performed. On the basis 
of the expression similarity of 20 essential genes, k=2 was 
selected according to clustering stabilities increasing from 
k=2 to 9 in the TCGA dataset (Figure 3A,B) and clustered 
into two subgroups (Figure 3C). The two subgroups were 
significantly related to the prognosis of LUAD patients, and 
the cluster2 subgroup had a higher survival rate (P=0.002, 
Figure 3D). Clinicopathological features were compared 
between the two subgroups. The results showed that all 
these genes were lowly expressed in the cluster2 subgroup, 
and the cluster2 subgroup was significantly correlated with 

an earlier N stage, T stage and pathological grade (P<0.05, 
0.001 and 0.01, separately), as well as with fewer female and 
dead patients (P<0.001 and 0.05, separately) (Figure 3E). 
The results explained why patients had a higher OS in the 
cluster2 subgroup.

Survival analysis and prognostic model of 20 essential 
genes

To elucidate the relationships between 20 essential genes and 
the OS of LUAD patients, survival analysis was performed. 
Univariate Cox regression showed that all 20 essential genes 
were significantly correlated with the OS of LUAD patients 
(all P<0.01) and were risky genes with HR >1 (Figure 4A). 
To better predict the clinical outcomes of LUAD with 20 
essential genes, the LASSO Cox regression algorithm was 
applied and 12 essential genes (ZWINT, MELK, CCNB2, 
RRM2, TTK, KIF20A, TOP2A, ASPM, CDC20, CCNB1, 
TYMS and KIF4A) were selected to build the risk signature 
based on the minimum criteria (Figure 4B,C). The risk score 
of each patient was calculated, and LUAD patients were 
divided into high-risk and low-risk subgroups on the basis 
of the median risk score. A significant difference in OS was 
observed between the two subgroups (P=1e-05), and the 
low-risk group showed a higher survival rate (Figure 4D). 
The KM estimate and LR test showed that 12 genes were 
significantly associated with the OS of LUAD patients (all 
P<0.05, Figure S1).

The expression levels of 12 genes were analyzed between 
the high-risk and low-risk groups. The results showed that 
all the genes were significantly highly expressed in high 
risk group (all P<0.001, Figure 4E). The expression levels of  
12 genes were also compared between alive and dead patient 
groups. The result showed that 12 genes were significantly 
lowly expressed in the alive patient group (all P<0.01, 
separately, Figure 4F), which indicates that low expressions 
of these genes contribute to a low risk of LUAD patients 
and lengthen survival of LUAD patients.

To elucidate the associations between risk scores and 
clinicopathological features, clinicopathological features 
were analyzed between the high-risk and low-risk 
subgroups. We observed significant differences between the 
two risk subgroups with respect to the N stage (P<0.01), T 
stage (P<0.01), pathological stage (P<0.001) and survival 
status (P<0.001) (Figure 4G). The ROC curve showed that 
the risk score and pathological stage could better predict the 
three-year OS for LUAD patients (AUC =0.686 and 0.675, 
separately) (Figure 4H).

https://cdn.amegroups.cn/static/public/tcr-21-526-2.pdf
https://cdn.amegroups.cn/static/public/tcr-21-526-2.pdf
https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
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Figure 2 Biological analysis based on 235 DEGs. (A) A PPI network with 108 nodes and 320 edges was established. Each red cycle node 
represents one upregulated gene and each green cycle represents one downregulated gene. Each edge represents an interactive relationship 
between two genes. Larger nodes represent more links. Thicker edges represent higher coexpression scores among genes, and deeper-
colored edges represent higher combined scores (yellow to blue to pink). (B) Highly correlated module with the highest score was identified 
by the MCODE algorithm in the whole PPI network (score =19.789). The subnetwork included 20 nodes and 188 edges. All genes in the 
subnetwork were upregulated in LUAD tissues. Thicker edges represent higher coexpression scores among genes, and deeper-colored 
edges represent higher combined scores (yellow to blue to pink). (C) The DO-gene network showed that 20 genes were mainly associated 
with various cancers. (D) The pathway-gene network showed that 20 genes were mainly related to cell cycle pathways. Each red cycle node 
represents one gene. Each blue V node represents one GO term (biological process). Each yellow triangle node represents one KEGG 
pathway, and each green diamond node represents one reaction pathway. (E) Twenty genes were upregulated in LUAD tissues (all P<0.001). 
(F) Twenty genes had stronger positive correlations in expression. (G) Nineteen genes in the subnetwork were validated to have significantly 
upregulated expression in LUAD tissues by analyzing transcriptome sequencing data. (H) Nineteen genes had stronger positive correlations 
in expression in the transcriptome sequencing data. DEGs, differentially expressed genes; PPI, protein-protein interaction; MCODE, 
molecular complex detection; LUAD, lung adenocarcinoma; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table 2 Centrality scores of twenty genes in the highly correlated module by eight centrality methods

Rank Gene Subgraph Eigenvector Information LAC Betweenness Closeness Network Degree

1 UBE2C 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

2 ZWINT 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

3 MELK 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

4 CCNB2 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

5 RRM2 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

6 CEP55 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

7 BIRC5 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

8 TTK 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

9 KIF20A 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

10 CDKN3 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

11 TOP2A 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

12 NUSAP1 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

13 ASPM 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

14 CDC20 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

15 BUB1B 7504268.50 0.226 10.47 17.79 0.222 1.0 19.00 19

16 CCNB1 7504266.50 0.226 10.47 17.79 0.222 1.0 19.00 19

17 TYMS 6799982.00 0.215 10.22 16.89 0.111 0.95 17.88 18

18 MCM4 6799982.00 0.215 10.22 16.89 0.111 0.95 17.88 18

19 CENPF 6799982.00 0.215 10.22 16.89 0.111 0.95 17.88 18

20 KIF4A 6799982.00 0.215 10.22 16.89 0.111 0.95 17.88 18

LAC, local average connectivity.

