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Introduction

Breast cancer is the most common malignancy other 
than cutaneous carcinoma and is the second main cause 

of carcinoma-related death for females worldwide (1). 

In 2017, there were almost 252,710 new confirmed 

cases of breast cancer in America, and approximately  
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40,610 deaths (2,3). Recent increasing evidence indicates 
that early diagnosis and treatment are beneficial to 
the prognosis of breast cancer. However, the currently 
used biological markers including BRCA1/2, CA549, 
carcinoembryonic antigen, and so on are hyposensitive 
and nonspecific for early breast cancer diagnosis (4).  
Thus, there is an urgent need for breast cancer detection 
and risk strat i f icat ion to identify a  sensit ive and 
specific biosignature for early diagnosis, to distinguish 
patients with breast carcinoma. Previous studies have 
indicated that long non-coding RNAs (lncRNAs) play 
crucial roles in the tumorigenesis and progression of 
breast cancer, and that some lncRNAs could be used 
as latent diagnostic biomarkers (5,6). LncRNAs are 
RNA transcripts greater than 200 bp in length, with 
scarcely any ability to be translated into protein (7). 
Currently, increasing evidence indicates that lncRNAs 
play a significant role in the apoptosis, proliferation, 
development, metastasis, invasion, and recurrence of 
various tumors (8-10). Recent researches have shown 
that altered lncRNA expression profiles are associated 
with the disease progression and survival in patients 
with breast cancer, revealing the potency of lncRNA 
as biological markers for cancer progression (11-13).  
In this study, we applied TCGA database to explore the 
difference in lncRNA expression profiles between breast 
cancer and adjacent normal tissues, and to identify potential 
lncRNA biomarkers, for predicting the prognosis of breast 
cancer patients. These outcomes can offer new insights 
into the lncRNA-based molecular mechanisms of breast 
cancer. We present the following article in accordance with 
the REMARK reporting checklist (available at https://
dx.doi.org/10.21037/tcr-21-747).

Methods

Ethical statement

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Breast cancer patient datasets 

IlluminaHiSeq RNA-Seq data including the mRNA 
expression and corresponding clinical information for 1,097 
breast cancer tissues and 113 adjacent non-tumor tissues 
was acquired from TCGA (https://tcga-data.nci.nih.gov/
tcga/). Among the 1,097 breast cancer samples, 184 patients 

with a final follow-up of 0, unclear last survival status, or 
samples with no corresponding expression values were 
excluded. Finally, 913 breast carcinoma cases were included 
in the study for further analysis. These cases were classified 
into two groups, namely the training dataset (n=608) and 
testing dataset (n=305), in line with the survival status by 
3-fold cross validation.

LncRNA differential expression profiles

In this study, the original breast cancer mRNA expression 
profiles (level 3 data) were obtained from TCGA data. In 
accordance with the annotation from the GENCODE 
project (http://www.gencodegenes.org), we obtained the 
lncRNA expression data by repurposing the probes in the 
mRNA expression profiles for lncRNA. The converted data 
(antisense, lincRNA, and sense_intronic) were regarded as 
lncRNA. The RNA-Seq data for breast cancer included 
14,441 lncRNA and 19754 mRNA expression profiles (14). 
The differential expression profile of lncRNA was calculated 
using R or the Bioconductor package in edgeR (15). The 
differentially expressed genes (DEGs) of the dataset with 
|log(fold change)| ≥1 and adjusted P value <0.05 were 
regarded as the selection criteria to identify differentially 
expressed lncRNAs between breast cancer and adjacent 
normal tissues in the testing and training datasets.

Establishment of a prognostic model associated with 
lncRNA

The relationship between the lncRNA expression levels 
and overall survival (OS) of patients with breast cancer 
was analyzed using the univariate Cox model with the 
“survival” analysis software package of R software. The 
common lncRNAs selected from the training and testing 
datasets were considered statistically significant in the 
univariate Cox analysis when P values <0.05. The stepwise 
multivariate Cox regression analysis of the AIC (Akaike 
Information Criterion, assessing the goodness of fit of a 
statistical model) test yielded a predictive model with the 
optimal interpretation and information effectiveness, and 
the risk scores of 608 patients in the training dataset were 
determined. Then, by the corresponding multivariate 
analys is  of  the identi f ied lncRNA signature,  the 
coefficients of each prognostic lncRNA in the risk scoring 
model were obtained (16). Finally, a prognostic model 
associated with lncRNA was established to assess survival 
risk, as described below: 
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LncRNA-based Risk Score= ( )1

N
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=

∗∑ 	 [1]

In this formula, N represents the number of prognostic 
lncRNAs, Coei is the coefficient of the lncRNAi in the 
multivariate Cox regression analysis, EVi represents the 
expression value of the lncRNAi. LncRNAs with a Coei 
less than 0 are considered protective lncRNAs, whereas 
lncRNAs with a Coei greater than 0 are considered high-
risk lncRNAs. The predictive lncRNA model was applied 
to count the risk scores of 608 patients. Using the median 
risk score as a threshold, we classified breast carcinoma 
patients into high-risk and low-risk groups. The OS curve 
was obtained using the Kaplan-Meier method, and the 
difference in OS between different groups was calculated 
using a two-sided log-rank test. P<0.05 was regarded as 
a statistically significant difference. To investigate the 
sensitivity and specificity of the lncRNA prognostic model 
for predicting clinical outcomes, we calculated the area 
under the curve (AUC) of the time-dependent ROC curve 
within 3 and 5 years of the survival ROC R package (17), 
and drew high- and low-risk heatmaps. All analyses were 
performed using R/BioConductor (version 3.5.1). The value 
and stability of the survival prognosis in patients with breast 
cancer were predicted using the test set and complete set 
validation regression models.

