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Introduction

Inflammation is the essential pathological change in aging 
(1-3). Monocyte migration and proinflammatory secretion 
are important steps in inflammation response (4,5). Among 
the cytokines participating in vascular inflammatory 
response, high mobility group box-1 (HMGB1) is special, 
because it can be released by necrotic cells or activated 
macrophages/monocytes in a delayed fashion (6-8).

Resveratrol is a non-flavonoid compound that widely 

exists in plant species, such as grapes and Polygonum 
cuspidatum, which is a Chinese traditional herb (9). 
Resveratrol attracted more interest in the past decade, 
because it is a biologically active polyphenol that exerts 
beneficial action on some most prevalent illnesses including 
cardiovascular diseases and cancer (10-13). It is postulated to 
be a promising agent to prevent vascular aging and extend 
lifespan (14). The therapeutic role of Resveratrol is related 
to its diversified properties, such as anti-inflammation, anti-
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proliferation, and anti-oxidative stress (15,16). Even though 
some molecular mechanisms mediating the beneficial 
effects of Resveratrol have been identified, more targets of 
Resveratrol need to be investigated.

The anti-inflammatory property is critical for the 
pharmacological character of Resveratrol (17,18). 
Resveratro l  could  inhib i t  the  nuc lear  fac tor-κB  
(NF-κB) (10) activation and decrease the release of 
intercellular adhesion molecular-1 (ICAM-1), interleukin-6 
(IL-6), and tumor necrosis factor α (TNFα) induced by 
different stimuli (19). Reports on the effect of Resveratrol 
on HMGB1 or monocyte migration are rare. 

THP-1 cells were used as the cell model. The effects of 
lipopolysaccharide (LPS)and HMGB1 on the migration, 
inflammatory response, and apoptosis of monocytes were 
detected by RT-qPCR, Transwell assay, and TUNEL 
assays. In addition, THP-1 cells were used to study the 
effects of resveratrol treatment on LPS- and HMGB-
induced monocytes. Finally, we investigated the molecular 
mechanism underlying the effect of resveratrol treatment 
on monocytes through the interaction of HMGB1 with 
downstream signaling pathways.

We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-517).

Methods

Cell culture

THP-1 cells (RRID: CVCL_0006, purchased from Shanghai 
Institutes for Biological Science, Chinese Academy Science, 
China) were grown in RPMI 1640 medium supplemented 
with 10% fetal bovine serum at 37 ℃ in a 5% CO2 
atmosphere to a density of 1×106 cells/mL. The cells 
were randomly assigned to the following groups: negative 
control; LPS-treated group (5 μg/mL) (Sigma-Aldrich, 
USA); HMGB1-treated group (1 μg/mL) (Sigma-Aldrich, 
USA); and Resveratrol group (20 μM) (Sigma-Aldrich, 
USA). All groups were collected for QRT-PCR and 
migration assay. 

Migration assay

Transwell migration assays were performed with culture 
supernatant from different groups in the lower chamber 
and 2 ml of THP-1 (5×104/mL) in the upper chamber in 
a 6-well plate with 8-μM pore-size membrane (Corning, 

USA) for 24 h at 37 ℃. Cells that migrated into the lower 
chamber were collected and fixed with 95% alcohol. After 
hematoxylin-eosin staining, THP-1 cells in five 40× fields 
of view were counted under the inverted microscope. 
Migration experiments were repeated thrice.