To determine whether the risk signature is an independent 
prognostic indicator, univariate and multivariate Cox 
regression analyses were performed. By univariate Cox 
regression analysis, the risk score, N stage, T stage and 
pathological stage were significantly correlated with the OS 
of LUAD patients (all P<0.001) (Figure 4I). Multivariate Cox 
regression analysis showed that risk score and pathological 
stage were significantly correlated with the OS of LUAD 
patients (P<0.001 and =0.003, separately) (Figure 4J). These 
results indicate that the risk score can independently predict 
the OS in LUAD patients.

Diagnostic model based on 12 essential genes related to 
prognosis

To evaluate diagnostic power of 12 essential genes related 
to the prognosis of LUAD patients, a diagnostic model of  

12 genes was constructed using the SVM classification 
model. The results showed that both the specificity and 
sensitivity of classification exceed 93% in the three datasets 
(Figure 4K). The AUCs were over 95% in the three datasets 
(Figure 4K), which indicates that 12 genes are very effective 
as diagnostic biomarkers in predicting the diagnosis of 
LUAD patients.

Coexpression network construction and module analysis

To better understand the gene coexpression relationships 
in different tissue types, WGCNA was performed. By 
normalization, 12,410 (Dataset A), 20,217 (Dataset B), 
17,702 (Dataset C) and 31,343 (Dataset D) genes were 
selected to construct the gene coexpression network. On 
the basis of a scale-free topology criterion R2>0.8, power 
β=7 (Dataset A, R2=0.84), 18 (Dataset B, R2=0.85), 4 (Dataset 
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Figure 3 Consensus clustering of 20 essential genes and relationships with distinct clinical outcomes and clinicopathological features. (A,B) 
Clustering stability increasing curve from k=2 to 9. (C) K=2 was selected, and LUAD patients were divided into two clusters. (D) The 
survival rates of LUAD patients showed significant differences between the two clusters (P=0.002), and the cluster2 patients had a higher 
survival rate. (E) Relationships between 20 genes and clinicopathological features are shown using a heatmap. The cluster1 subgroup was 
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C, R2=0.85) and 2 (Dataset D, R2=0.86) were selected as 
soft thresholds to convert the Pearson correlation matrix 
into a strengthened adjacency matrix, separately (Figure 5A, 
Figure S2A). The TOM of each gene pair was calculated, 
and 20, 17, 35 and 36 coexpression modules were separately 
identified by average linkage hierarchical clustering 
according to a TOM-based dissimilarity measure (1-TOM) 
in four datasets (Figure 5B, Figure S2B). The correlation 
analysis between ME and LUAD showed that the brown 
(including 1,875 genes, cor=−0.87 and P=6.20E-50), 
dark turquoise (including 1,895 genes, cor=−0.83 and 
P=1.45E-31), yellow (including 910 genes, cor=−0.94 and 
P=5.37E-15) and blue (including 3,025 genes, cor=−0.88 and 
P=1.9E-190) modules were separately the most significant 
modules in the four datasets (Figure 5C, Figure S2C).  
The correlation analysis of the MMs in these modules 
showed that these MMs had the most significant correlation 

with LUAD (Dataset A, cor=0.87 and P<1e-200; Dataset B, 
cor=0.77 and P<1e-200; Dataset C, cor=0.95 and P<1e-200;  
Dataset D, cor=0.98 and P<1e-200; Figure 5D  and  
Figure S2D). GSs across modules showed that these 
modules had the highest GS values (Figure 5E, Figure S2E). 
The four modules were selected as key coexpression gene 
modules for further analyses.

Key gene identification in the four most significant 
modules

To identify the key genes among the four most significant 
modules, DEGA and overlapping analyses were performed 
in the four modules. The results showed that 392 (Dataset 
A), 869 (Dataset B), 483 (Dataset C) and 2,270 (Dataset 
D) DEGs were separately identified (Figure 6A), and 52 
common DEGs (5 upregulated and 47 downregulated) 

https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
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Figure 5 Coexpression network analysis by WGCNA. WGCNA of Dataset A was used to visualize the WGCNA results, and other 
WGCNA results are shown in Figure S2. (A) Network topology for various soft-threshold powers and the testing of the properties of the 
scale-free network were analyzed. (B) LUAD-specific coexpression modules were analyzed, and 20 modules were identified. Each short 
vertical line corresponds to one gene. Each branch represents one expression module of highly interconnected groups of genes. Below 
the dendrogram, each group of genes has been given one color, which indicates its module assignment. Gray suggests that the genes were 
outside all modules. (C) The associations between modules and LUAD were analyzed, which showed that the brown module was identified 
as having the most significant association with LUAD (P=6e-50). (D) The associations between brown module membership and LUAD 
were analyzed, which showed that the genes in the module and LUAD had a stronger association (P<1e-200). (E) The mean significance 
across modules was analyzed, which showed that the brown module with the highest mean significance and a lower variation was the module 
with the most significant association with LUAD. WGCNA, weighted gene coexpression network analysis; LUAD, lung adenocarcinoma.

were identified (Figure 6B, Table 3). These DEGs were 
mainly involved in blood vessel development (GO:0001568, 
P=1.80e-6), vasculature development and regulation 
(GO:1901342,  P=2.17e-6)  and tube development 
(GO:0035295, P=6.03e-6). The expressions of 52 common 
DEGs are shown using a heatmap in Figure 6C.