Use of prognostic characteristics independent of lncRNA 
for survival prediction of other clinical variables and the 
relationship between prognoses at different levels

Univariate Cox regression was applied to analyze the 
prognostic characteristics of lncRNA and the clinical 
variables (containing age, gender, race, TNM stage, 
estrogen receptor status, progesterone receptor status, 
Her2 receptor status, and triple-negative breast cancer) to 
determine their relationships with patient OS in the whole 
data set. Multivariate Cox regression analysis was then 
performed, with OS as the dependent variable and lncRNA 
risk scores and other clinical features as the explaining 
variables, to examine whether the predictive power of the 
lncRNA signature was independent of other clinical factors. 
Data stratification analysis was further conducted for clinical 
features with P values <0.01 to determine whether the 
lncRNA signatures could offer predictive capacity within 
the same clinical factor. According to age, progesterone 
receptor status, HER-2 expression of ER status, lymph node 
metastasis status, and pathological stage, the prognostic 
value using multiple lncRNA signatures in patients with 

breast cancer was calculated using the Kaplan-Meier 
method. The predictive value of the prognostic model of 
LncRNA signatures in breast cancer patients with overall 
and different subgroups (age, ER status, Progesterone 
receptor status, HER-2 expression, lymph node metastasis 
status, and pathological stage) was also accessed using the 
Kaplan-Meier method.

Construction of protein-encoding gene and predicted 
weighted co-expression network of lncRNA signatures 

When we performed differential  gene expression 
analysis, we also obtained protein-coding genes that were 
differentially expressed in breast carcinoma and adjacent 
normal tissues in the testing and training sets. The 
differentially expressed protein-coding genes common to 
the training and testing sets were applied to construct a 
weighted gene co-expression network for depicting the 
relevant pattern expression profile. Prognostic LncRNA 
signatures were linked together as external information 
to determine the coding genes associated with the 
respective LncRNA signatures. The WGCNA can be 
used to estimate the importance of predicting prognostic 
lncRNA signatures and their module members. We use 
paired Pearson correlation to evaluate the co-expression 
correlation between the whole data-set subjects in adjacent 
matrices. Based on the description of standard scale-free 
networks, an optimal soft threshold was automatically 
calculated and generated. In this research, the soft 
threshold was set as β=4 (no scale R2=0.85) (Figure S1). 
Co-expressed genes were searched using the function 
“networkScreening“ based on GS and MM(18). Using this 
function, a series of indicators were obtained, including the 
weighted P value (P. Weighted) of the correlation between 
the coding genes and lncRNAs, the FDR-corrected 
weighted P value (q.Weighted), the weighted correlation 
coefficient (cor. Weighted), and Fisher Z test results for 
weighted correlation. Similar to the normal P value, the 
smaller the p.Weighted, the stronger was the correlation 
between the coding gene and LncRNA. We used the 
corrected q.Weighted <0.0l to screen the protein-encoding 
genes highly associated with LncRNA.

Statistical analysis

KEGG functional enrichment analysis of these protein-
encoding genes highly associated with LncRNA was 
performed using the R package “clusterProfiler” and 

https://cdn.amegroups.cn/static/public/TCR-21-747-Supplementary.pdf
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“pathview”. The KEGG pathway with a false discovery 
rate (FDR) <0.05 was considered statistically significant. 
Gene Set Variation Analysis (GSVA) was performed 
between the high- and low-risk score groups (19), and 
the adjusted P value (adj. P Val) <0.05 was regarded 
statistically significant.
 

Results

Breast cancer patients’ sample information

The 913 included cases of breast cancer were divided into 
the training dataset with 608 cases and the testing dataset 
with 305 cases, based on the survival status by 3-fold cross 
validation. The clinical information of the patients included 
in the training and test datasets is shown in Table 1.

Differentially expressed lncRNA profiles of breast cancer

The lncRNA expression profiles of breast cancer tissues 
(n=608) and adjacent normal tissues (n=113) in the training 
dataset obtained from TCGA were analyzed. All 3084 
differentially expressed lncRNAs were discovered (logFC 
>1 or logFC <−1, p.adj <0.05). In the differentially expressed 
lncRNAs, 2288 lncRNAs were upregulated whereas  
796 lncRNAs were decreased. The lncRNA expression 
profiles of breast cancer tissues (n=305) and adjacent normal 
(n=113) tissues in the testing dataset were also analyzed. Of 
the 2855 differentially expressed lncRNAs (logFC >1 or 
logFC <−1, p.adj <0.05), 1987 lncRNAs were upregulated 
and 868 lncRNAs were downregulated. After the intersection 
of different lncRNAs expressed in the training and testing 
datasets, 2,547 common differentially expressed lncRNAs 
were obtained, of which 1,807 lncRNAs were upregulated 
and 740 were downregulated. Unsupervised hierarchical 
clustering analysis results indicated that the expression of 
differentially expressed lncRNAs clearly distinguished the 
breast cancer samples from the normal samples (Figure 1).

