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Background: In recent years, the morbidity and mortality of cancer patients have continued to increase in 
China, and there is an urgent need to develop an effective method to monitor tumor dynamics and measure 
tumor burden. Derived from the cell-free fraction of blood in cancer patients, circulating tumor DNA 
(ctDNA) has been regarded as a promising surrogate for tumor tissue biopsies. With the development of 
sequencing technology, ctDNA has been recognized as a specific and highly sensitive biomarker, and it has 
become a hot research spot in recent years.
Methods: In this paper, we investigated clonal changes before and after surgery in liver cancer patients 
using ctDNA.
Results: First, we evaluated the accuracy and stability of the method in ctDNA detection using virtual 
tumor samples with known mutations. The results showed that our method detected variants with an allelic 
frequency of at least 0.5%. We then applied this method to 34 liver cancer patients. A total of 266 clinically 
relevant mutations were identified in the pretreatment plasma samples. Through the analysis of plasma 
DNA samples at different treatment time points, we also investigated the possibility of using ctDNA as a 
prognostic factor to reflect tumor dynamics and to evaluate clinical responses.
Conclusions: The results demonstrated that targeted high-depth next-generation sequencing can be used 
in ctDNA detection. Compared to traditional biopsy, the detection of ctDNA provides more information for 
human liver cancer, which is essential to guide the selection of therapy and predict prognosis.
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Introduction

Circulating tumor DNA (ctDNA) is a type of cell-free 
extracellular DNA that is found in body fluids, such as  
blood (1). ctDNA exists in the form of DNA-protein 
complexes or free DNA (1). Some studies have shown 
that the origin of ctDNA is related to tumor cells [tumor 
cells or circulating tumor cells (CTCs)]. ctDNA is formed 
when these cells are released into the circulatory system 
due to shedding or apoptosis. Circulating nucleic acids 
were discovered by Mandel and Metais as early as 1947 (2),  
and Shapiro et al. showed that peripheral blood serum 
levels in tumor patients are significantly higher than those 
in normal subjects (3). Researchers have also detected 
oncogene mutations in the plasma and serum of tumor 
patients, indicating that the mutation spectrum of ctDNA 
is consistent with the mutation spectrum of the primary 
tumor. Due to the potential of ctDNA in tumor prognosis 
and recurrence monitoring as well as its noninvasive 
advantages, it has become a hot research topic in recent 
years (4).

Current methods for detecting tumorigenesis, recurrence 
and metastasis include tumor imaging methods, such as 
CT and PET-CT, and serological markers, such as alpha-
fetoprotein (AFP). However, due to their low specificity 
and sensitivity, traditional serological markers (such as 
AFP) cannot meet clinical needs. ctDNA, which is present 
in peripheral blood, has great potential in the diagnosis of 
tumors and the monitoring of therapeutic effects. ctDNA 
is easy to amplify and can be detected by highly sensitive 
instruments. The “liquid biopsy” of ctDNA allows an 
instant understanding of what happens to tumor patients. 
Compared to traditional tissue biopsy, ctDNA detection 
can be repeated and resampled, which is more suitable for 
patients who need full-course efficacy evaluation of disease 
progression. ctDNA can also be used as an important 
monitoring marker for the evaluation of therapeutic effects 
and clinical follow-up after treatment.

Next-generation sequencing (NGS) provides a 
simultaneous, massive parallel and high-throughput method 
to detect thousands of mutations in cancer patients. With 
the development of personalized treatment, comprehensive 
characterization of genetic alterations using next-generation 
sequencing has been demonstrated to be helpful to guide 
the selection of therapy and predict prognosis. Due to 
the low concentration of ctDNA, many researchers have 
performed high-throughput sequencing methods to study 
ctDNA. Using massive parallel sequencing, it has been 

reported that ctDNA is an effective marker and is associated 
with many types of human cancers. For example, Leary  
et al. proposed a highly sensitive and widely used method 
for improving the clinical management of cancer patients 
with personalized biomarkers (5). Maniesh van der Vaart 
et al. (6) used the GSFLX sequencing platform (454) to 
analyze ctDNA extracted from 12 prostate cancer patients. 
Chan et al. (7) used a shotgun method to detect ctDNA in 
four hepatocellular carcinoma patients and one patient with 
bilateral breast and ovarian cancer in a noninvasive manner, 
and they found copy number variations associated with 
cancer. These studies clarify the feasibility of this method 
in studying tumor characteristics and its utility in detecting, 
monitoring, and studying cancer. In a study of 30 women 
with metastatic breast cancer who underwent therapy, 
Dawson et al. (8) compared the performance of ctDNA, 
CA15-3 and CTCs. Compared to tumor imaging findings, 
the results indicated that ctDNA is a biomarker with high 
specificity and high sensitivity. Research on ctDNA has 
developed rapidly and has become a research hotspot in the 
field of cancer (4), indicating its high potential in tumor 
monitoring and improvement of prognosis.

Liver cancer is one of the most common causes of 
cancer-associated mortalities in China (8), and more than 
350,000 patients die of liver cancer every year (9). Thus, 
it is necessary to develop a noninvasive detection method 
for liver cancer. There are few approved targeted drugs 
for the treatment of liver cancer. Most patients with liver 
cancer (especially those with metastatic lesions) need to 
be treated with chemotherapy. Studies have shown that 
targeted therapy is safer and more effective in the treatment 
of cancer patients (1,10,11). Some studies have shown that 
ctDNA can be used (8,12) to detect specific variants in 
tumor patients quantified in a noninvasive manner. Cancer 
patients can also be monitored in real time through the 
detection of ctDNA, which may help to detect the progress 
of the disease, adjust the treatment plan, and achieve the 
purpose of prolonging the survival of the patients. However, 
in liver cancer patients, ctDNA has not been fully analyzed 
or investigated. To detect clinically relevant mutations 
in liver cancer patients, we present the first study using 
targeted NGS technology on a BGISEQ-500 sequencer.