PPI network construction and essential gene identification 
based on 52 common DEGs

To elucidate the interactive relationships among 52 DEGs, 
a PPI network was constructed. At a minimum required 
interaction score = high confidence 0.7, a total of 12 (1 

upregulated and 11 downregulated) among 52 DEGs 
was filtered into the PPI network. A PPI network with  
12 nodes and 18 edges was established (Figure 6D). One 
highly correlated module was identified in the whole PPI 
network, and the module included 5 nodes and 10 edges 
(score =5.00) (Figure 6E). Centrality analysis showed that 
the 5 downregulated genes including ADRB2, RAMP2, 
CALCRL, VIPR1 and RAMP3 had the same centrality score 
(Table 4) and were identified as essential genes involved 
in LUAD. All the essential genes were lowly expressed in 
LUAD tissue (all P<0.001) (Figure 6F), and every pair of 
genes showed a strong positive correlation in expression (all 
R2>0.75 and P<0.001) (Figure 6G). On the basis of the data of  

https://cdn.amegroups.cn/static/public/TCR-21-526-supplementary.pdf
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20 transcriptomes, the expressions of 5 genes were 
significantly downregulated in LUAD tissue (all P<0.01) 
(Figure 6H) and had strong correlations in expression (all 
R2>0.80 and P<0.001) (Figure 6I).

Prognostic analysis based on 5 essential genes

To elucidate the relationships between 5 essential genes and 
the OS of LUAD patients, survival analysis was performed 
using the KM estimate and LR test. According to the 
P<0.05 cut-off criterion, ADRB2 (P=0.01009) and VIPR1 
(P=0.01613) were identified as associated with the OS of 
LUAD patients (Figure 7A), and ADRB2 (HR =0.68215, 
95% CI: 0.5081–0.9143) and VIPR1 (HR =0.70189, 95% 
CI: 0.5199–0.9369) were protective genes with HR <1 
(Figure 7A). Higher expressions of the two genes resulted 
in a higher OS rate of LUAD patients (Figure 7A). Similar 
results were found in the univariate Cox regression analysis, 
and ADRB2 and VIPR1 had significant prognostic value in 
LUAD patients (Figure 7B). Higher mRNA expressions of 
ADRB2 (P=0.002, HR =0.854, 95% CI: 0.775–0.943) and 
VIPR1 (P<0.001, HR =0.831, 95% CI: 0.755–0.914) had 
lower HRs and resulted in a higher OS rate (Figure 7B). 
The multivariate Cox regression model with the stepwise 
method based on the 5 essential genes showed that ADRB2 
and VIPR1 had significant prognostic value for the OS 
of LUAD patients (P=0.000124). A two-gene prognostic 
model was established, and the risk score of each patient was 
calculated. On the basis of the median of the risk scores, the 
LUAD patients were divided into high-risk and low-risk 
subgroups. The mortality rate of the high-risk subgroup was 
significantly higher than that of the low-risk group [43.24% 
(109 in 252 patients) vs. 29.37% (74 in 252 patients), 
P=0.001637], and the high-risk subgroup had a worse 
prognosis compared to the low-risk group (P=0.00225, HR 
=1.57692, 95% CI: 1.1749–2.212, Figure 7C). 

The expression levels of ADRB2 and VIPR1 were 
analyzed between the high-risk and low-risk groups. 
The results showed that both ADRB2 and VIPR1 were 
significantly highly expressed in the low-risk group (both 
P<2.2e-16, Figure 7D). Further, the expression levels of 
ADRB2 and VIPR1 were observed between the alive and 
dead patient groups. The result showed that both ADRB2 
and VIPR1 were significantly highly expressed in the alive 
patient group (P=0.001724 and 0.000709, separately,  
Figure 7E), which indicates that high expressions of ADRB2 
and VIPR1 contribute to a low risk for LUAD patients and 
lengthen survival of LUAD patients. 

To elucidate the associations between the risk scores and 
clinicopathological features, clinicopathological features 
were analyzed between the high- and low-risk subgroups. 
We observed significant differences between the two risk 
subgroups with respect to the T stage (P<0.01), gender 
(P<0.05) and survival status (P<0.05) (Figure 7F). The ROC 
indicates that the risk score can predict the prognosis of 
LUAD patients (Figure 7G).