Establishment of the seven-lncRNA signature predictive 
model

Univariate Cox regression was applied between different 
lncRNA expression profiles and the prognoses of patients 
with breast carcinoma in the training and testing datasets 
and the combined cohort; The results showed that 
179 lncRNAs in the training dataset and 216 lncRNAs 
in the testing dataset (P values <0.05 for both) were 

significantly related with the OS of patients with breast 
carcinoma. Further, 204 lncRNAs in the combined cohort 
were significantly related with the OS in patients with 
breast carcinoma (P value <0.05). Further, 10 lncRNAs 
(AC025016.1, LINC02037, MAPT-AS1, RP1-37C10.3, 
RP11-120K18.2, RP11-344E13.4, RP11-454P21.1, RP11-
616M22.1, SPACA6P-AS, Xxyac-YM21GA2.7) screened 
out from the training and testing datasets and the common 
combined cohort were significantly related with the OS of 
patients with breast carcinoma (Table S1).

These 10 lncRNAs were analyzed by multivariate Cox 
regression, and the minimum AIC was 624.43; of these,  
7 lncRNAs were screened out to construct a Cox proportional 
regression model (Table 2). Univariate Cox regression analysis 
demonstrated that the regression coefficients of 6 lncRNAs 
(RP11-344E13.4, LINC02037, RP11-454P21.1, RP11-
616M22.1, SPACA6P-AS, RP1-37C10.3) were greater than 
0, HR (hazard ratio) = exp(coef) >1, defining them as risk 
lncRNA, which are inversely related to breast cancer survival. 
The regression coefficient of one lncRNA (MAPT-AS1) was 
less than 0, and HR (hazard ratio) = exp(coef) <1, defining it 
as a protective lncRNA, which was positively correlated with 
breast cancer survival. In line with the regression coefficients 
of multivariate Cox analysis of the seven lncRNAs, the 
prognostic index was imputed by: LncRNA-based Risk 
Score =0.2906 × expression level of LINC02037-0.0724 × 
expression level of MAPT-AS + 0.3182 × expression level 
of RP1-37C10.3 + 0.1631 × expression level of RP11-
344E13.4+0.1910 × expression level of RP11-454P21.1 
+0.2308 × expression level of RP11-616M22.1+0.1674× 
expression level of SPACA6P-AS. 

According to this, the risk value about each sample can 
be calculated, and the samples can be classified as high-risk 
(n=304) and low-risk groups (n=304) based on median risk 
value. Among these, the lncRNA-based Risk Score =0.957 
is the cut-off value; the lncRNA-based risk score is greater 
than 0.957 for the high-risk group, and less than 0.957 
for the low-risk group (Figure 2A-2C). The Kaplan-Meier 
curves of different groups based on the seven-lncRNA 
signature were notably different (Figure 2D); patients 
with high-risk scores had worse OS (median OS of 80 vs. 
148 months, P<0.001) than those with a low-risk score. 
The HR of the risk score derived from the univariate Cox 
proportional hazards regression method was 4.15 (95% 
CI, 2.38–7.25), which was consistent with the results of 
multivariate Cox proportional hazards regression analysis, 
was 2.70 (95% CI, 1.43–5.12) after being adjusted for the 
clinical pathological feature covariate. The time-dependent 

https://cdn.amegroups.cn/static/public/TCR-21-747-Supplementary.pdf
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Table 1 Training dataset and testing dataset clinical information on breast cancer patients

Variable Training dataset (n=608) Testing dataset (n=305)

Age (year), x±s 58.00±13.02 58.45±13.46

Gender, n (%)

Female 602 (99.0) 302 (99.0)

Male 6 (1.0) 3 (1.0)

Race, n (%)

White 427 (70.2) 214 (70.2)

Asian 28 (4.6) 10 (3.3)

Black 108 (17.8) 58 (19.0)

NA 45 (7.4) 23 (7.5)

Stage, n (%)

Stage I 104 (17.1) 53 (17.4)

Stage II 344 (56.6) 162 (53.1)

Stage III 143 (23.5) 71 (23.3)

Stage IV 14 (2.3) 14 (4.6)

NA 3 (0.5) 5 (1.6)

Estrogen receptor status, n (%)

Negative 131 (21.5) 68 (22.3)

Positive 458 (75.3) 228 (74.8)

NA 19 (3.2) 9 (2.9)

Progesterone receptor status, n (%)

Negative 199 (32.7) 93 (30.5)

Positive 389 (64.0) 202 (66.2)

NA 20 (3.3) 10 (3.3)

Her2 receptor status, n (%)

Negative 448 (73.7) 214 (70.2)

Positive 98 (16.1) 50 (16.4)

NA 62 (10.2) 41 (13.4)

Number of lymph nodes positive (mean) 2.37 2.42

Cancer status, n (%)

Tumor free 501 (82.4) 242 (79.3)

With tumor 42 (6.9) 26 (8.5)

NA 65 (10.7) 37 (12.2)

Table 1 (continued)
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Table 1 (continued)

Variable Training dataset (n=608) Testing dataset (n=305)

Subtype, n (%)

Luminal A 288 (47.4) 144 (47.2)

Luminal B 56 (9.2) 40 (13.1)

HER2A enriched 18 (3.0) 11 (3.6)

Triple negative 95 (15.6) 47 (15.4)

NA 151 (24.8) 63 (20.7)

Median survival time (month) 14.6 17.3

Type Type
cancer
normal

15

10

5

0

Figure 1 Differentially expressed lncRNAs between breast carcinoma and normal tissues. 2,547 differentially expressed lncRNAs were 
detected between breast carcinoma and normal tissues. Among them, 1,807 differentially expressed lncRNAs gene expression increased, and 
740 differentially expressed lncRNAs gene expression decreased.