Real-time reverse transcription-polymerase chain reaction 
(RT-PCR)

Total RNA was extracted and cDNA was synthesized 
with RevertAid H Minus First Strand cDNA Synthesis 
Kit (Fermentas, Canada) according to manufacturer’s 
instructions. Stratagene MX3000 was used to analyze 
mRNA expression of HMGB1. The housekeeping gene 
GAPDH was used for internal normalization. HMGB1, 
sense: 5'-AAGTGAGAGCCGGACGGGCA-3', antisense: 
5'-GGGCCTTGTCCGCTTTTGCCA-3'. Bcl-2, sense: 
5'-ATGCCTTTGTGGAACTATATGGC-3', antisense: 
5'-GGTATGCACCCAGAGTGATGC-3'. Bax, sense: 
5'-TGAAGACAGGGGCCTTTTTG-3', antisense: 
5'-AATTCGCCGGAGACACTCG-3'. TNF-α, sense: 
5'-CCTGTGAGGAGGACGAACA-3', antisense: 5’, 
antisense: 5'-TTGAGCCAGAAGAGGTTGAG-3'. 
MCP-1, sense: 5'-CAGCCAGATGCAATCAATGCC-3', 
antisense: 5'-TGGAATCCTGAACCCACTTCT-3'. 
GAPDH, sense: 5'-CAATGACCCCTTCATTGACC-3', 
antisense: 5'- GACAAGCTTCCCGTTCTCAG-3' were 
designed by ProMab Biotechnologies Inc. Samples were run 
in triplicate. The efficiency of PCR was determined using 
dilution series of a standard vascular sample. Fidelity of 
the PCR reaction was determined by melting temperature 
analysis and visualization of product on a 2% agarose gel. 
Results are presented as relative quantification using the  
2−ΔΔCt method. 

Western blot

Total protein and nuclear protein were extracted separately 
according to kit instruction (ProMab, USA). Protein 
concentration was measured by a Bradford Protein Assay 
kit (Beyotime Institute of Technology, China). Western 
blot was performed using the polyclonal rabbit antibody for 
NF-κB-p65 (1:400, 4 ℃ overnight; Abcam-ab16502, USA). 
Goat anti-rabbit IgG/HRP (1:40,000; ProMab-2005079, 
USA) was used as secondary antibody for NF-κB-p65 
and Histone H2. Goat anti-mouse IgG/HRP (1:50,000; 
ProMab-2005080, USA) was used as secondary antibody 
for GAPDH. Histone H2 protein was used as an internal 
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control for NF-κB-p65. GADPH was used as an internal 
control for HMGB1. Gels were analyzed with Gel-Pro 
Analyzer Version 4.0. Protein expression was measured as 
the ratio of IOD with HMGB1/GADPH or NF-κB-p65/
Histone H2.

Electrophoretic mobility shift assay (EMSA)

Nuclear extracts were prepared in cells from negative 
control, LPS-stimulated, and 0.05 mM Resveratrol groups. 
Binding reactions were conducted as described by the 
manufacturer (EMSA Kit from Pierce Biotechnology, 
USA).  The sequence of  the  ol igonucleot ide  was 
5'-AGTTGAGGGGACTTTCCCAGGC-3' (synthesized 
at Beyotime Institute of Technology, China). The 
oligonucleotide was labeled with Biotin-N4-CTP. Labelled 
probe without incubation with the nuclear extract was used 
as the negative control, and Hela Nuclear Extracts (Merck, 
Germany) were used as the positive control. The IOD of 
NF-κB-p65 DNA-protein band was analyzed with Gel-Pro 
software 4.0.

Immunofluorescence

Cells from negative, LPS-stimulated, and 0.05 mM 
Resveratrol groups were examined for immunofluorescence. 
Rabbit polyclonal antibody against human HMGB1 antigen 
(50 μL, 1:200; Abcam) and rabbit anti-goat IgG (50 μL, 
1; 200; Alexa Fluor) were used. Immuno-labeled sections 
were treated with DAPI (4',6-diamidino-2-phenylindole) 
and examined under a fluorescent microscope, Images were 
acquired using AxioVision digital imaging system.