To determine whether the risk signature is an independent 
prognostic indicator, univariate and multivariate Cox 
regression analyses were performed. According to univariate 
Cox regression analysis, the risk score, N stage, T stage and 
pathological stage were significantly correlated with the OS 
of LUAD patients (all P<0.001) (Figure 7H). Multivariate 
Cox regression analysis showed that risk score and 
pathological stage were significantly correlated with the OS 
of LUAD patients (both P<0.001) (Figure 7I). These results 
indicate that the risk score can independently predict the OS 
in LUAD patients.

Diagnostic analysis of the 2-gene signature

Through the diagnostic analysis of four datasets, the 
results showed that both the specificity and sensitivity of 
classification exceed 93% in the three datasets (Figure 7J), 
and the AUCs were over 94% (Figure 7J). Among these 
values, the AUC was 100% in the GSE102511 dataset, 
which indicates that the 2-gene signature has very high 
effectiveness as a diagnostic biomarker in predicting the 
diagnosis of LUAD patients.

Expression analysis of 12-gene and 2-gene signatures in 
paired sample datasets

In this study, some paired samples were included in 
GSE7670 and GSE19804. To validate the expression of 
DEGs in 12-gene and 2-gene signatures, paired samples 
were selected and analyzed the expression difference 
between tumor and normal lung tissues using the paired 
t-test method. The results showed that 14 genes had 
statistical significant in expression between two groups in 
two datasets (all P<0.05, Figure 8 and Figure 9), which was 
consistent with the results obtained from the unpaired t-test 
method.

Identification of small-molecule drugs

To identify potential adjuvant drugs based on 14 prognostic 
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Figure 6 DEGs identified in the most significant modules and PPI analysis. (A) In total, 392, 869, 483 and 2,270 DEGs were separately 
identified in the four most significant modules. (B) 52 consistent DEGs were identified in the four most significant modules. (C) The 
mRNA expressions of 52 consistent DEGs between LUAD and normal lung tissues were visualized using a heatmap. (D) The interactive 
relationships between 52 consistent DEGs were analyzed using a PPI network, and with a minimum required interaction score = the high 
confidence 0.7, a total of 12 (1 up- and 11 down-regulated genes) was filtered into the PPI network. Each node represents one gene, and 
bigger nodes represents genes with more links. Each red cycle node represents one upregulated gene and each green cycle node represents 
one downregulated gene. Each edge represents the interactive relationship between two genes. (E) Highly correlated modules were analyzed 
using the MCODE algorithm in the whole PPI network, and one highly correlated module with 5 nodes and 10 edges was identified. All 
5 genes including ADRB2, RAMP2, CALCRL, RAMP3 and VIPR1 in the module were significantly downregulated genes, and each pair of 
genes had an interactive relationship. (F) All the genes were lowly expressed in LUAD tissue (P<0.001). (G) Correlation analysis showed 
that there were stronger positive correlations in expression among 5 genes (all R2>0.70). (H) Five genes in the subnetwork were validated 
to have significantly downregulated expression in LUAD tissue by analyzing transcriptome sequencing data. (I) Five genes had stronger 
positive correlations in expression in the transcriptome sequencing data (all R2>0.80). DEGs, differentially expressed genes; LUAD, lung 
adenocarcinoma; PPI, protein-protein interaction; MCODE, molecular complex detection.
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Table 3 Common DEGs in the four most significant co-expression modules