Table 2 Multivariate analysis results of Cox regression model constructed by lncRNA markers

LncRNAs coef exp (coef) se (coef) z P

LINC02037 0.2906 1.3372 0.0911 3.19 0.0014

MAPT-AS1 −0.0724 0.9302 0.0458 −1.58 0.1137

RP1-37C10.3 0.3182 1.3746 0.1209 2.63 0.0085

RP11-344E13.4 0.1631 1.1772 0.0686 2.38 0.0173

RP11-454P21.1 0.1910 1.2105 0.1029 1.86 0.0633

RP11-616M22.1 0.2308 1.2595 0.0893 2.58 0.0098

SPACA6P-AS 0.1674 1.1823 0.0995 1.68 0.0923
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ROC and AUC of ROC curves were applied to assess the 
prognostic capacity of the seven-lncRNA signature model. 
The AUC results indicated that each of these seven-
lncRNA models had high diagnostic accuracy as a breast 
cancer biomarker. In the 3- and 5-year OS, the AUC 
about the seven-lncRNA biosignature prognostic model 
was 0.745 and 0.742 (Figure 2E), respectively, indicating 
the diagnostic accuracy of the seven lncRNA combination 
models in predicting prognosis. Table S2 shows the 1-, 2-, 
3-, 4-, and 5-year survival rates of the high-risk and low-
risk groups.

Performance evaluation of the seven-lncRNA features for 
survival prediction in the test and whole datasets

The risk calculation formula of the training dataset samples 
was applied to calculate the lncRNA risk scores of each 
sample in the test dataset. Based on the median of the 
lncRNA risk score value, samples were classified under the 
high- and low-risk groups. The survival curves of high- 
and low-risk groups were plotted respectively in the testing 
dataset, and ROC curves were drawn at the same time. The 
results showed that the overall risk in the high-risk group 
was lower than that in the low-risk group of the testing 
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dataset (P<0.001) (Figure 3A). The risk assessment model 
was more stable in predicting the 3- and 5-year survival 
prognosis in patients with breast carcinoma (the AUC of the 
ROC curve of the 3- and 5-year survival rates was 0.86 and 
0.867, respectively) (Figure 3B), and the OS rate in the high-
risk group was also lower than that in the low-risk group of 
the combined cohort (P<0.001) (Figure 3C). Moreover, the 
risk assessment model is also stable for predicting 3- and 
5-year survival prognosis in patients with breast carcinoma 
(the AUC of the ROC curve of the 3- and 5-year survival 
rates was 0.771 and 0.780, respectively) (Figure 3D).

Independence of the seven-lncRNA signature in predicting 
survival of routine clinical factors and the relationship 
between the prognosis at different levels

To determine if the prognostic power of the seven-lncRNA 
feature is independent of routine clinical factors in patients 
with breast cancer, we used the seven-lncRNA features 
and other routine clinical factors as explanatory variables 
and the patient OS as the dependent variable to conduct 
multivariate Cox regression analysis. The results of the 
multivariate Cox regression analysis demonstrated that the 
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seven-lncRNA feature showed an independent relevance 
with OS after modulation for routine clinical factors in 
the training dataset, testing dataset, and whole dataset, 
including age, gender, race, TNM stage Estrogen receptor 
status, Progesterone receptor status, Her2 receptor status, 
Triple-negative breast cancer (HR >1, P<0.01) (Table S3).  
The median OS in the low-risk group (12.64 years) was 
notably longer than that in the high-risk group (6.72 years)  
(Log rank χ2=42.256, P<0.01) (Figure 3C). Except for 
pathological stage I and positive Her2, the OS rate of 
patients with low-risk scores in the stratification was higher 
than that in high-risk group (P<0.05) (Table 3). 

Construction of a weighted co-expression network of 
protein coding genes and the seven-LncRNA signature

In total, 5242 differentially expressed protein coding genes 
were identified in the training dataset (logFC >1 or logFC 
<−1, p.adj <0.05). In the testing dataset, 5042 differentially 
expressed protein encoding genes (logFC >1 or logFC <−1, 
p.adj <0.05) were identified. After intersecting the significant 
differentially expressed protein coding genes in the training 
and testing dataset, 4,340 common differentially expressed 
protein coding genes were obtained. The expression profiles 
of these 4,340 differentially expressed protein-encoding 

Table 3 Relationship between risk model of lncRNA combination and prognosis of breast cancer patients in each subgroup

Variable Low risk High risk Log-rank χ2

Age (year)

<60 241 250 15.765**

≥60 216 206 30.659**

ER status

ER positive 378 308 26.403**

ER negative 66 133 6.311*

PR status

PR positive 333 258 19.036**

PR negative 108 184 13.213**

Her2 status

Her2 positive 56 92 0.392

Her2 negative 345 317 27.954**

Lymph node metastasis

Lymph node negative 208 188 19.314**

Lymph node [1–3] positive 122 128 9.838**

Lymph node (4-) positive 81 71 7.802**

Pathological staging

Stage I 89 68 0.338

Stage II 247 259 14.434**

Stage III 107 107 12.826**

Stage IV 10 18 9.829**

*, P<0.05; **, P<0.01.