In this study, we developed a new panel containing 
378 liver cancer-related genes. Using the BGISEQ-500 
platform, we first tested the performance of this panel in 
detecting clinically relevant mutations. Using this panel, 
we then detected 266 clinically relevant mutations in the 
pretreatment plasma samples of 34 clinical cases. We also 



4389Translational Cancer Research, Vol 10, No 10 October 2021

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2021;10(10):4387-4402 | https://dx.doi.org/10.21037/tcr-21-1005

investigated the clonal changes before and after surgery in 
29 liver cancer patients. The results showed that ctDNA 
can be used in the monitoring of liver cancer patients. This 
study, to the best of our knowledge, is the first to detect 
clinically relevant alterations in liver cancer in the Chinese 
population using the BGISEQ-500 platform. We present 
the following article in accordance with the MDAR checklist 
(available at https://dx.doi.org/10.21037/tcr-21-1005).

Methods

Virtual plasma samples and patients with liver cancer

To calculate the accuracy and stability of this technology, 
virtual plasma samples harboring known mutations of 
gradient allelic frequency were obtained. First, plasma 
samples of 10 normal controls were collected and mixed 
to prepare plasma basal fluid (DY). Then, 15 tumor DNA 
samples with known mutations (7 from Horizon and 8 
from Cobioer) were fragmented to 160 bp (Table S1). After 
dilution, the DNA fragment was then mixed with DY at 
different mutation frequencies to form a virtual plasma 
sample (ZJ). ZJ contains 15 different types of mutations, 
including SNV, indel, and gene fusion. As shown in Table S1, 
the final frequency span of the mutation in ZJ was 0.23–10%.

The present study consisted of 34 liver cancer patients 
from The Central Hospital of Wuhan. Samples of liver 
cancer patients were collected and analyzed between 
September 2017 and January 2018. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the Ethics 
Committee of BGI (BGI-IRB 15136). Informed consent 
was obtained from all participants.

DNA extraction and quantification

Genomic DNA was isolated from virtual plasma samples 
(ZJ) harboring known mutations and blood samples before 
and after operation or biopsy. Following standard protocols, 
the QIAamp DNA Blood Midi Kit (Qiagen, Hilden, 
Germany) was used to extract total genomic DNA from ZJ 
and peripheral blood lymphocytes (PBLs) of the patients. 
Plasma DNA of liver cancer patients was extracted by a 
QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden, 
Germany). DNA quality and quantity were assessed using a 
Nanodrop and Qubit (Thermo Fisher Scientific).

Library preparation, targeted capture, and sequencing

In this study, the DNA samples were sequenced by the 
BGISEQ-500 platform. Following the standard protocol 
provided by BGI (BGI-Shenzhen), we performed library 
preparation, sequence capture, and sequencing (BGISEQ-
500RS High-throughput sequencing kit, PE100, V3.0, MGI 
Tech Co., Ltd.) for all the plasma samples. In brief, 20 ng of 
DNA was used for end repair and A-tailing. The fragments 
were then ligated to adapters (23 ℃ for 1 h), and the ligation 
products were purified and amplified. After purification, 
8 libraries were pooled together and hybridized to the 
capture array (65 ℃ for 16 h). Following the manufacturer’s 
instructions (MGI Tech Co., Ltd.), the hybridized capture 
array was washed and eluted. The circularization process 
was performed for each eluted library, and the DNBs were 
loaded into a sequencing chip for paired-end (110 bp) 
sequencing.

Bioinformatics analysis

After image analysis and base calling by the BGISEQ-500 
platform, FASTQ data were generated. The pipeline 
of bioinformatics analysis mainly included four steps. 
First, SOAPnuke was used to filter reads with low quality 
and adapter sequences. Second, BWA-mem was used to 
generate bam files. Sorted BAM files were then generated 
using Picard, which was also used to remove PCR-derived 
duplications. Third, MuTect2 software was used to detect 
somatic SNVs and indels. CopyWriteR was used to identify 
somatic CNVs, and somatic fusions were detected by 
self-developed software. Fourth, all the above identified 
mutations were annotated by our own knowledge database 
(BGI-CKD) for further analysis.

Statistical analysis

No specific statistical analysis was performed in the current 
study.

Results

Study design and patient enrollment

In the present, we developed a targeted next-generation 
sequencing method using the BGISEQ-500 platform to 

https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
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detect clinically relevant mutations in clinical cases of 
liver cancer. We first collected informed consent from all 
participants. A total of 34 patients were recruited from The 
Central Hospital of Wuhan in this study (Table 1). The AFP 
levels were measured at different time points. Moreover, 
a virtual tumor sample harboring known mutations of 
gradient allelic frequency (0.23–10%) was analyzed three 
times (Table S1). The study and the protocols used were 
approved by the Institutional Ethics Committee of BGI-
Shenzhen (BGI-IRB 15136).

To capture the exons of 378 known pathogenic genes 
(spanning 1,594,704 bp), we designed an array-based 
chip associated with liver cancer and other common solid 
tumors. All 378 genes are shown in Table S2. The exons 
and the 50-bp intron-flanking regions of the 378 genes were 
included in the designed array. The 378 clinically related 
genes were identified according to the following criteria: 
(I) top 20 genes are listed in TCGA, COSMIC and ICGC 
database; (II) the genes/sites have been previously published 
to be related to liver cancer in research papers (13-24); (III) 
genomic alterations in the genes have been demonstrated 
to be associated with approved cancer therapies in the FDA 
(www.fda.gov) and NCI-match web pages (https://www.
cancer.gov/); and (IV) the NCCN guideline (2017. V1) has 
clearly indicated that variants in the genes are related to 
liver cancer.