Gene symbol
Dataset A Dataset B Dataset C Dataset D

logFC FDR logFC FDR logFC FDR logFC FDR

Up-regulated

PYCR1 1.0834 2.60E-34 1.2966 2.01E-26 2.7821 4.05E-07 3.7387 9.68E-93

CEACAM1 1.1290 7.28E-18 1.2744 7.37E-11 1.2071 1.90E-02 2.0955 2.63E-30

ABCC3 1.3676 3.89E-22 1.9165 1.23E-19 3.7939 7.01E-09 2.5686 1.13E-37

GOLM1 1.8824 7.93E-36 2.0276 8.61E-29 1.8870 4.45E-07 2.6754 4.03E-65

HMGB3 2.1441 1.80E-36 1.7898 3.38E-13 1.9850 5.23E-04 3.5250 6.97E-48

Down-regulated

SFTPC 3.7846 8.10E-26 3.1933 6.72E-11 2.7964 5.01E-04 4.7077 9.03E-69

FCN3 3.6158 1.00E-46 3.4480 4.02E-20 3.8986 9.14E-06 4.4931 3.91E-172

TMEM100 3.5293 1.35E-41 3.6015 7.46E-18 3.9073 6.85E-09 4.3314 6.7E-141

ABCA8 2.9376 7.81E-50 2.8246 2.07E-16 1.3704 2.67E-05 2.8318 1.23E-71

CDH5 2.5828 1.01E-51 2.2366 7.80E-24 2.2076 2.85E-08 2.5234 4.06E-148

GPM6A 2.5467 3.4E-47 3.9236 2.82E-28 2.5505 3.51E-08 4.4338 9.26E-122

EDNRB 2.5449 9.55E-50 2.9911 4.45E-22 2.6127 6.85E-09 3.4758 1.75E-177

GRK5 2.4935 2.23E-57 1.8852 2.82E-13 2.0877 2.73E-08 2.4636 2.62E-128

TEK 2.4787 1.72E-52 2.6268 3.02E-24 2.6799 2.85E-08 3.2279 6.82E-191

CLDN18 2.4480 9.25E-32 3.2886 9.02E-14 2.2100 1.33E-03 3.5131 2.38E-38

CA4 2.3105 9.1E-46 3.2181 2.02E-31 3.5226 3.35E-08 4.3314 2.42E-104

TGFBR3 2.2710 4.24E-42 2.1643 1.94E-16 2.0791 1.06E-08 2.5536 6.25E-89

LDB2 2.2329 2.04E-45 2.1822 3.70E-21 1.9013 1.88E-09 2.5873 8.98E-170

CAV2 2.1706 1.36E-21 2.1045 2.90E-12 1.7610 1.53E-07 2.3153 1.51E-70

EMP2 2.0621 3.99E-47 1.8399 9.91E-18 1.6546 7.72E-07 2.7098 4.00E-179

VIPR1 2.0389 4.11E-37 1.9417 2.10E-15 2.6302 7.84E-10 3.2094 3.43E-127

RAMP3 2.0118 1.71E-38 2.0534 1.66E-21 2.8286 7.72E-08 3.1995 5.78E-185

GIMAP6 1.9154 8.16E-34 1.9864 1.40E-17 1.7776 1.18E-06 2.0685 2.62E-91

DOCK4 1.8372 1.05E-30 1.4940 3.12E-20 1.2694 5.15E-07 1.5397 1.59E-59

RAMP2 1.8250 1.01E-45 1.7628 2.60E-18 2.6198 2.92E-07 2.8586 1.83E-166

RASIP1 1.8037 2.46E-45 2.0014 1.30E-28 2.1561 2.23E-08 2.2819 2.09E-101

EMCN 1.7935 1.17E-42 2.5049 3.43E-17 1.7784 7.21E-05 2.7228 1.43E-114

SLC6A4 1.7909 1.87E-26 2.9093 1.14E-17 4.5929 7.01E-09 6.1370 9.64E-174

IL33 1.7537 8.30E-29 2.0729 1.04E-12 1.5444 3.11E-05 2.0778 4.94E-41

ERG 1.7476 5.85E-40 1.4934 9.67E-14 2.0968 1.26E-05 2.1248 3.21E-115

ADRB2 1.6150 2.42E-38 1.9791 6.43E-20 1.4662 1.3E-04 3.0541 1.69E-128

ANXA3 1.5754 1.37E-17 1.7950 1.01E-10 1.4992 2.27E-04 1.8378 2.18E-41

Table 3 (continued)
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Table 3 (continued)

Gene symbol
Dataset A Dataset B Dataset C Dataset D

logFC FDR logFC FDR logFC FDR logFC FDR

ITM2A 1.5484 3.02E-32 1.6888 3.30E-15 1.3892 2.10E-07 2.0161 1.33E-67

TBX3 1.4951 4.79E-31 1.3848 1.96E-13 1.9755 3.53E-05 2.1108 1.26E-71

JAM2 1.4844 7.69E-50 1.9511 8.55E-20 1.8270 7.72E-08 2.4928 1.57E-150

CD93 1.4564 1.46E-28 1.6924 7.67E-17 1.8429 6.54E-07 2.1842 5.72E-103

GHR 1.4503 5.31E-33 1.8830 2.24E-15 1.5769 5.72E-04 2.0160 2.21E-45

STXBP6 1.4350 1.56E-46 2.6371 1.02E-19 2.9172 2.99E-11 3.3623 3.84E-103

TMEM47 1.4317 2.40E-18 1.4365 1.25E-12 1.3715 1.49E-04 1.7287 2.81E-55

FERMT2 1.3605 4.41E-31 1.2932 7.35E-08 1.0452 5.26E-05 1.3922 9.59E-63

SEMA6A 1.3278 9.00E-21 1.6010 4.60E-12 2.3603 1.33E-10 2.5439 1.49E-95

SEMA5A 1.3200 1.03E-30 1.5949 8.43E-19 1.9359 2.09E-05 2.5148 6.65E-77

PTPRB 1.3143 3.05E-36 2.1648 7.02E-21 1.9385 1.05E-05 2.5855 1.33E-119

CALCRL 1.3001 2.6E-22 2.0359 2.50E-09 2.2940 1.28E-04 2.7443 8.75E-150

SASH1 1.2749 2.18E-41 1.4206 4.38E-18 1.6155 2.34E-08 1.8352 2.13E-102

S1PR1 1.2691 1.09E-40 2.0206 1.38E-22 2.0551 8.06E-06 2.8252 4.29E-189

LMCD1 1.2579 5.45E-29 1.1033 1.87E-13 1.4161 3.59E-04 1.7207 8.72E-84

SPTBN1 1.2511 6.33E-24 1.6536 2.06E-09 1.5544 6.94E-06 1.7150 1.41E-95

EML1 1.2483 1.09E-35 1.4229 2.21E-12 1.3991 4.63E-06 1.6725 2.98E-51

PODXL 1.1869 1.80E-26 1.1076 3.11E-15 1.2530 7.96E-05 1.0640 3.71E-28

KL 1.1122 5.76E-30 2.2987 2.82E-24 2.0117 3.83E-05 2.3051 2.19E-41

PDK4 1.1117 3.07E-18 1.8544 1.058E-06 1.8622 4.63E-04 2.3871 2.32E-53

DEG, differentially expressed gene; FC, fold change; FDR, false discovery rate. 