https://cdn.amegroups.cn/static/public/TCR-21-747-Supplementary.pdf


4042 Xu et al. Prognostic indicators for breast carcinoma

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(9):4033-4046 | https://dx.doi.org/10.21037/tcr-21-747

genes were screened out in the entire cohort and used to 
construct a weighted gene co-expression network. After 
removing 154 outlier samples, the remaining tumor samples 
were hierarchically clustered and the lncRNA expression 
profiles of the corresponding samples were plotted  
(Figure S2A,S2B). The linear regression results showed that 
when the soft threshold β=4, the connectivity correlation 
coefficient of each node in the network was 0.88, consistent 
with the scale-free network characteristics (Figure S3). By 
associating the seven-lncRNA expression profile data, the 
protein-coding genes (q. Weight <0.01) highly correlated 
with these seven lncRNAs was found. Among 4,340 DEGs, 
there were 756, 120, 84, 341, 346, 748, and 637 protein-
coding genes were co-expressed with MAPT-AS1, RP11-
344E13.4, LINC02037, RP11-454P21.1, RP11-616M22.1, 
SPACA6P-AS, and RP1-37C10.3, respectively. 

Identifying the functions of the seven-lncRNA signature 

The potential prognostic function of the lncRNAs was 
investigated using KEGG functional enrichment analysis, 
which showed that the co-expressed genes RP11.616M22.1 
and LINC02037 were not enriched to obtain the KEGG 
pathway; the other lncRNA-enriched KEGG pathways 
are shown in Figure S4A-S4E. The KEGG pathways 
enriched by MAPT-AS1 and RP1-37C10.3 include cellular 
aging, p53 signal pathway, and Fanconi anemia pathway 
(Figure S4A,S4B); The KEGG pathways enriched by 
MAPT-AS1, RP1-37C10.3, and RP11-344E13.4 include 
cell cycle, DNA replication, homologous recombination, 
a n d  p r o g e s t e r o n e - m e d i a t e d  o o c y t e  m a t u r a t i o n  
(Figure S4A-S4C); the KEGG pathways enriched by 
RP11-454P21.1 include Systemic lupus erythematosus, 
Alcoholism, and PPAR signaling pathway (Figure S4D); 
The KEGG pathways enriched by SPACA6P-AS includes 
cellular adhesion molecules (CAMs), Fanconi anemia 
pathway, cytokine-cytokine receptor interaction, and ABC 
transporters (Figure S4E). Gene set variation analysis 
(GSVA) results between the high- and low-risk scores of the 
training and testing dataset showed that high-risk scoring 
group in the training dataset was significantly increased and 
included maturity onset diabetes of the young, olfactory 
transduction, pentose and glucuronate interconversion, 
and so on. Further, in the low-risk group, the gene 
functions included acute myeloid leukemia (AML), purine 
metabolism, colorectal cancer, and so on (Figure S5A).  
The high-risk scoring group in the testing dataset was 
significantly increased and included maturity onset diabetes 

of the young, bladder cancer, ascorbate and aldarate 
metabolism, etc. Further, in the low-risk scoring group, the 
gene functions included AML, Erbb signal pathway, renal 
cell cancer, etc. (Figure S5B).

Discussion

Breast cancer is a serious hazard to women’s health, even 
if combination treatment has decreased the risk of relapse. 
Despite improvements in breast carcinoma therapy over the 
past few decades, there are limited treatments for advanced 
breast cancer because of the lack of accurate molecular 
targets. Hence, exploring the molecular mechanisms 
participating in breast carcinoma development and 
progression is rather significant. Further, there is an urgent 
need for improved biomarkers for tumor-specific prognosis 
and progression. So far, increasing evidences indicate 
that lncRNAs participate in tumorigenesis and prognosis. 
Integrated genomics research has demonstrated the role of 
lncRNA with increasing focus, and more potential lncRNAs 
need to be examined to improve the clinical outcomes in 
breast cancer patients. Malfunction of lncRNAs may be 
present in kinds of cancers and is notably associated with 
cancer prognosis (20-23). Some dysregulated lncRNAs like 
HOTTIP, HOTAIR, and LINC00978 have been found to 
be related to the prognosis of patients with breast cancer 
(24-26). These findings indicate that lncRNAs may act as 
potential biomarkers for survival prediction in breast cancer. 