CCK-8 was used to detect cell proliferation

After the cells reached the logarithmic growth stage, they 
were digested into a cell suspension. Cell suspension 
(1.0×105/mL) was inoculated in a 96-well plate at  
100 μL/well. The culture plate was placed in an incubator 
at 37 ℃ and 5% CO2 for 24 h. The old culture medium was 
removed from each hole. After treatment, the cell culture 
medium in each well was discarded. CCK-8 and DMEM 
culture solutions at 10:100 were added under suitable dark 
conditions. Culture solutions at 100 μL per well was placed 
in an incubator for 30 min. The prepared culture plate 
was placed in an enzyme-linked immunodetector, and its 
absorbance (A) was detected at A wavelength of 450 nm.

TUNEL assay to detect cell apoptosis

DNase I reaction solution was added to each group. 
Incubation was performed at 37 ℃ for 30 min and washed 
thrice with PBS. The TdT enzyme reaction solution was 
dripped onto the sample area. Incubation was performed 
in a 37 ℃ wet box for 60 min (away from light) and washed 
thrice with PBS. Streptavidin-fluorescein marker liquid 
was dripped onto each sample. Each sample was placed in 
a warm box, reacted at 37 ℃ for 30 min in the dark, and 
washed thrice with PBS. Finally, the nucleus was stained 
again with DAPI staining solution. The reaction took 
10 min at room temperature and washed with PBS. An 
appropriate amount of sealing tablet was added, after which 
fluorescence microscope observation and photography 
(Nikon, Japan) were performed.

Statistical analysis

Standard software (SPSS 13.0 for Windows) was used for 
statistical analysis. Measurement data were expressed as 
mean ± standard deviation (SD). Gaussian distribution test 
was conducted. One-way analysis of variance (ANOVA) was 
used to test the differences among the groups. Fisher’s Least 
Significant Difference (LSD) method was used for post-hoc 
test to control for multiple testing. P<0.05 was considered 
statistically significant.

Ethical Statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

LPS induces THP-1 cells to release inflammatory factors; 
in addition, HMGB1 and NF-κB are upregulated in LPS-
induced inflammatory response

To inves t iga te  the  promot ing  e f fec t  o f  LPS on 
inflammatory factors, we first examined the changes 
in the expression levels of inflammatory factors after 
the LPS treatment of THP-1 cells. The experimental 
results showed that LPS could up-regulate the expression 
levels of inflammatory factors IL-6, TNFα, and IL-1β  
(Figure 1A-1C). The expression of MCP-1 was detected. 
QRT-PCR results showed that compared with the control 
group, the expression of MCP-1 was up-regulated after 
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LPS stimulation (Figure 1D).
QRT-PCR test showed that the expressions of HMGB1 

and NF-κB in cells were different among the groups 
(P<0.01). LPS stimulation obviously increased the levels of 
HMGB1 and NF-κB in the supernatant when compared 
with the level in the control group (Figure 2A,2B). Transwell 
migration assays showed that supernatant from cells treated 
with 5 μg/mL LPS markedly increased the number of 
THP-1 cells migrating to the lower chamber (Figure 2C, 
P<0.05). 

Resveratrol treatment inhibits LPS-induced monocyte 
migration and inflammation 

QRT-PCR showed that the expression of IL-6, TNFα 
and IL-1β were different among the groups (ANOVA: 
both P<0.01). LPS stimulation increased the levels of 
IL-6, TNFα, and IL-1β when compared with the level 

in the control group. Resveratrol at concentration of 
20 μM decreased the levels of IL-6, TNFα, and IL-1β  
(Figure 3A-3C). The change of MCP-1 was similar to that 
of inflammatory factors (Figure 3D). Transwell migration 
assays showed that LPS increased the migration of THP-
1 cells. Resveratrol group showed a decreased number of 
THP-1 cells when compared with the LPS-stimulated 
group (Figure 3E). We further investigated the HMGB1 
expression among the control, LPS-stimulated, and 
Resveratrol groups. HMGB1 expression was elevated by 
LPS stimulation when compared with the control group 
(P<0.001), whereas its level was inhibited by resveratrol 
intervention (Figure 3F, P<0.001). To understand the role 
of NF-κB in Resveratrol intervention, we analyzed the 
NF-κB protein expression and its activity. Western blot 
analysis showed that LPS stimulation greatly increased the 
NF-κB-p65 protein level (Figure 3G, P<0.001), but this 
increase was blocked by resveratrol intervention (P<0.001). 