Table 4 Centrality scores of five essential genes according to seven centrality methods

Rank Gene Subgraph Degree Eigenvector Information Betweenness Closeness Network

1 ADRB2 11.2139 4 0.4472 3.125 0 1.0 4.0

2 VIPR1 11.2139 4 0.4472 3.125 0 1.0 4.0

3 RAMP3 11.2139 4 0.4472 3.125 0 1.0 4.0

4 RAMP2 11.2139 4 0.4472 3.125 0 1.0 4.0

5 CALCRL 11.2139 4 0.4472 3.125 0 1.0 4.0
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genes (12-gene and 2-gene signatures) to guide the therapy 
of LUAD patients, small-molecule drugs were screened 
using three databases including CMap, L1000FWD and 
DGIdb. Totals of 87, 84 and 315 small molecules were 
separately identified in three small-molecule databases, 
and 1 small molecule with the drug name irinotecan was 
simultaneously found (Figure 10). By pairwise comparison, 
3 (podophyllotoxin, tanespimycin, and irinotecan), 4 
(methotrexate, irinotecan, timolol, and hydrocortisone) and 
6 (vincristine, teniposide, idarubicin, amsacrine, irinotecan, 
and etoposide) small molecules were found (Figure 10).

Discussion

LUAD, as the most commonly pathological subtype of 
LC and that accounts for more than 40% of LCs (3,4), 
is one of the leading causes of LC-related deaths (1). 
Despite recent advances in detection technologies and 
treatment methods, the 5-year OS rate of LUAD patients 
in all stages remains very poor, at less than 20% (3,6). The 
identification of diagnostic and prognostic biomarkers may 
contribute to improving the survival rate of LUAD patients. 
However, due to the high heterogeneity of LUAD, the 
results reported from different studies vary enormously, 
and some identified biomarkers are not widely accepted 
for predicting clinical outcomes. To identify consistently 
acceptable diagnostic and prognostic biomarkers to 
improve clinical outcomes, systematic analysis is essential 
to explore the molecular mechanisms involved in LUAD 
and identify some key diagnostic and prognostic signatures 
by integrating LUAD-related gene expression data. In 
this study, we systematically integrated five LUAD-
related gene expression datasets using bioinformatics 
methods including WGCNA, DEGA, PPI network, and 
prognostic and diagnostic analyses to identify transcriptome 
characterization to mine the key genes involved in LUAD. 
Finally, 12-gene (ZWINT, MELK, CCNB2, RRM2, TTK, 
KIF20A, TOP2A, ASPM, CDC20, CCNB1, TYMS and 
KIF4A) and 2-gene (ADRB2 and VIPR1) signatures were 
identified in LUAD and may serve as diagnostic and 
prognostic markers of LUAD patients. Furthermore, eleven 
small-molecule drugs related to the 12-gene and 2-gene 
signatures were identified, providing novel insights for 
LUAD therapeutic studies. 

As can be seen from the “Methods” and “Results” 
sections, 12-gene and 2-gene signatures were identified 
by a systematical analysis based on DEGs obtained from 
an unpaired t-test method. Before discussing the potential 

applicability of two signatures as diagnostic and prognostic 
markers, we must eliminate several doubts that readers may 
have on the processing method: (I) GSE7670 and GSE19804 
datasets included many paired samples, why used an unpaired 
t-test for DEGA? (II) Why were GSE7670 and GSE10072 
datasets merged into one dataset? (III) Why the microarray 
datasets and RNA-seq dataset do not use the same cutoff 
standard when performing DEGA? For the first question, 
theoretically it is more suitable to use paired t-test to process 
paired samples. We tried to use the paired t-test method 
to screen DEGs on paired sample datasets. However, few 
DEGs with |logFC|>1 and adjusted P<0.05 were identified 
using the method. Especially, the adjusted P values were 
significantly improved in the paired t-test model. We 
consider that the adjusted P values may be over-corrected in 
the test model when the sample number is smaller. The main 
reason may be that the degree of freedom is reduced and 
the gene expression matrix is re-standardized after samples 
were paired. It is not rigorous to only rely on logFC value to 
identify differentially expressed genes. In order to compensate 
the deficiency, we used the paired t-test method to analyze 
the expression differences of DGEs in the two signatures 
based on single gene. The results showed that all DEGs 
had statistical significance in the expression in GSE7670 
and GSE19804 datasets (P<0.05, Figure 8 and Figure 9). For 
the second question, the sample number is more and the 
statistical reliability of the data is stronger in theory. Due to 
the same microarray platform, two datasets were merged into 
one dataset by reconstructing gene expression profile after 
background was corrected using a normalized microarray 
preprocessing procedure in the affy package. To a greater 
extent, the method eliminates some technical errors than the 
method of simply merging gene expression profiles. This 
method is expected to improve statistical power to get more 
reliable results. Judging from the results of this study, the 
method is feasible. For the third question, RNA-seq dataset 
included more samples and genes than microarray dataset, 
which indicates that RNA-seq dataset can have a better 
“resolution” in identifying DEGs. So, a more stringent cutoff 
standard was used for RNA-seq dataset.