We conducted an integrated analysis of lncRNA 
expression profiles and the corresponding clinical 
information about patients with breast cancer from TCGA 
database. First, differentially expressed lncRNAs were 
filtered out between breast cancer and non-cancerous 
tissues. Then, a seven-lncRNA signature based on 
expression was developed in the training dataset using 
sample 3-fold cross validation and Cox proportional 
regression analysis, for differentiating patients into high- 
and low-risk groups with notable differences in OS. 
ROC curve analysis indicated that the seven-lncRNA 
combinatorial signature showed prognostic predictive 
ability. The prognostic performance of seven-lncRNA 
combinatorial signature was fully verified on the testing 
and complete dataset, indicating that the lncRNA 
combinatorial marker model had superior repeatability. 
Further multivariate Cox regression and stratified analysis 
showed that the features of seven-lncRNA had independent 
prognostic ability similar to other clinicopathological 
variables and these could be used to predict the survival 

https://cdn.amegroups.cn/static/public/TCR-21-747-Supplementary.pdf
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of breast carcinoma patients. The currently established 
prognostic predictors for breast carcinoma include first-
generation prognostic markers (21 gene test, MammaPrint, 
Genomic Grade Index) (27) and second-generation 
prognostic markers (Prosigna, EndoPredict, breast cancer 
index) (28). The National Cancer Network (NCCN) 
guidelines recommend breast cancer genetic testing for 
newly diagnosed breast carcinoma with stage I or II, ER-
positive, and node-negative breast carcinoma; lymph node-
positive [1–3] , ER-positive postmenopausal invasive breast 
cancer patients can be evaluated for chemotherapy. At 
present, the existing prognostic markers for breast cancer 
are only suitable for ER-positive early breast cancer, and 
there are still no effective prognostic predictors for patients 
with ER-negative breast carcinoma showing lymph node 
metastases greater than three (29,30). In this study, the 
seven-lncRNA combination model showed good prognostic 
value for patients with different clinical pathologies, 
especial ly for patients with lymph node-posit ive, 
pathological stage II–IV, and HER-2 negative breast cancer.

Although the current functional studies of lncRNAs 
have received increasing attention, the functions of most 
lncRNAs remain unknown. Functional annotation of 
lncRNA-specific co-expressing protein-coding genes is 
considered a viable method for inferring the biological 
properties of lncRNAs (31). The annotation of lncRNA 
function by co-expressed genes has been proved to 
be effective (32). In research, we performed KEGG 
enrichment analysis of the gene co-expressed with seven 
lncRNAs to observe the latent functions of these lncRNAs. 
Based on the functional analysis results, MAPT-AS1, RP1-
37C10.3, and RP11-344E13.4 are enriched into several 
important common signal pathways including the cell 
cycle, DNA replication, homologous recombination, 
progesterone-mediated oocyte maturation. Among 
them, MAPT-AS1 and RP1-37C10.3 are also enriched 
into three common signaling pathways including cellular 
senescence, p53 signaling pathway, and Fanconi anemia 
pathway. Molecular epidemiological analysis has revealed 
that the p53 mutation exists in almost all kinds of tumors, 
and that approximately 5% of patients with colorectal 
cancer, lung cancer, melanoma, sarcoma, head and neck 
carcinoma, leukemia, esophageal carcinoma, ovarian 
carcinoma, testicular carcinoma, and cervical carcinoma 
have been found to harbor p53 mutations (33,34). Several 
studies have demonstrated that P53 inactivation plays a 
significant part in the occurrence and progression of breast 
cancer (35,36). Therefore, the mechanisms of MAPT-

AS1 and RP1-37C10.3 involvement in breast cancer are 
mainly related to changes in the cell cycle and cellular 
processes like DNA replication. In addition to MAPT-AS1 
and RP1-37C10.3, SPACA6P-AS is also enriched in the 
Fanconi anemia pathway. The Fanconi anemia pathway is 
a necessary factor in repairing DNA cross-linking damage 
and maintaining genomic stability (37). Recent evidence 
suggests that gene instability is a key factor leading to 
metastasis and recurrence of malignant tumors. Studies 
have confirmed that the breast cancer susceptibility genes, 
BRCA2, PALB2, and BRIP1, are the FANCD1, FANCN, and 
FANCJ genes of the Fanconi anemia pathway, respectively, 
and that their encoded proteins act downstream of this 
pathway. Although BRCA1 is not a Fanconi anemia gene, 
its product can interact with BRCA2, PALB2, and others to 
participate in the Fanconi anemia pathway (38); RAD51C 
has also been confirmed to be involved in the Fanconi 
anemia pathway and its biallelic mutation is associated with 
the corresponding subtype of Fanconi anemia (39). Studies 
of these genes have revealed a strong genetic link between 
Fanconi anemia and the susceptibility of hereditary breast 
cancer. The RP11 pathway enriched in RP11-454P21.1 
includes the alcoholism and PPAR signaling pathways; 
alcohol intake at more than 10 g per day is significantly 
related to breast carcinoma in menopausal women (40). 
Alcohol causes chromosomal instability, leading to cancer-
related aneuploidy events. Further, oxidative damage, DNA 
injury, cross-linking, and DNA strand breakage can lead to 
the production of reactive oxygen species, lipid peroxidation 
products, and acetaldehyde (41,42). In contrast, moderate 
drinking can reduce the risk of breast cancer by about 30% 
(43,44). Previous studies have demonstrated that PPARc 
activation can cause autophagy in breast carcinoma cells (45). 
PPARc is a negative regulator of estrogen synthesis in breast 
adipose tissue (46). PPAR signaling pathway genes can thus 
be a significant predictor for breast carcinoma response to 
neoadjuvant chemotherapy (47). 