In the present study, we developed a targeted next-
generation sequencing method to detect clinically relevant 
mutations in 378 liver cancer-related genes using the 
BGISEQ-500 platform. First, we screened a virtual tumor 
sample carrying known variants using targeted NGS 
technology to validate the accuracy and stability of this 
technology. Second, we detected 266 somatic mutations 
in the pretreatment plasma samples of the 34 liver cancer 
patients using this method. Finally, we evaluated ctDNA 
levels in monitoring tumor burden in liver cancer patients.

Evaluation of sensitivity and stability

Successful extraction of plasma DNA is a prerequisite 
for subsequent analysis and is important for the accuracy 
of subsequent analyses. Due to the low concentration of 
ctDNA in plasma, we first evaluated the accuracy and 
stability of high-throughput sequencing in detecting ctDNA 
by constructing virtual tumor samples (ZJs) containing 
known mutations.

To test the accuracy and stability of our method, virtual 
plasma samples (ZJs) harboring known mutations (Table S1)  
of gradient allelic frequency were analyzed (Table S3). 
Positive cell lines harboring known actionable mutations 
(obtained from Horizon and Cobioer) were mixed with 
DNA from 10 healthy controls (DY) and diluted to 
different allelic frequencies ranging from 0.23% to 10% (ZJ)  
(Table S1). These virtual tumor samples were used as 
positive controls and sequenced repeatedly (3 times). As 
a result, for allelic frequencies of more than 0.5%, 100% 
(36/36) of the SNV/indel/gene fusions were detected 
(Figure 1). For allelic frequencies of 0.23–0.31, 44.4% (4/9) 
of all the known mutations were detected. These results 
showed that this method detects all variants with an allelic 
frequency of at least 0.5%, indicating the high sensitivity of 
this technology.

Targeted region sequencing and data analysis

In this study, 34 patients with liver cancer were sequenced. 
After removing low-quality reads, BWA mem (Burrows 
Wheeler Aligner) was used in the alignment process. Read 
quality control (QC) and alignment QC were performed. 
We then used Picard tools to remove duplicate reads. Single 
nucleotide variant (SNV) and indel (short insertions and 
deletions) detection was performed by Mutect2 software. 
CNV and gene fusion detection was also performed.

A total of 13,754,633,272 raw reads were generated for 
all the plasma samples. The sequencing read length was 110 
base pairs. The mean sequencing depth for the PBL samples 
was 642.3-fold after removal of duplications, and the mean 
sequencing depth for the plasma samples was 1,814.09-fold 
after removal of duplications (Table 1). For the sequencing 
coverage of all the plasma samples, an average of 99.35% of 
the target region was covered by more than 100-fold, and 
an average of 99.80% of the target region was covered by 
more than 30-fold. A total of 99.90% of the target region 
was successfully covered with a depth of more than 10-
fold. These results indicated that this method is reliable in 
detecting clinically relevant mutations.

USP6 (15.41% of all mutations), TTN (3.01%), 
CARD11 (2.26%), SYNE2 (2.26%), CSMD3 (2.26%) and 
ROS1 (2.26%) were the most frequently mutated tumor 
genes in the pretreatment plasma samples (Figure 2). 
Overall, 266 mutations were identified in the pretreatment 
plasma samples of the 34 liver cancer patients.

https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
http://www.fda.gov
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
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Table 1 Results of liver cancer patients

Number Sample name Time point Concentration (ng/uL) Total (ng) Sequencing depth Coverage (%)

1 LZ01-L1 Before surgery 24.4 1,220 567.95 99.86

LZ01-P1 1.5 67.5 2,416.04 99.99

LZ01-L2 One week after surgery 22.4 1,120 656.33 99.88

LZ01-P2 1.28 57.6 1,634.06 99.96

LZ01-L3 One month after surgery 27.2 1,360 717.75 99.9

LZ01-P3 0.742 33.39 1,537.67 99.94

2 LZ02-L1 Before surgery 39.6 1,980 642.63 99.88

LZ02-P1 0.524 23.58 776.69 99.9

LZ02-L2 One week after surgery 48.4 2,420 682.65 99.92

LZ02-P2 0.844 37.98 2,099.44 99.98

3 LZ03-L1 Before surgery 60 3,000 708.17 99.87

LZ03-P1 1.77 79.65 1,553.43 99.92

LZ03-L2 One week after surgery 34 1,700 678.36 99.88

LZ03-P2 2.64 118.8 2841 99.95

LZ03-L3 One month after surgery 26.4 1,320 690.83 99.88

LZ03-P3 0.892 40.14 1,482.67 99.93

4 LZ04-L1 Before surgery 13.7 685 628.8 99.84

LZ04-P1 0.596 26.82 1,613.45 99.99

LZ04-L2 One week after surgery 33.4 1670 370.76 99.83

LZ04-P2 3.34 150.3 1,765.08 99.95

LZ04-L3 One month after surgery 14.4 720 584.6 99.87

LZ04-P3 0.6 27 1,555.47 99.96

5 LZ05-L1 Before surgery 53 2650 488.69 99.87

LZ05-P1 0.668 30.06 1,938.95 99.98

LZ05-L2 One week after surgery 73.4 3670 676.3 99.88

LZ05-P2 4.4 198 2,556.93 99.98

6 LZ06-L1 Before surgery 11.1 555 545.51 99.82

LZ06-P1 1.22 54.9 1,164.22 99.94

LZ06-L2 One week after surgery 27.2 1,360 504.67 99.81

LZ06-P2 1.34 60.3 1,465.36 99.94

7 LZ07-L1 Before surgery 59.6 2,980 534.51 99.8

LZ07-P1 1.9 85.5 1,413.4 99.95

LZ07-L2 One week after surgery 94.8 4740 534.32 99.81

LZ07-P2 1.82 81.9 1,802.31 99.93

Table 1 (continued)
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Table 1 (continued)