Figure 1 LPS induces THP-1 cells to release inflammatory factors. (A) Detection of IL-6 expression in cells; (B) detection of TNFα 
expression in cells; (C) detection of IL-1β expression in cells; (D) detection of MCP-1 expression in cells. Each bar represents the mean ± 
SD for triplicate measurements. **, P<0.01.
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Electrophoretic mobility shift assay (EMSA) was applied 
to determine the activity of NF-κB-p65. After incubating 
with LPS for 24 h, the DNA binding activity of NF-κB-p65 
was significantly increased, whereas preconditioning with 
Resveratrol for 2 h greatly inhibited the stimulating effect 
of LPS on NF-κB-p65 activity (Figure 3H).

Resveratrol treatment inhibits the migration and 
inflammation of monocytes induced by HMGB1 

We further examined the role of HMGB1. Compared 
with the control group, HMGB1 stimulation increased 
the  leve ls  of  IL-6,  TNFα ,  and IL-1β .  However, 
Resveratrol decreased the levels of IL-6, TNFα, and IL-1β  
(Figure 4A-4C). The change of MCP-1 was similar with 
those of the inflammatory factors (Figure 4D). Transwell 
migration assays showed that HMGB1 increased the 
migration of THP-1 cells. When compared with the LPS-
stimulated group, Resveratrol-treated group showed a 
decrease in the number of THP-1 cells (Figure 4E). In 

addition, LPS stimulation greatly increased the expression 
of NF-κB, but this increase was blocked by resveratrol 
intervention (Figure 4F).

Resveratrol treatment increases monocyte apoptosis and 
reverses the anti-apoptotic effect induced by LPS

THP-1 cells are stimulated by STS and LPS. The apoptosis 
rate was low in the control group. STS significantly 
induced apoptosis. LPS stimulation inhibited cell apoptosis. 
However, Resveratrol treatment improved the apoptosis 
rate (Figure 5A). In addition, changes in apoptosis-related 
protein expression were investigated. QRT-PCR results 
showed that compared with the control group, apoptosis-
related proteins Bax and Cyt-C were significantly increased 
in the STS treatment group. LPS treatment reduced the 
expression of Bax and Cyt-C. However, resveratrol up-
regulated the expression of Bax and Cyt-C (Figure 5B,5C). 
The variation trend of Bcl-2 expression was contrary to that 
of Bax (Figure 5D). The cell proliferation experiment results 

Figure 2 HMGB1 and NF-κB are upregulated in LPS-induced inflammatory response. (A) HMGB1 expression detection; (B) NF-κB 
expression detection; (C) transwell detects changes in cell migration ability. Each bar represents the mean ± SD for triplicate measurements. 
**, P<0.01.
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Figure 3 Resveratrol treatment inhibits LPS-induced monocyte migration and inflammation. (A) Detection of IL-6 expression in cells; (B) 
detection of TNFα expression in cells; (C) detection of IL-1β expression in cells; (D) detection of MCP-1 expression in cells; (E) transwell 
detects changes in cell migration ability; (F) qRT-PCR detection of cell HMGB1 expression; (G) qRT-PCR detection of cell NF-κB expression; 
(H) resveratrol inhibited LPS-induced activation of NF-κB-p65. Each bar represents the mean ± SD for triplicate measurements. **, P<0.01.
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showed that the cell proliferation rate was highest in the 
control group. STS significantly inhibited cell proliferation. 
LPS stimulation promoted THP-1 cell proliferation. 
However, Resveratrol treatment inhibited THP-1 cell 
proliferation rate (Figure 5E).

