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Background: The number of TB subtypes with irregular masses are increasing year by year, which can 
easily be confused with lung cancer. This study aimed to explore the value of CT radiomics analysis in 
differentiating mass-like tuberculosis (TB) from peripheral lung cancer.
Methods: A retrospective analysis of 37 cases with mass-like TB and 41 cases with peripheral lung cancer 
confirmed by pathology was performed. The performance of conventional CT (7 quantitative and 13 
qualitative detection) was analyzed, and 828 texture features extracted by plain CT scan were subjected to 
dimensionality reduction using the minimal absolute contraction and logistic least absolute shrinkage and 
selection operator regression. The results were tested according to data distribution types, with differences 
between the TB and lung cancer groups analyzed by independent-samples t-test, Mann-Whitney test, 
Pearson chi-square test, or Fisher’s exact test. Logistic regression was used to establish a texture feature 
model, a morphology model and a combined prediction model. The models’ diagnostic efficacy was 
evaluated using receiver operating characteristic (ROC) curves. 
Results: The comparative analysis between the two groups revealed significant differences in 7 texture 
parameters (kurtosis, median, skewness, gray-level co-occurrence matrix, gray-level length matrix, gray-level 
area size matrix, and regional percentage), 4 quantitative parameters [plain scan CT value, arterial phase (AP) 
CT value, venous phase (VP) CT value, and the difference in CT value between the VP and plain scan], and 
8 qualitative CT manifestations (lobular sign, long burr sign, exudation, pleura, necrosis, trachea, vessels, 
calcifications, and satellite lesions) (P<0.05); logistic regression analysis revealed the area under the ROC 
curve values of the texture feature, morphology, and combined prediction models to be 0.856, 0.950, and 
0.982, respectively (P<0.05). 
Conclusions: Combining morphological and radiomics models can effectively and noninvasively improve 
the efficiency of differentiating mass-like TB from peripheral lung cancer, which is conducive to selecting 
the appropriate therapy.
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Introduction

According to World Health Organization data, China has 
one of the highest burdens of tuberculosis (TB) in the  
world (1). With population aging and widespread antibiotics 
use, there is an increasing number of TB subtypes with 
irregular masses, which overlaps much phenotypes with 
peripheral lung cancer and can easily be confused with lung 
cancer. Previous studies used CT morphology combined 
with laboratory detection as the basis of traditional 
diagnosis. In clinic, although sputum detection of 
Mycobacterium tuberculosis is the diagnostic “gold standard” 
for TB, but its positivity rate is low, and sputum culture and 
purified protein derivative (PPD) tests are time-consuming 
and limited by a variety of factors. A positive auxiliary T-spot 
test indicates the possibility of TB infection (2). Objectively, 
accurately, and non-invasively improving the diagnosis and 
identification of TB has become the focus of imaging. 

Radiomics is emerging as a research tool that allows 
for the extraction and quantitative analysis of the massive 
gray-scale data in images that cannot be recognized by the 
naked eye which indirectly reflects the heterogeneity of 
lesions. Studies on the correlation in features of radiomics 
with the gene phenotype, pathological type, clinical stage, 
and efficacy evaluation of tumors has been widely carried 
out (3-6). The present study aims at innovative exploration 
of exploring the feasibility and efficacy of combining 
CT morphology with radiomics texture features for 
differentiating mass-like TB and peripheral lung cancer, 
which is more objective.

We present the following article in accordance with the 
STARD reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-1719).

Methods

General data 

CT data of 37 cases of mass-like TB (the TB group) and 
41 cases of peripheral lung cancer (the PLC group) were 
included in this retrospective analysis. The TB group 
comprised 27 males and 10 females aged 40–84 years, with 
an average age of 60.4 years old. The PLC group comprised 
28 males and 15 females, aged 40–86 years old, with an 
average age of 63.3 years old. Among the 41 cases in the 
PLC group were 21 cases of squamous cell carcinoma and 
20 cases of adenocarcinoma. None of the patients had a 
history of treatment before chest CT scan.

The criteria for inclusion in this study were as follows: 

(Ⅰ) patients with peripheral irregular masses with a 
maximum diameter of ≥3.0 cm, as determined by CT; (Ⅱ) 
complete pathological results under surgical resection; 
(Ⅲ) needle biopsy: TB confirmed by acid-fast staining and 
laboratory examinations, or lung cancer diagnosed with 
immunohistochemistry and negative lymph node metastasis; 
(Ⅳ) complete clinical and imaging data. The exclusion 
criteria were as follows: (Ⅰ) patients with a history of TB or 
diagnostic anti-TB treatment; (Ⅱ) patients with a history of 
lung cancer, clear lymph nodes, or distant metastasis; (Ⅲ) 
patients with unclear histopathology; (Ⅳ) patients with poor 
quality images which affected analysis and measurement. 
The study was approved by the Research Ethics Committee 
of Anhui Provincial Cancer Hospital (2021-YXK-03). 
All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). Individual consent for this 
retrospective analysis was waived.