Number Sample name Time point Concentration (ng/uL) Total (ng) Sequencing depth Coverage (%)

8 LZ08-L1 0.3-month after surgery 28 1,400 613.87 99.87

LZ08-P1 0.506 22.77 659.42 99.86

LZ08-L2 0.57-month after surgery 31.6 1,580 584.39 99.84

LZ08-P2 7.3 328.5 3,987.2 99.95

LZ08-L3 0.7-month after surgery 49 2450 553.75 99.87

LZ08-P3 2.78 125.1 1,889.31 99.92

9 LZ09-L1 Before surgery 110 5,500 645.79 99.9

LZ09-P1 0.584 26.28 1,209.81 99.98

LZ09-L2 One week after surgery 62.6 3,130 596.6 99.89

LZ09-P2 1.93 86.85 1,584.38 100

LZ09-L3 One month after surgery 65 2,600 822.08 99.89

LZ09-P3 0.308 15.4 1,630.99 99.96

10 LZ10-L1 Before surgery 115 5,750 628.14 99.93

LZ10-P1 1.18 53.1 1,820.79 99.99

LZ10-L2 One week after surgery 49 2,450 575.16 99.89

LZ10-P2 17.3 778.5 3,375.8 99.99

11 LZ11-L1 0.2-month after surgery 52.6 2,630 637.02 99.86

LZ11-P1 0.822 36.99 1,755.98 99.95

LZ11-L2 0.5-month after surgery 67.4 3,370 608.57 99.94

LZ11-P2 1.45 65.25 1,865.68 99.96

12 LZ12-L1 Before surgery 62.4 3,120 611.33 99.87

LZ12-P1 0.644 28.98 1,118.99 99.9

LZ12-L2 One week after surgery 23.4 1,170 615.92 99.89

LZ12-P2 0.724 32.58 1,623.62 99.94

LZ12-L3 One month after surgery 16.2 648 685.2 99.89

LZ12-P3 0.34 17 1,575.76 99.95

13 LZ13-L1 Before surgery 88.6 4,430 709.52 99.9

LZ13-P1 1.71 76.95 2,793.03 99.99

LZ13-L2 One week after surgery 22.8 1,140 589.9 99.9

LZ13-P2 3.8 171 1,802.37 99.99

Table 1 (continued)
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Table 1 (continued)

Number Sample name Time point Concentration (ng/uL) Total (ng) Sequencing depth Coverage (%)

14 LZ14-L1 Before surgery 33.6 1,680 656.36 99.89

LZ14-P1 0.68 30.6 1,171.39 99.96

LZ14-L2 One week after surgery 58.4 2,920 601.72 99.88

LZ14-P2 1.31 58.95 1,614.49 99.95

LZ14-L3 One month after surgery 24.2 1,210 550.76 99.88

LZ14-P3 1.39 62.55 1,694.25 100

15 LZ15-L1 4.13 months after 
surgery

15 750 421.73 99.88

LZ15-P1 0.672 30.24 1,334.97 99.99

LZ15-L2 4.33 months after 
surgery

100 5,000 350.85 99.88

LZ15-P2 3.3 148.5 2,435.09 99.99

16 LZ16-L1 Before surgery 91.8 4,590 481.87 99.92

LZ16-P1 0.556 25.02 539.92 99.95

LZ16-L2 One week after surgery 21.8 1,090 537.63 99.88

LZ16-P2 0.948 42.66 1,191.35 99.96

17 LZ17-L1 Before surgery 45.6 2,280 497.08 99.88

LZ17-P1 0.764 34.38 1,048.74 100

LZ17-L2 One week after surgery 35 1,750 561.99 99.89

LZ17-P2 1.65 74.25 1994.74 100

LZ17-L3 One month after surgery NA NA 875.47 99.89

LZ17-P3 0.48 24 827.99 99.89

18 LZ18-L1 Before surgery 17 850 481.18 99.89

LZ18-P1 0.998 44.91 1,648.15 100

LZ18-L2 One week after surgery 112 5,600 490.28 99.88

LZ18-P2 1.27 57.15 2,141.24 100

19 LZ19-L1 Before surgery 19 950 480.49 99.89

LZ19-P1 0.698 31.41 906.08 99.98

LZ19-L2 One week after surgery 88.6 4,430 508.83 99.88

LZ19-P2 2.48 111.6 2,182.71 100

LZ19-L3 One month after surgery 20.2 808 632.48 99.84

LZ19-P3 0.662 33.1 1,699.08 99.95

20 LZ20-L1 Before surgery 32.6 1,630 596.67 99.92

LZ20-P1 0.764 34.38 1,634.25 99.99

LZ20-L2 One week after surgery 110 5,500 720.95 99.88

LZ20-P2 1.47 66.15 2,829.23 99.99

Table 1 (continued)
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Table 1 (continued)

Number Sample name Time point Concentration (ng/uL) Total (ng) Sequencing depth Coverage (%)