Resveratrol treatment increases apoptosis and inhibit 
proliferation in HMGB1 induced monocytes

THP-1 cells were stimulated by STS and HMGB1. The 
experimental results showed that STS induced apoptosis. 
However, Resveratrol treatment could improve the 
apoptosis rate (Figure 6A). QRT-PCR results showed 
that compared with the control group, apoptosis-related 
proteins Bax and Cyt-C were significantly increased in 
the STS treatment group. However, HMGB1 treatment 

reduced the expressions of Bax and Cyt-C. Resveratrol up-
regulated the expressions of Bax and Cyt-C (Figure 6B,6C). 
The variation trend of Bcl-2 expression was contrary to that 
of Bax (Figure 6D). The cell proliferation experiment results 
showed that the cell proliferation rate was higher in the 
control group. HMGB1 stimulation can promote THP-1 
cell proliferation. However, Resveratrol treatment inhibited 
THP-1 cell proliferation rate (Figure 6E).

Discussion

The anti-inflammatory role of Resveratrol is a central 
mechan i sm under ly ing  i t s  mul t ip le  therapeut i c  
effects (19). Resveratrol could regulate the inflammation 
process induced by various stimuli and in different 
experimental models (20). Resveratrol could relieve the 
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Figure 4 Resveratrol treatment inhibits the migration and inflammation of monocytes induced by HMGB1. (A) Detection of IL-6 
expression in cells; (B) detection of TNFα expression in cells; (C) detection of IL-1β expression in cells; (D) detection of MCP-1 expression 
in cells; (E) transwell detects changes in cell migration ability; (F) qRT-PCR detection of cell NF-κB expression. Each bar represents the 
mean ± SD for triplicate measurements. **, P<0.01.
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Figure 5 Resveratrol treatment increases monocyte apoptosis and reverses the anti-apoptotic effect induced by LPS. (A) Detection of 
apoptosis rate; (B) qRT-PCR detection of Bax expression in cells; (C) qRT-PCR to detect cell Cyt-C expression; (D) qRT-PCR to detect cell 
Bcl-2 expression; (E) CCK-8 detects cell proliferation rate. Each bar represents the mean ± SD for triplicate measurements. *, P<0.05; **, 
P<0.01.

inflammatory process by reducing the cytokines, such as 
CRP, TNFα, IL-6, and MCP-1 (21-23). 

HMGB1 is an intracellular DNA-binding protein 
located in undifferentiated tissues, such as hepatocytes and 
neurons (24,25). It was first discovered in an endotoxemia 
animal model and later confirmed to be released as a 
cytokine by activated monocyte/macrophage or necrotic 

cells in pathological conditions (26,27). Different from 
early response cytokines, such as TNFα and IL-6, HMGB1 
is secreted after a 12–16 h delay. To be released, it is first 
translocated from the nucleus to the secretory lysosome in 
cytoplasm. Phosphorylation and acetylation are required 
in this process. In our study, we observed the increased 
HMGB1 level and the translocation of HMGB1 from 
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Figure 6 Resveratrol treatment increases monocyte apoptosis and reverses the anti-apoptotic effect induced by HMGB1. (A) Detection of 
apoptosis rate; (B) qRT-PCR detection of Bax expression in cells; (C) qRT-PCR to detect cell Cyt-C expression; (D) qRT-PCR to detect cell 
Bcl-2 expression; (E) CCK-8 detects cell proliferation rate. Each bar represents the mean ± SD for triplicate measurements. *, P<0.05; **, 
P<0.01.

nucleus to cytoplasm. This finding indicated that LPS 
successfully activated HMGB1 and increased its secretion, 
which were both inhibited by resveratrol. The mechanisms 
contributing to the effect of Resveratrol on HMGB1 may 
be complex.