Equipment 

All patients underwent plain and enhanced scanning using a 
64-row gem energy spectrum CT scanner (GE, USA), with 
the scanning parameters of tube voltage (120 kVp), tube 
current (100–300 mAs), collimator (64 layers ×0.625 mm), 
rotation speed (0.5 s), field of view (350 mm ×350 mm), 
matrix (512×512), layer thickness (5.0 mm), and interval 
(5.0 mm). After undergoing a plain scan, patients were 
intravenously injected with the contrast agent iodophor, at a 
flow rate of 3.0–3.5 mL/s and a dosage of 1.5 mL/kg. Dual-
phase scanning in the arterial phase (AP) and venous phase 
(VP) was performed, and scans were reconstructed with a 
slice thickness of 1.25 mm.

Evaluation of CT signs

The following CT signs were evaluated: lesion location, 
maximum diameter, morphological type (regular or 
irregular),  mass substance (density, enhancement, 
calcification, or necrosis), edge (lobular or burr sign), 
surroundings (exudation or satellite focus), pleura 
(thickening or depressed sign), bronchial signs (truncated or 
cone-shaped), and vascular signs (blood vessel thickening or 
blood vessel clustering).

Extraction of texture features

The maximum sections of pulmonary tuberculosis and 
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lung cancer masses were observed on the axial CT scan 
lung window (Figure 1A-1D), and the solid components 
and boundaries of the masses were observed on the soft 
tissue window (Figure 1B-1E) at the same level during 
the enhanced venous phase. The ITK-SNAP software 
(University of Pennsylvania, USA) was used to scan the 
soft tissue window on CT and manually outline the region 
of interest (ROI, Figure 1C-1F). Large vessels and cavities 
were avoided based on the vein enhancement phase at the 
same level, and the width and position of the window were 
set as 400 HU and 40 HU, respectively. The original image 
and ROI were imported into the Artificial Intelligence Kit 
version V3.2.2.R (AK, GE, USA). After voxel adjustment, 
resampling, noise reduction, and gray-scale discretization, 
standardized reconstruction and fusion were performed 
(Figure 2A). 

Texture features included first-order features, gray level 
co-occurrence matrix (GLCM) features, gray level size zone 
matrix (GLSZM) features, and gray level run length matrix 
(GLRLM) features.

Reproducibility assessment

The reproducibility assessment was carried out by two 

senior doctors (physician A and physician B) with rich 
experience in chest imaging under unknown clinical 
pathological results. Physician A performed CT sign 
evaluation, ROI delineation, and feature extraction of all the 
data twice, which allowed the consistency of the measurer. 
Physician B performed CT sign evaluation, ROI setting, 
and feature extraction only once, and their consistency with 
physician A was evaluated. An intergroup and intragroup 
consistency coefficient (ICC) of >0.75 indicated good 
consistency.

Statistical analysis 

The collected data were analyzed using SPSS 20 (IBM, 
USA), MedCalc 16.8.4 (Beijing Reachsoft, China), and 
IPMs (version 1.1.1.R). First, IPMs software was used to 
reduce the dimensionality of all texture parameters. After 
dimensionality reduction, data distribution type detection 
was performed on the texture parameters and CT imaging 
features obtained. According to the data distribution type, 
the independent-samples t-test, Mann-Whitney U test, 
Pearson chi-square test, or Fisher’s exact test was performed 
to compare the two groups, with P<0.05 indicating a 
statistically significant difference. Finally, logistic regression 

A B C

D E F

Figure 1 Images of pulmonary tuberculosis and lung cancer. (A-C) Show representative images of pulmonary tuberculosis, and (D-F) show 
representative images of lung cancer; (A,D) lung window, (B,E) reference picture of the same-level enhanced venous phase outlined by the 
ROI, (C,F) drawing of the ROI area. ROI, region of interest.
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analysis was used to establish a texture feature model, a 
morphology model, and a combined prediction model, 
and the diagnostic efficacy was evaluated using the receiver 
operating characteristic (ROC) curve.