21 LZ21-L1 Before surgery 38.4 1,920 697.29 99.88

LZ21-P1 0.576 25.92 1,013.25 99.96

LZ21-L2 One week after surgery 73 3,650 752.39 99.86

LZ21-P2 0.936 42.12 1,271.58 99.99

22 LZ22-L1 5.6 months after surgery 38.6 1,930 685.55 99.89

LZ22-P1 0.856 38.52 1,506.22 99.98

LZ22-L2 5.67 months after 
surgery

45 2,250 820.42 99.92

LZ22-P2 1.57 70.65 2,643.36 100

LZ22-L3 8.7 months after surgery 17.7 708 826 99.89

LZ22-P3 0.68 34 1,839.93 99.96

23 LZ23-L1 Before surgery 31.4 1,570 786.04 99.84

LZ23-P1 0.548 24.66 937.14 99.86

LZ23-L2 One week after surgery 123 6150 750.21 99.92

LZ23-P2 1.92 86.4 1,914.37 99.98

24 LZ24-L1 Before surgery NA NA 952.3 99.9

LZ24-P1 NA NA 475.42 99.87

LZ24-L2 One week after surgery NA NA 824.67 99.89

LZ24-P2 1.21 60.5 2,590.66 99.99

LZ24-L3 One month after surgery 44 1,760 617.35 99.87

LZ24-P3 0.548 27.4 3,356.69 99.99

25 LZ25-L1 Before surgery 15.8 632 690.56 99.9

LZ25-P1 NA NA 2,342.37 99.96

LZ25-L2 One week after surgery 24 960 617.74 99.86

LZ25-P2 NA NA 478.79 99.92

LZ25-L3 One month after surgery NA NA 798.17 99.87

LZ25-P3 0.872 43.6 2,509.11 99.96

26 LZ26-L1 Before surgery 19.9 796 698.19 99.89

LZ26-P1 NA NA 2,039.71 99.94

LZ26-L2 One week after surgery 28 1,120 690.76 99.89

LZ26-P2 NA NA 1,670.65 99.96

27 LZ27-L1 Before surgery 58.4 2,920 632.41 99.82

LZ27-P1 1.03 46.35 2,350.51 99.99

LZ27-L3 One month after surgery 18.5 740 709.72 99.88

LZ27-P3 0.688 34.4 1,530.24 99.92

Table 1 (continued)
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Table 1 (continued)

Number Sample name Time point Concentration (ng/uL) Total (ng) Sequencing depth Coverage (%)

28 LZ28-L1 Before surgery 47.2 1,888 958.64 99.9

LZ28-P1 0.304 15.2 136.15 99.59

LZ28-L2 One week after surgery 29.6 1,184 601.5 99.87

LZ28-P2 1.52 76 2,077.22 99.94

LZ28-L3 One month after surgery 72.4 2,896 874.11 99.9

LZ28-P3 0.924 46.2 2,082.47 99.96

29 LZ29-L1 Before surgery 25.4 1,016 636.14 99.86

LZ29-P1 0.152 7.6 1,332.68 99.93

LZ29-L2 One week after surgery 94.8 3,792 763.4 99.86

LZ29-P2 0.624 3,1.2 1,806.1 99.94

30 LZ30-L1 Before surgery 4.58 183.2 235.27 99.77

LZ30-P1 0.626 31.3 3,220.81 99.98

LZ30-L2 0.3-month after surgery, 7.58 303.2 515.32 99.84

LZ30-P2 0.52 26 1,567.56 99.93

31 LZ31-L1 Before surgery 70.4 2,816 813.56 99.9

LZ31-P1 0.884 44.2 3,598.54 99.96

LZ31-L2 One week after surgery NA NA 908.48 99.9

LZ31-P2 0.304 15.2 1,280.98 99.92

32 LZ32-L1 Before surgery 21.4 856 511.01 99.84

LZ32-P1 0.204 10.2 2,245.53 99.98

LZ32-L2 One week after surgery 70 2,800 729.82 99.88

LZ32-P2 0.876 43.8 3,583.51 99.99

33 LZ33-L1 Before surgery 28.8 1,152 605.47 99.89

LZ33-P1 4.86 243 2,098.68 99.98

LZ33-L2 One week after surgery 61.8 2,472 776.44 99.92

LZ33-P2 0.534 26.7 2,456.37 99.95

34 LZ34-L1 Before surgery 43.4 1,736 671.4 99.87

LZ34-P1 0.242 12.1 1,263.81 99.96

LZ34-L2 One week after surgery 28.4 1,136 739.56 99.9

LZ34-P2 0.638 31.9 2,517.93 99.92

-L, peripheral blood lymphocytes (PBLs) sample; -P, plasma sample.
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Detection of clinically relevant mutations in pretreatment 
ctDNA

The following criteria were used to identify clinically 
relevant mutations: (I) the mutations were nonsynonymous 
variants; (II) the allele frequency of the mutation was more 
than 1%; (III) the mutations were in key cancer pathways 
or in the COSMIC database; and (IV) the mutations were 
reported ≥2 times (25). The potentially actionable mutations 
were then annotated by our own knowledge database (BGI 
Cancer Knowledge Database, BGI-CKD). BGI-CKD is a 
database containing potential clinical implications, FDA-

approved drug/therapy targets, or potentially actionable 
targets that are under active clinical trials.

After annotation, 24 potentially actionable mutations 
were detected in the pretreatment plasma samples of the 
liver cancer patients. Only 2 mutations were identified to be 
targets of approved drugs or drugs currently under clinical 
trials (Figure 2).

Subclonal analysis

Compared to traditional serological markers, ctDNA 
directly responds to tumor burden and may be used as a 
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potential marker for tumor monitoring. PyClone (26) was 
used to infer the subclonal architecture of plasma samples 
before and after treatment. Figure 3 shows the clone 
number and the mean allele frequency (AF) of the major 
clone of the plasma samples before treatment. On average, 
each sample carries 3.56 clones (2-10). The clone number 
and the mean AF of the major clone are shown in Figure 3. 
The results suggested that the clone number and the mean 
AF of the major clone were positively correlated. However, 
more samples are needed to test this assumption.

To investigate the efficacy of ctDNA in tumor treatment 
monitoring in liver cancer patients, the mutation frequency 
mean value of the major clone in plasma ctDNA was used 
to reflect the overall ctDNA level in the present study. 
PyClone was used to infer the cancer cell fraction (CCF) 
in each ctDNA as described previously (27). Clonal was 

defined as the cluster with the greatest mean CCF variants, 
and the remaining clusters were considered subclonal (26).