In the 12-gene signature, all the genes were enriched 
in biological pathways related to the cell cycle (Figure 2C).  
As we all know, the cell cycle is one of the most critical 
pathways closely associated with cancers, and an abnormal 
cell cycle will initiate malignant tumors (41,42). So far, some 
genes related to the cell cycle have also been confirmed to 
play important roles in LC and serve as potential prognostic 
candidates to predict the survival of NSCLC patients, such as 
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Figure 8 The gene expression analysis of 12-gene and 2-gene signatures in GSE7670 dataset. All genes had statistical significant in 
expression between tumor and normal lung tissues (P<0.05).

ZWINT and CDC20, as well as BUB1B (43,44). The current 
results were consistent with a previous study (44). ZWINT 
is an important regulatory protein and plays key roles in 
chromosome movement and mitotic checkpoints (45,46). 
Some studies showed that the dysfunction of ZWINT 
resulted in many types of cancers such as breast and ovarian 
cancers (45), and the overexpression of ZWINT predicted 
a poor prognosis (47,48). However, a few studies also 
showed that ZWINT was a protective gene in hepatocellular 

carcinoma, and its increased expression contributed to a 
good prognosis (49,50). In this study, ZWINT was identified 
as a risky factor in LUAD, and its upregulated expression 
resulted in a poor prognosis. This result was consistent 
with previous studies indicating that a high expression of 
ZWINT was closely related to a poor prognosis of LUAD  
patients (45). CCNB2, which is a member of the cyclin 
family, is one of the essential components of the cell cycle 
regulatory machinery and plays a key role in transforming 
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Figure 9 The gene expression analysis of 12-gene and 2-gene signatures in GSE19804 dataset. All genes had statistical significant in 
expression between tumor and normal lung tissues (P<0.05).
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growth factor beta-mediated cell cycle control. CCNB2 
has been reported to associate with many cancers (51), and 
its overexpression predicted a poor prognosis in NSCLC 
patients (52). CCNB1 is another member of the cyclin 
family, and its gene product plays critical role in controlling 
the G2/M transition phase of the cell cycle by forming the 
maturation-promoting factor (MPF) with CDC2 (53). The 
upregulation of CCNB1 in tumor tissue predicted a worse 
prognosis in hepatocellular carcinoma patients (54), and it 
may serve as potential therapeutic target (55). Presently, a few 
studies have shown that CCNB1 plays a role in NSCLC (56),  
and its polymorphisms were associated with clinical 
outcomes (57). However, the function of CCNB1 remains 
little known in LUAD. Our studies demonstrated that 
CCNB1 plays important role in LUAD, which provides 
novel insight into pathological mechanism involved in 
LUAD. CDC20, which is an important regulatory protein in 
the cell cycle, has been identified to be negatively regulated 
by p53, and used as a potential cancer therapeutic target (58).  
Several studies showed that the expression of CDC20 was 
related to the survival in some cancers such as colorectal 
cancer and hepatocellular carcinoma, and its overexpression 
predicted a poor prognosis (54,59). TTK is a protein 
kinase, and its expression is closely associated with cell  
proliferation (60). Silencing TTK expression inhibits 
proliferation and progression (61), and the overexpression 
of TTK promoted breast cancer cell proliferation and 
conferred a poorer prognosis (62), which indicates that 
TTK is a risky gene in cancer. RRM2 encodes one of two 
nonidentical subunits for ribonucleotide reductase that 
catalyzes the formation of deoxyribonucleotides from 

ribonucleotides. Several studies have reported that the gene 
expression was associated with cancers, and it has been 
identified as potential prognostic marker in patients with 
NSCLC or breast cancer (63-65). ASPM is the human 
ortholog of the Drosophila melanogaster abnormal spindle 
gene (asp), which plays essential role in normal mitotic 
spindle function in embryonic neuroblasts (66). Recently, 
some studies showed that ASPM expression was associated 
with the survival of cancer patients, and its upregulation 
resulted in a poor prognosis in breast cancer and pancreatic 
ductal adenocarcinoma (62,67). KIF4A and KIF20A are two 
members of the kinesin family that are mainly responsible 
for movement along the microtubules in the cell, which 
has been demonstrated to be associated with many diseases 
including cancers (68-71). The other three genes including 
MELK, TOP2A and TYMS are enzyme-encoding genes, 
which separately play roles in BPs related to cell cycle 
regulation, chromosome status, and DNA replication and 
repair. So far, some published studies have reported that 
these genes played roles in the initiation and progression of 
cancers and have been identified as predictors of the survival 
in cancer patients.