Results

Comparison of morphological characteristics between the 
TB group and PLC group

The  compar i son  o f  11  qua l i t a t i ve  CT imag ing 
characteristics between the TB group and PLC group 
showed that 8 characteristics (lobular sign, long burr 
sign, exudation, pleura, necrosis, trachea, blood vessel, 
calcification, satellite lesion) differed significantly (P<0.05, 
Table 1). Meanwhile, morphology, short burr sign, and 
peripheral exudation were not statistically significantly 
different between the groups (P>0.05, Table 1).

Seven quantitative CT imaging characteristics were 
incorporated into a comparative analysis between the 
two groups. The results revealed that 5 quantitative 
characteristics (size, plain scan CT value, arterial CT value, 
venous CT value, the difference between the venous and 
plain CT) were statistically significantly different between 
the two groups (P<0.05, Table 2). Meanwhile, the difference 

between AP and plain CT and between the VP and AP CT 
were not statistically significant (P>0.05, Table 2).

Differences in texture characteristics between the two 
groups

After row dimensionality reduction, 7 texture parameters 
were included for comparative analysis (Figure 2B) including 
3 first-order features (Kurtosis, Median, and Skewness), 
1 gray-level co-occurrence matrix parameter (glcm_
Cluster Prominence, CP), 1 gray-scale run length matrix 
parameter (glrlm_Run Variance, RV), and 2 gray-scale 
region size matrix parameter [glszm Large Area Low Gray 
Level Emphasis (LALGLE) and glszm_Zone Percentage 
(ZP)]. The comparison between the groups showed that 
the differences between the 7 texture parameters were 
statistically significant (P<0.05, Table 3).

Logistic regression analysis and diagnostic efficacy 
evaluation

The 7 texture parameters, 4 quantitative parameters, and 
8 qualitative parameters that differed significantly between 
the two groups were included in logistic regression analysis 

Figure 2 Heat map results. (A) Heat map of 828 extracted texture parameters and single-factor feature screening; (B) heat map of 7 texture 
parameters analyzed and selected by the multi-factor GBDT. GBDT, gradient boosting decision tree.
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Table 1 Comparison of qualitative CT imaging characteristics between the TB group and PLC group

Sign Category TB group (n=37), n (%) PLC group (n=41), n (%) P

Morphology Irregular 34 (91.90) 32 (78.00) 0.121

Regular 3 (8.10) 9 (22.00)

Lobular None 26 (70.27) 12 (29.26) 0.001a

Shallow 8 (21.62) 19 (46.35)

Deep 3 (8.11) 10 (24.39)

Short burr Without 26 (70.27) 30 (73.17) 0.121

With 11 (29.73) 11 (26.83)

Long burr Without 1 (2.70) 8 (19.51) 0.021a

With 36 (97.30) 33 (80.49)

Exudation Without 7 (18.92) 6 (14.63) 0.763

With 30 (81.08) 35 (85.37)

Pleura None 1 (2.70) 2 (4.88) 0.015a

Indentation 7 (18.92) 19 (46.34)

Thickening 29 (78.38) 20 (48.78)

Necrosis None 6 (16.22) 10 (24.39) 0.026a

Smooth necrotic wall 20 (54.05) 10 (24.39)

Necrotic wall blurring 11 (29.73) 21 (51.22)

Trachea None 10 (27.03) 7 (17.08) 0.025a

Truncation 5 (13.51) 17 (41.46)

Cone 22 (59.46) 17 (41.46)

Blood vessel Thickening 31 (83.78) 24 (58.54) 0.024a

Bundling 6 (16.22) 17 (41.46)

Calcification Without 24 (64.86) 38 (92.68) 0.004a

With 13 (35.14) 3 (7.32)

Satellite lesion Without 21 (56.76) 32 (78.00) 0.044a

With 16 (42.24) 9 (22.00)
a, indicates a statistically significant difference (P<0.05) between the two groups. Pearson’s chi-square test was selected as the testing 
method, and if the expected frequency of the cell was <5, Fisher’s exact test was used. TB, tuberculosis; PLC, peripheral lung cancer.

to establish a texture feature model, a morphological model, 
and a combined prediction model (P<0.05). The model 
equations were as follows: texture feature model = 0.283 + 
1.587 × LALGE − 1.418 × ZP; morphological model = 2.084 − 
0.221 × mean CT value of VP + 0.259 × CT (VP − plain scan) 
+ 2.25 × foliar changes − 2.466 × pleural changes; combined 
prediction model = 2.086 + 0.228 × CT (VP − plain scan) − 
4.128 × pleural changes + 2.558 × LALGE − 2.228 × ZP.