LPS is a typical endotoxin that elicits an immune 

response (28,29). NF-κB is the major regulating factor in 
LPS-stimulated response. Most studies reported that NF-
κB activation is essential for HMGB1 translocation (29). 
Oh et al. reported the release of HMGB1 in a NF-κB-
independent manner, but SN50 and BAY-11-7082 were 
used as the NF-κB inhibitors, which functioned under a 
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mechanism different from that of PDTC (30). HMGB1 
release might be NF-κB-dependent, because it could be 
blocked by an NF-κB inhibitor. The inhibitory effect of 
Resveratrol on NF-κB has been confirmed in the past 
(31,32). Resveratrol may inhibit NF-κB activation by either 
blocking p65 phosphorylation or IκB kinase activity (33). In 
our study, Resveratrol decreased NF-κB-p65 expression at 
the protein level. The activity of NF-κB-p65 was inhibited 
by resveratrol. So, we concluded that the decrease of 
HMGB1 by resveratrol was partially achieved by interfering 
with the NF-κB-p65 signal.

After release, HMGB1 interacts with its ligands, namely, 
Toll-like-receptor 2 (TLR), TLR4, and advanced glycation 
end products (RAGE), to elicit inflammation. The binding 
of HMGB1 with its membranous receptors activates 
intracellular signal pathway involving NF-κB. HMGB1 
stimulates human monocyte to synthesize proinflammatory 
cytokines (34). HMGB1 can bind to LPS to synergize the 
inflammation response (35). The combination of released 
HMGB1 with its ligand, such as TLR4, can subsequently 
activate NF-κB and the downstream cytokines. Thus, 
a circuit of HMGB1-receptor-NF-κB was formed and 
inflammatory response was amplified. With the possibility 
of repressing both TLR and NF-κB, Resveratrol may cut 
off the circuit to reduce the level of HMGB1. 

Monocyte migrat ion is  an essentia l  process  in 
inflammation response (36,37). Ferrero et al. reported that 
Resveratrol inhibited the adhesion of U937 monocyte to 
LPS-stimulated endothelial cells in vitro (38). Our data 
demonstrated that THP-1 migration in response to LPS 
stimulation was inhibited by resveratrol. HMGB1 secreted 
by monocyte could directly mediate monocyte migration 
and cell-to-cell interaction. Released MCP-1 may act in 
concert with HMGB1 to elicit the monocyte migration. 
Thus, the inhibitory effect of Resveratrol on THP-1 
migration may result from decrease of HMGB1 and MCP-
1 or from the inhibition on NF-κB signaling.

The effect of resveratrol was only evaluated in vitro. 
However, resveratrol has shown remarkable efficacy for 
cancer treatment in vivo (39). Moreover, resveratrol acts 
as a chemopreventive agent in the four major stages of 
carcinogenesis, namely, initiation, promotion, progression, 
and metastasis (40). However, Resveratrol is not easily 
soluble. A study in healthy volunteers showed that a serum 
concentration of 4.24 μM was obtained for resveratrol 
after repeated doses at 5 g (41). However, Resveratrol 
can bind extensively (97.6%) and tightly to human serum 
albumin with an affinity association constant of K=2.56×105  

M-1 (42), which greatly facilitates its accessibility to body 
tissues, including tumor tissues, leading to a large volume 
of distribution (41). Resveratrol might have a remarkable 
effect on monocytes in vivo.

Conclusions

A novel anti-inflammatory mechanism for Resveratrol 
was suggested. Resveratrol inhibited the translocation 
and release of HMGB1 in LPS-stimulated THP-1 cells. 
Monocyte migration induced by LPS was blocked by 
resveratrol. NF-κB signaling was possibly involved in the 
effect of Resveratrol on HMGB1 and monocyte migration. 
Therefore, the inhibitory effect of Resveratrol on LPS and 
HMGB1 on monocyte migration and apoptosis may be 
realized through the NF-κB/MCP-1 pathway. Resveratrol 
restores the normal function of monocytes, thereby leading 
to a reduction in systemic inflammation.
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