In the 2-gene signature, ADRB2 is a protein coding 
gene encoding the beta2 adrenergic receptor that belongs 
to a member of the G protein-coupled receptor (GPCR) 
superfamily. Many studies have confirmed that several 
diseases such as asthma (72), obesity (73) and type 2 
diabetes (74) were associated with ADRB2. Recently, 
researchers have found that ADRB2 was significantly 
correlated with various aspects related to cancer such as 
prostate cancer (75) and breast cancer (74), which indicates 
that ADRB2 is related to cell proliferation and apoptosis, 
tumor growth and metastasis, and angiogenesis. A few 
studies have so far discovered that ADRB2 activation 
promoted the proliferation of LC cells (76), and it was 
identified as a potential independent factor for early-stage 
NSCLC patients (77). Our results confirmed that the 
dysregulation of ADRB2 played a key role in LUAD, and 
high mRNA expression of ADRB2 resulted in a higher OS 
rate in LUAD patients. Similar to ADRB2, VIPR1 encodes 
a small neuropeptide that belongs to GPCR. VIPR1 is 
widely expressed among various tissues and plays key 
roles in many physiological functions including immune 
regulation, glycogen metabolism, etc. (78). Previous studies 
have found that VIPR1 was differentially expressed between 
cancer and normal tissues in many malignancies (78). For 
example, VIPR1 was highly expressed in prostate cancer (79), 
breast cancer (80) and colon cancer (81), which indicates 
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Figure 10 Small molecule prediction. Eleven small-molecule 
drugs were predicted, and among these small molecules, irinotecan 
was found in three small molecule databases including CMap, 
DGIdb and L1000FWD. 
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that it functions in malignant tumors. Some studies have 
also reported that VIPR1 was significantly downregulated 
in LC (82) and may serve as a molecular target for the 
diagnosis, prevention and treatment of LC (80). This study 
further demonstrated that VIPR1 played roles in LUAD, 
and high mRNA expression of VIPR1 resulted in a higher 
OS rate in LUAD patients. Interestingly, both ADRB2 and 
VIPR1 identified in this study are GPCRs that belong to 
the largest family of cell surface receptors mediating many 
physiological processes (83). Large numbers of studies have 
proven that GPCRs play roles in many diseases processes 
such as human genetic and endocrine diseases (84,85), and 
GPCRs are often designated as drug targets (86). Despite 
their broad physiological and pathological functions, as well 
as acting as favorable sites for drug development, the roles 
of GPCRs have been underappreciated for a long time in 
tumor biology (83). With the discovery of more GPCRs 
associated with cancers, researchers have recognized the 
importance of the functions of GPCRs in tumor biology 
and paid more attention to GPCRs in many aspects such 
as molecular machinery (87-89) and tumor-related drug 
development (86,90). In this study, we found that two key 
GPCR genes played roles in LUAD by a comprehensive 
analysis, which indicates that GPCRs provide important 
functions in tumor biology. Two identified genes may 
serve as potential diagnostic and prognostic candidates and 
pharmacological drug targets in LUAD patients.

In addition, several small molecules were identified 
as potential therapeutic drugs to combat LUAD in this 
study. Especially, irinotecan (Drugbank accession number: 
DB00762) was found in three small-molecule prediction 
databases. Irinotecan is a derivative of camptothecin that 
inhibits the action of topoisomerase I and can prevent 
the religation of the DNA strand by binding to the 
topoisomerase I-DNA complex and causing double-
strand DNA breakage and cell death. Irinotecan, as an 
antineoplastic enzyme inhibitor, is primarily used in the 
treatment of colorectal cancer. Recently, irinotecan was also 
approved for treating advanced pancreatic cancer. In LC, the 
therapeutic efficacy of irinotecan was evaluated by a large 
number of trials (91-93). In particular, irinotecan has been 
proven to be effective as a chemotherapeutic drug against 
small cell lung cancer (SCLC), and SCLC patients receiving 
maintenance chemotherapy with irinotecan had a longer 
survival (94). Currently, a few studies have also explored 
the treatment effect of irinotecan against NSCLC (95). 
Our results showed that irinotecan might serve as potential 
therapeutic drug against LUAD. In addition, other small 

molecules including vincristine, teniposide, etoposide, 
methotrexate, podophyllotoxin and others were also 
predicted in this study. Some of these small molecules such 
as vincristine and teniposide have so far been used for anti-
tumor therapy (96,97), and these small molecules may play 
certain roles in combating LUAD.

Despite the findings in terms of clinical implications, 
some limitations should be noted. First, this study is a 
retrospective study based on a bioinformatics strategy, so 
the robustness of the prediction value of the gene signature 
should be further validated by prospective clinical trials. 
Second, the functional roles of the gene signature should be 
further elucidated in LUAD.

Conclusions

Taken together, the present study systematically analyzed 
gene expression data related to LUAD using comprehensive 
bioinformatics methods and identified some key genes 
associated with the diagnosis and prognosis of LUAD 
patients. In addition, some small molecules were predicted 
to combat LUAD. These findings provide novel insights 
into the pathological mechanism involved in LUAD and 
may serve as potential diagnostic and prognostic markers 
and therapy targets against LUAD.
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Figure S1 Survival curves of the 12-gene signature. Twelve genes were identified to have significant associations with the three-year survival 
of LUAD patients. LUAD, lung adenocarcinoma.
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Figure S2 Coexpression network analysis by WGCNA. WGCNA results of dataset B, C and D are shown in this figure. (A) Network 
topology for various soft-threshold powers and the testing of the properties of the scale-free network were analyzed. (B) LUAD-specific 
coexpression modules were analyzed. Each short vertical line corresponds to one gene. Each branch represents one expression module of 
highly interconnected groups of genes. Below the dendrogram, each group of genes has been given one color, which indicates its module 
assignment. Gray suggests that the genes were outside all modules. (C) The associations between modules and LUAD were analyzed. (D) 
The associations between the most significant module membership and LUAD were analyzed. (E) The mean significance across modules 
was analyzed. WGCNA, weighted gene coexpression network analysis. LUAD, lung adenocarcinoma.