In line with the consequences of GSVA, the jointly 
obtained high-risk score group of the training set and the test 
group includes genes related to maturity onset diabetes of 
the young, ascorbate and aldarate metabolism, and pentose 
and glucuronate interconversions. Further, in the low-risk 
scoring group, the gene functions include AML, colorectal 
carcinoma, renal cell carcinoma, ERBB signal pathway, 
purine metabolism, and the insulin signaling pathway; some 
of these biological pathways were verified to be associated 
with tumor development and progression (48-50). These 
results thus demonstrate that the seven predicted prognostic 
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lncRNAs might take part in development and progression 
of breast carcinoma by interactions with protein-encoding 
RNAs from associated biological pathways. However, 
further experimental research is required to confirm the 
functions of these lncRNAs. Understanding the functions 
of these seven lncRNAs will thus help clinicians diagnose 
cancer in the early stage and provide clinical indications for 
new prognostic factors for breast cancer.

Conclusions

Generally speaking, we systematically explored the lncRNA 
expression profiles in breast cancer patients and their 
corresponding clinical information, and found a seven-
lncRNA (LINC02037, MAPT-AS1, RP1-37C10.3, RP11-
344E13.4, RP11-454P21.1, RP11-616M22.1, SPACA6P-
AS) signature. The risk scoring model in this research 
provides a worthy method to classify patients with diverse 
survival outcomes. Further, the identified seven-lncRNA 
signature behaved very well in predicting 3- and 5-year 
survival in patients with breast carcinoma, which could 
be an independent predictor of survival prognosis, and 
could provide new insights into the molecular mechanisms 
of oncogenesis and breast cancer progression. Through 
a series of experiments, we further verified that these 
prognostic lncRNAs can be applied as new biomarkers 
in breast carcinoma and could act as possible therapeutic 
targets. Nevertheless, this research does have some 
boundedness. First, the seven-lncRNA signature was only 
tested and validated in TCGA. If conditions permit, other 
databases might be used to validate the clinical values 
this signature. In addition, our research only examined 
the biological function of predictive lncRNAs using 
computational methods, and should be supplemented with 
in vitro and in vivo experiments. Combining these data will 
help unravel the mechanism of lncRNA involvement in 
breast tumorigenesis.
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Supplementary

Figure S1 The left graph shows the relationship coefficients of log(k) and log(p(k)) for different soft thresholds. The higher the coefficient, 
the more the network conforms to the scale-free network distribution. The graph on the right shows the mean of the gene contiguous 
coefficients in the gene network corresponding to different soft thresholds, which reflects the average connection level of the network.
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Figure S2 The distance matrix is constructed by 1-IAC, and the class average method is used to hierarchically cluster the samples. (A) 
Clustering tree of 913 tumor samples in combined cohort. (B) The cluster clustering map of the combined cohort after excluding the outlier 
samples and the LncRNA expression profile data of the corresponding samples showed that the height of the clustering tree was significantly 
lower than that of the left graph (from 8,000,000 to 1,000,000). The larger the value of LncRNA expression, the darker the color.

A

B

Figure S3 Verify that the network meets the scale-free network distribution for selected soft threshold β=4. The left picture shows the 
distribution of the connectivity of each node in the network. The right picture shows the scatter plot of log (k) and log (p (k)). The linear 
regression results show that the correlation coefficient is 0.88, which is consistent with the characteristics of the scale-free network. 
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Figure S4 KEGG functional enrichment analysis of 5 lncRNAs. (A) Analysis of KEGG pathway in which lncRNA MAPT-AS1 is enriched 
in differentially co-expressed protein-encoding RNA. (B) Analysis of the KEGG pathway of lncRNA RP1-37C10.3 enriched in different 
co-expression protein-encoding RNA. (C) LncRNA RP11-344E13.4 is enriched in KEGG pathway analysis of differentially co-expressed 
protein-encoding RNA. (D) LncRNA RP11-454P21.1 was enriched in the KEGG pathway analysis of different co-expression protein-
encoding RNA. (E) LncRNA SPACA6P-AS is enriched in KEGG pathway analysis of distinguishingly co-expressed protein-encoding RNA.

A B

C

D E
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Figure S5 GSVA enrichment analysis between high and low risk score groups. (A) GSEA unsupervised hierarchical clustering heat map 
between the high- and low-risk score groups of training set. (B) GSEA unsupervised hierarchical clustering heat map between the high- and 
low-risk score groups in test dataset.

A

B
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Table S1 LncRNA significantly associated with overall survival in breast cancer patients

Groups Training dataset Training dataset Combined cohort

LncRNAs HR z P value HR z P value HR z P value

AC025016.1 1.155 2.672 0.008 1.182 2.682 0.007 1.172 3.925 <0.001

LINC02037 1.327 3.537 <0.001 1.287 2.049 0.040 1.307 3.972 <0.001

MAPT-AS1 0.888 −2.584 0.010 0.856 −2.721 0.007 0.875 −3.734 <0.001

RP1-37C10.3 1.277 2.189 0.029 1.663 3.258 0.001 1.379 3.606 <0.001

RP11-120K18.2 1.242 2.598 0.009 1.266 2.089 0.037 1.259 3.484 <0.001

RP11-344E13.4 1.286 3.770 <0.001 0.598 -2.054 0.040 1.159 2.186 0.0289

RP11-454P21.1 1.353 3.236 0.001 1.430 2.698 0.007 1.361 4.110 <0.001

RP11-616M22.1 1.274 2.771 0.006 1.297 2.192 0.028 1.278 3.560 <0.001

SPACA6P-AS 1.251 2.376 0.018 1.591 3.007 0.003 1.327 3.547 <0.001

Xxyac-YM21GA2.7 1.248 2.862 0.004 1.423 2.237 0.025 1.282 3.735 <0.001

Table S2 1–5 years survival rate for high- and low-risk groups 

Time (year) Number of risks Survival rate Standard deviation
95% confidence interval