Thirty-four patients with liver cancer were included 
in this study. Five patients were removed due to lack of 
AFP concentration information, and 29 patients were 
included in the following analysis. The AFP concentration 
in 14 patients was within the normal range (<20 ng/mL) 
before and after treatment. The AFP concentration in 
these patients was not suitable as a marker for treatment 
monitoring. Figure S1 shows the ctDNA levels of these 
patients, which may be used as a surrogate for AFP. Fifteen 
patients had an abnormal range of AFP concentrations  
(>20 ng/mL). Dynamic changes were detected in plasma 
samples before and after treatment (Figure 4), and the 
change in AFP concentration was transformed to its 
percentage change. In general, the ctDNA level was well 
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Figure 4 Dynamic changes in ctDNA levels and measurable AFP concentrations in 15 patients. ctDNA, circulating tumor DNA; AFP, 
alpha-fetoprotein.
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correlated with AFP concentration at different time points 
(Figure 4), suggesting that the clinical course of liver cancer 
can be monitored using ctDNA.

Discussion

In the past few years, the incidence and mortality trend of 
patients with liver cancer has been significantly decreased 
in China (28), possibly due to the prevention of hepatitis 
B virus (HBV) infection through vaccination of infants. 
However, liver cancer is still one of the most common 
causes of cancer-associated mortalities in China (28). Poor 
prognosis in liver cancer patients is common, which may 
be due to an advanced stage at first diagnosis. Because 
the survival rates of cancer patients rapidly decline with 
delayed salvage surgery and late-stage diagnosis (29,30), 
timely detection is pivotal. Accurate monitoring of 
treatment response also helps to determine the benefit 
of new therapeutics and to avoid unnecessary ineffective 
therapies. Clinically, serial imaging is generally used 
to assess treatment response; however, radiographic 
measurements often fail to detect small changes in the 
early stage of treatment. In clinical management, AFP, 
CEA, PSA, and CA15-3 are also commonly used to reflect 
treatment responses (31,32). He et al. (32) showed that the 
sensitivity of the combined use of markers greatly increases 
in the diagnosis of gastric cancer. However, in patients with 
normal concentrations of plasma protein biomarkers in a 
real clinical setting, the application of these plasma protein 
biomarkers is limited. In recent years, ctDNA has been 
regarded as a promising surrogate.

Because the detection of ctDNA is noninvasive, the use 
of ctDNA to assess treatment response largely avoids the 
need for repeated invasive biopsy procedures. However, the 
use of ctDNA to study the extent of clonal heterogeneity 
in plasma samples before and after treatment is extremely 
limited. In the present study, we investigated putative clonal 
clusters and inferred the cellular prevalence in plasma 
samples of 29 liver patients using PyClone. The results 
showed that clonal population structures and subclonal 
dynamics were reflected and captured using ctDNA.

In this study, clonal changes before and after surgery 
were investigated in 29 patients. These patients were 
grouped according to the concentration of AFP as follows: 
one group (group 1, 14 patients) had a normal AFP 
concentration (Figure S1); and the other group (group 2, 
15 patients) had an abnormal AFP concentration (Figure 4). 
Because the AFP concentration was not suitable as a marker 

for treatment monitoring for the patients in group 1, the 
ctDNA levels of these patients could be used as surrogates 
for AFP for treatment monitoring. The outcomes of 
patients LZ07, LZ12, LZ20, LZ21, LZ23, LZ27, LZ29, 
and LZ34 were successfully followed up. Patients LZ21, 
LZ27, LZ29, and LZ34 had significantly lower ctDNA 
levels after treatment (Figure S1), suggesting a better 
prognosis after surgery. Good prognosis was observed in 
these 4 patients, and no evidence of recurrence was found. 
Patients LZ12 and LZ23 had elevated ctDNA levels after 
treatment (Figure S1), suggesting residual tumor formation 
or recurrence after surgery. Recurrences were observed 
in April and June in 2021 for patients LZ12 and LZ23, 
respectively. We also observed a contradictory association 
between ctDNA levels and clinical outcome in patients 
LZ07 and LZ20 (Figure S1). Patient LZ07 had significantly 
lower ctDNA levels after treatment, suggesting better 
prognosis; however, patient LZ07 died shortly after surgery. 
In contrast, patient LZ20 had elevated ctDNA levels after 
treatment; however, good prognosis was observed in patient 
LZ20. We failed to obtain any further information for 
patients LZ01, LZ06, LZ10, LZ18, LZ31 and LZ32 due 
to loss of contact information. For patients with poor AFP 
sensitivity, these results suggested that ctDNA detection has 
great potential in monitoring therapeutic effects.

In most cases (12/15; LZ03, LZ05, LZ08, LZ13, 
LZ15, LZ17, LZ19, LZ22, LZ24, LZ25, LZ26, and 
LZ28) in group 2, the ctDNA levels were generally 
correlated well with the changes in plasma samples on 
computerized AFP concentration. However, some patients 
had large fluctuations in AFP concentration (Figure 4). 
Combined with clinical information, the ctDNA levels 
were more consistent with the clinical condition of the 
patients, suggesting that ctDNA may be more suitable for 
monitoring the therapeutic effects in liver cancer patients. 
We also identified different changes between ctDNA levels 
and AFP concentration in some patients (such as patients 
LZ04, LZ11, and LZ30). We further analyzed the clinical 
information of these patients. The ctDNA level of the 
plasma sample of patient LZ04 was elevated temporarily 
at 0.5 months after surgery and decreased at 1.5 months 
after surgery, which may be related to the insufficient 
sampling time point of the patient. Patient LZ11 also had 
insufficient sampling time points. The ctDNA level of the 
plasma sample of patient LZ30 was elevated at 0.3 months 
after surgery, which reflected the detection of residual 
disease using ctDNA. The CT result of this patient in 
January 2018 showed lipiodol accumulation and uneven 

https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-1005-supplementary.pdf
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density of the right posterior lobe of the liver, which 
indicated the recurrence of the tumor after surgery. The 
AFP concentration of the patient increased greatly in May 
2018, which also reflected the recurrence of the disease. 
For patients LZ15 and LZ22, the ctDNA levels after 
treatment were also decreased, which was consistent with 
the AFP concentrations. The unusual trends for patients 
LZ15 and LZ22 shown in Figure 4 may be due to the 
sampling time points of AFP and ctDNA being different in 
these two samples. Together, these results suggested that 
ctDNA can serve as a highly sensitive and real-time marker 
for monitoring liver cancer and the prognosis of liver 
cancer. However, more samples and further analysis of the 
treatment response are still needed.

There were several limitations in this study. Due to the 
lack of tumor tissue samples of the patients, we were unable 
to assess the concordance of somatic mutations between 
tumor DNA and ctDNA in our cohort. Some reports have 
demonstrated the relationship between ctDNA level and 
progression-free survival (PFS) and OS (33). Considering 
the high survival rate of the patients at the time of 
submission of this paper, the investigation of the association 
of PFS and OS with ctDNA levels may be another ingesting 
topic in the future.

Conclusions

In summary, we used PyClone to explore the subclonal 
architecture and cancer cell fraction in all plasma samples. 
To the best of our knowledge, this is the first study 
employing ctDNA in liver cancer for subclonal analysis 
using the BGISEQ-500 platform. The results showed 
that ctDNA can be used in the monitoring of liver cancer 
patients.
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Table S1 Mutation information of ZJ

Number Mutation Initial frequency Company Catalog number Final frequency

1 BRAF:p.V600E 50% Horizon HD251 HD253 HD254 10.00%

2 PIK3CA:p.H1047R 50% Horizon Cobioer HD251 HD253 HD254 
HD258 HD664 CBP60034

10.00%

3 KRAS:p.G12S 100% Cobioer CBP60084 5.10%

4 NRAS:p.Q61R 100% Cobioer CBP60074 5.10%

5 BRAF:p.G469A 99% Cobioer CBP60163 5.05%

6 KRAS:p.G13D 50% Horizon HD664 2.55%

7 ALK-EML4:fusion 50% Horizon HD664 2.55%

8 EGFR:p.T790M 50% Horizon HD258 2.55%

9 EGFR:p.G719S 50% Horizon HD253 1.02%

10 KRAS:G12D PIK3CA:1047R 45% Cobioer CBP60034 0.92%

11 EGFR:p.L858R 50% Horizon HD254 0.51%

12 EGFR:p.746_750del 50% Horizon HD251 0.51%

13 PIK3CA:p.E545K 46% Cobioer CBP60142 0.23%

14 PTEN:p.R233* 50% Cobioer CBP60707 0.26%

15 KRAS:p.G12A 61% Cobioer CBP60748 0.31%

Note: 1) The cell line background of HD251, HD253, HD254 and HD258 is RKO, which carries both BRAF:p.V600E and PIK3CA:p.H1047R 
(https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=909698). So, HD251, HD253, HD254 and HD258 was used to generate lower 
allelic frequencies of BRAF:p.V600E and PIK3CA:p.H1047R in our study. 2) The cell line background of HD664 is HCT-116, which carries 
both PIK3CA:p.H1047R and KRAS:p.G13D (https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=905936). So, HD664 was used to 
generate lower allelic frequencies of PIK3CA:p.H1047R and KRAS:p.G13D here. 3) The cell line background of CBP60034 is LS-180, which 
carries both PIK3CA:p.H1047R and KRAS:G12D (https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=998189). So, CBP60034 
was also used to generate lower allelic frequencies of PIK3CA:p.H1047R and KRAS:G12D. 4) The cell line background of CBP60084 
is A549, which carries KRAS:p.G12S (https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=905949). So, CBP60084 was used to 
generate a lower allelic frequency of KRAS:p.G12S. 5) The cell line background of CBP60074 is NCI-H2347, which carries NRAS:p.Q61R 
(https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=687820). So, CBP60074 was used to generate a lower allelic frequency of 
NRAS:p.Q61R 6) The cell line background of CBP60163 is NCI-H1395, which carries BRAF:p.G469A (https://www.jto.org/article/S1556-
0864(18)31510-7/pdf). So, CBP60163 was used to generate a lower allelic frequency of BRAF:p.G469A. 7) The cell line background 
of CBP60142 is NCI-H596, which carries PIK3CA:p.E545K (https://cancer.sanger.ac.uk/cell_lines/sample/overview?id=908459). So, 
CBP60142 was used to generate a lower allelic frequency of PIK3CA:p.E545K. 8) The cell line background of CBP60707 is C-33A, which 
carries PTEN:p.R233* (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976291/). So, CBP60707 was used to generate a lower allelic 
frequency of PTEN:p.R233*. 9) The cell line background of CBP60748 is SW1116, which carries KRAS:p.G12A (https://cancer.sanger.
ac.uk/cell_lines/sample/overview?id=909746). So, CBP60748 was used to generate a lower allelic frequency of KRAS:p.G12A. 
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Table S2 Gene list

SAMD9L

ABCB1

ABCA13

PIK3CG

RAMP3

AMPH

UBE3C

FLNC

HNRNPA2B1

CPA2

TRRAP

OPN1SW

RHBDD2

PTPN12

BRAF

HGF

EGFR

HDAC9

PCLO

ABCB4

MLL3

SMO

NOS3

DDC

SLC25A13

IL6

MET

CARD11

URGCP

SAMD9

ELMO1

FOXA2

GNAS

SRC

SAMHD1

RAC2

Table S2 (continued)