Lower limit Upper limit

High-risk

1.0000 152 0.93 0.01744 0.896 0.965

2.0137 95 0.871 0.0271 0.819 0.926

3.1014 63 0.765 0.03948 0.692 0.847

3.6685 45 0.733 0.04393 0.652 0.824

5.0658 23 0.65 0.05968 0.543 0.778

Low-risk

1.0548 180 0.973 0.01119 0.9508 0.995

2.0658 129 0.959 0.01471 0.9303 0.988

2.7973 103 0.933 0.02052 0.8936 0.974

4.9123 52 0.915 0.02685 0.8639 0.969
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Table S3 Univariate and multivariate Cox regression analyses in the training, testing and entire TCGA datasets

Characteristics
Univariate analysis Multivariate analysis

HR CI95% P value HR CI95% P value

Training dataset (n=608)

Age Continuous variable 1.03 1.01-1.05 0.002 1.03 1.01-1.06 0.014

Gender Negative vs. positive 0.71 0.1-5.17 0.737

Race Asian and Black vs. White 1.37 0.79-2.37 0.264

Stage III–IV vs. I–II 4.51 2.71-7.51 <0.001 3.9 1.87-8.15 <0.001

Cancer status With tumor vs. tumor free 6.18 3.59-10.62 <0.001 5.17 2.68-9.97 <0.001

Number of lymph nodes 
positive

Continuous variable 1.10 1.06-1.14 <0.001 1.00 0.94-1.05 0.872

Progesterone receptor status Negative vs. positive 1.65 0.96-2.82 0.068

Estrogen receptor status Negative vs. positive 1.75 0.98-3.13 0.057

Her2 receptor status Negative vs. positive 1.01 0.45-2.28 0.973

Triple-negative breast cancer Yes vs. no 1.70 0.89-3.26 0.108

Risk high risk vs. low risk 4.15 2.38-7.25 <0.001 2.44 1.2-4.99 0.014

Cancer subtype Triple negative vs. Luminal A 1.85 0.91-3.78 0.089

Triple negative vs. Luminal B 1.57 0.50-4.9 0.437

Triple negative vs. HER2A 
enriched

1.39 0.31-6.22 0.667

Testing dataset (n=305)

Age Continuous variable 1.03 1.01-1.05 0.012 1.05 1.02-1.08 0.001

Gender Negative vs. Positive 1217467.94 0-Inf 0.997

Race Asian and Black vs. White 1.60 0.79-3.26 0.194

Stage Ⅲ–Ⅳ vs. Ⅰ–Ⅱ 1.43 0.73-2.77 0.295

Cancer status With tumor vs. Tumor free 5.34 2.67-10.69 <0.001 5.56 2.69-11.47 <0.001

Number of lymph nodes 
positive

Continuous variable 1.03 0.98-1.09 0.213

Progesterone receptor status Negative vs. Positive 1.29 0.67-2.47 0.447

Estrogen receptor status Negative vs. Positive 0.93 0.45-1.91 0.835

Her2 receptor status Negative vs. Positive 1.22 0.36-4.13 0.751

Triple-negative breast cancer Yes vs. No 1.86 0.80-4.35 0.152

Risk high risk vs. low risk 3.83 1.92-7.65 <0.001 3.72 1.69-8.18 0.001

Cancer subtype Triple negative vs. Luminal A 2.39 0.84-6.82 0.103

Triple negative vs. Luminal B 2.26 0.47-10.93 0.312

Triple negative vs. HER2A 
enriched

227497607.3 0-Inf 0.999

Table S3 (continued)
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Table S3 (continued)

Characteristics
Univariate analysis Multivariate analysis

HR CI95% P value HR CI95% P value

Entire TCGA dataset (n=913)

Age Continuous variable 1.03 1.02-1.05 <0.001 1.04 1.02-1.06 <0.001

Gender Negative vs. Positive 0.82 0.11-5.88 0.84

Race Asian and Black vs. White 1.43 0.93-2.2 0.106

Stage III–IV vs. I–II 2.76 1.86-4.08 <0.001 1.76 0.97-3.21 0.064

Cancer status With tumor vs. Tumor free 5.77 3.78-8.81 <0.001 4.62 2.69-7.93 <0.001

Number of lymph nodes 
positive

Continuous variable 1.07 1.04-1.1 <0.001 1.02 0.97-1.07 0.499

Progesterone receptor status Negative vs. Positive 1.45 0.97-2.17 0.069

Estrogen receptor status Negative vs. Positive 1.31 0.84-2.03 0.235

Her2 receptor status Negative vs. Positive 1.06 0.54-2.08 0.862

Triple-negative breast cancer Yes vs. No 1.78 1.06-2.97 0.029 2.31 1.23-4.34 0.01

Risk high risk vs. low risk 3.75 2.46-5.71 <0.001 2.05 1.13-3.72 0.019

Cancer subtype Triple negative vs. Luminal A 1.13-3.61 0.017 1.59 0.88-
2.86

0.125 1.13-3.61

Triple negative vs. Luminal B 0.71-4.49 0.214 0.71-4.49

Triple negative vs. HER2A 
enriched

0.44-8.25 0.386 0.44-8.25