Table S2 (continued)

NF2

MICAL3

EP300

MAPK1

HIF1A

SLC10A1

AKT1

SYNE2

FOXA1

BRF1

ATAD2

MTDH

CHD7

RSPO2

TPD52

DLC1

ZFPM2

PCMTD1

SULF1

WRN

WWP1

PPAPDC1B

UNC5D

PKHD1L1

CLU

RECQL4

FZD6

CSMD3

FGFR1

MYC

NSMCE2

CCNE1

XRCC1

GNA11

OR4F17

Table S2 (continued)
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Table S2 (continued)

ZNF737

KEAP1

PEG3

RYR1

TGFB1

SPC24

ZNF226

MAP2K7

JAK3

MLL4

SMARCA4

COMP

STK11

PDE4DIP

ARID4B

FAM5C

NRAS

DDR2

OR4F3

LEPR

MTOR

RPL22

CNTN2

FCRL1

CACNA1E

TMEM51

ASPM

SETDB1

COL11A1

GPATCH3

MPL

MUC1

ISG15

CRP

MCL1

PLXNA2

Table S2 (continued)

Table S2 (continued)

RYR2

IGSF3

EPS15

PRMT6

PARP1

JAK1

TCHHL1

PTPRC

ABCA4

SPAG17

ARID1A

ATAD3B

ERRFI1

SPRTN

MYSM1

VEGFA

HLA-DRA

SYNE1

DST

DSE

EYS

ROS1

UBD

HIST1H4B

HIST1H2AL

TTLL2

PKHD1

CDKN1A

SLC22A1

HIST1H2BD

IGF2R

MEP1A

LAMA2

CCND3

ITPR3

NEDD9

Table S2 (continued)
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Table S2 (continued)

HLA-DQA1

NOTCH4

CEP85L

ARID1B

GJA1

TNF

MEN1

FGF4

SIPA1

MLL

FAT3

CFL1

FGF3

TTC36

IGF2

CCND1

FGF19

HRAS

ATM

SIRT3

CD3D

MAP2K3

ACE

NME1

HN1

SUPT6H

RAD51C

USP6

KRT19

NLRP1

CBX4

SDK2

STAT3

G6PC

BPTF

NCOR1

Table S2 (continued)

Table S2 (continued)

TP53

TMEM99

BRIP1

MAP2K4

FLCN

ERBB2

NF1

CLDN14

USP25

RUNX1

CDH1

PRKCB

BRD7

CREBBP

RBL2

C16orf62

SRCAP

TSC2

AXIN1

TMEM170A

SERPINB3

SMAD2

C18orf34

ATP8B1

ASXL3

SMAD4

EPHB1

RAF1

KAT2B

IGSF10

ZNF717

VHL

CTNNB1

BAP1

FAM157A

LRTM1

Table S2 (continued)
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Table S2 (continued)

GLB1

SLC15A2

ATR

COL6A5

PIK3CA

RASSF1

MECOM

SETD2

ADIPOQ

MLL2

MDM2

CDK4

CDKN1B

RAN

CACNA2D4

ARID2

KRAS

CCND2

GXYLT1

SELPLG

MARS

TNFRSF1A

MDM1

NUP107

BAZ2A

RARG

LRP1

PTGES3

NAV3

PTPN11

ERBB3

HNF1A

PTPRB

RYR3

MAP2K1

IL16

Table S2 (continued)

Table S2 (continued)

PML

IGF1R

MAN2C1

NTRK3

CHD2

FBN1

SMAD3

IDH2

VCX

RPS6KA3

FLNA

ZIC3

GPC3

ATRX

DMD

GPR143

TAF1

AR

HUWE1

KDM6A

FGA

KIT

FGFR3

FAT4

NFKB1

EGF

ALB

AFP

PDGFRA

ADH1B

IRF2

SPP1

OTOP1

PLK4

KDR

CCNA2

Table S2 (continued)
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Table S2 (continued)

FRAS1

GAB1

TLR3

PROM1

IL8

LRP2

TTN

SCN7A

ERBB4

CYP1B1

UNC80

UBR3

IRS1

BAZ2B

DNMT3A

LRP1B

EPHA4

STAT4

BRE

GLI2

ABCB11

ALK

NFE2L2

MXD1

APOB

ACVR2A

EIF2AK3

IDH1

XRCC5

HOXD13

GALNT14

CDKN2A

TMC1

PTCH1

JAK2

NOTCH1

Table S2 (continued)

Table S2 (continued)

PLIN2

LCN1

GOLM1

GNAQ

TSC1

ABL1

PTPRD

CEL

C9orf3

KLF4

TAF1L

CDKN2B

RB1

DCLK1

SACS

PARP4

BRCA2

FLT3

FLT1

FAM123A

NRG3

DKK1

CYP2E1

SMC3

PTEN

KLF6

RET

FGFR2

RPS24

FLT4

FGFR4

IL6ST

FBN2

LIFR

TAF9

DMXL1

Table S2 (continued)
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Table S2 (continued)

THBS4

DOCK2

AHRR

MAP1B

ATP10B

ADCY2

CSF1R

CXCL14

TERT

BRD9

GOLPH3

CTNND2

PDGFRB

CHD1

BRD8

APC

HMGCS1

PRLR

NPM1

Table S3 Results of the 3 virtual plasma samples

Sample Name Kit Total (ng) Pre-PCR (ng/uL) Post-PCR (ng/uL) Average sequencing depth

QIAGEN-1 QIAGEN 221.60 40.60 19.9 6,389.25

QIAGEN-2 QIAGEN 192.00 46.00 5,456.45

QIAGEN-3 QIAGEN 233.60 52.00 8,454.60
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Figure S1 ctDNA levels in patients with normal AFP concentration. AFP, alpha-fetoprotein.