The ROC curve analysis showed that the area under 
the ROC curve (AUC) values of the texture feature, 
morphology, and combined prediction models were 0.856, 
0.950, and 0.982, respectively (P<0.05, Figure 3, Table 4).

A comparison of the ROC curves of the 3 models showed 
that the AUC values of the combined prediction model 
and the morphology model were significantly higher than 
that of the texture feature model (P<0.05), while there was 
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Table 2 Comparison of quantitative data CT imaging characteristics between the TB group and PLC group

Sign TB group (n=37) PLC group (n=41) t/z P

Maximum diameter 40.22±10.67 46.06±14.02 −1.904 0.061

Mean of plain CT scan value 26.23±13.68 31.64±8.09 −2.149 0.035a

Mean of CT value in the AP 33.78±16.73 47.87±11.21 −4.409 0.041a

Mean CT value in the VP 36.53±16.82 52.77±11.22 −5.509 <0.001a

CT (AP − plain scan) 7.55±8.11 16.23±7.82 −4.812 <0.001a

CT (VP − plain scan) 8.4±14.85 21.13±8.08 −4.658 <0.001a

CT (VP − AP) 0.56±6.57 4.89±5.70 −1.541 0.128

Normally distributed data are expressed as the mean ± standard deviation, and data with a skewed distribution are expressed as the 
median and interquartile range; a, indicates a statistically significant difference (P<0.05) between the two groups. Data conforming to a 
normal distribution in both groups were analyzed by independent-samples t-test; otherwise, the Mann-Whitney U test was used. TB, 
tuberculosis; PLC, peripheral lung cancer; VP, venous phase; AP, arterial phase.

Table 3 Results of comparative analysis of CT image texture features

Index BT group (n=37) PLC group (n=41) t/z P

Kurtosis −0.20, 1.15 −0.53, 0.57 −2.757 0.006a

Median −0.27±1.24 0.25±0.65 −2.353 0.021a

Skewness −0.21±1.14 0.43, 0.66 −2.852 0.004a

CP −0.19, 0.25 −0.22, 0.02 −4.108 <0.001a

RV −0.64, 0.59 0.08, 1.45 −4.868 <0.001a

LALGE −0.67, 0.30 0.03, 1.66 −5.228 <0.001a

ZP 0.56±1.16 −0.51±0.43 5.506 <0.001a

Normally distributed data were expressed as the mean ± standard deviation, and data with skewed distribution were expressed as the 
median and interquartile range; a, indicates a statistically significant difference (P<0.05) between the two groups. Data conforming to 
normal distribution in both groups were analyzed by independent-samples t-test; otherwise, the Mann-Whitney U test was performed. TB, 
tuberculosis; PLC, peripheral lung cancer; CP, cluster prominence; RV, run variance; LALGE, large area low gray level emphasis; ZP, zone 
percentage.

no significant difference between the AUC values of the 
combined prediction and morphology models (P>0.05).

Discussion

Conventional CT scan is the main examination method 
for distinguishing TB from lung cancer. Diagnosis and 
differentiation depend on the location, size and shape of the 
mass, as well as its lobes, borders, density, and enhancement 
characteristics. Traditional qualitative analysis of CT 
images involves making preliminary diagnosis based on 
the characteristics of the mass. However, the diagnostic 
accuracy is closely related to doctors’ experience, judgment 
of signs is also subjective and limited, lacks quantitative 

indicators, has poor reproducibility, and is closely related 
to the physician’s experience. Therefore, diagnosis mainly 
depends on biopsy pathology.

With the rapid development of radiomics in recent years, 
studies on the differentiation of granulomatous lung lesions 
from lung cancer have been conducted (7,8). With the 
deepening of research, it is possible to differentiate specific 
cases of atypical mass-like TB and peripheral lung cancer. 
In this study, CT plain scan texture feature parameters were 
used in combination with morphological features to evaluate 
the differences of parameters between patients with TB and 
lung cancer. Logistic regression analyses were performed to 
analyze the indicators with significant differences between 
the two groups, and the predictive factors were used to 
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evaluate the characteristic parameters both independently 
and together according to the ROC curve.

Previous studies have shown that shallow lobes, long 
burrs, satellite lesions, calcification, and mild or circular 
enhancement are all the characteristic of mass-like TB 
(9,10). The edge of the mass was formed by the fusion 
of fibrous cords or protruding caseous nodules. And the 
superficial lobed and long burrs of cords were common to 
see. Tuberculosis often has bronchial spread and satellite foci 
around nodules or masses. Calcification is the most common 
complication of tuberculosis, mainly distributed around 
caseous necrosis and cavity wall. The enhancement showed 
that the central necrotic area was not enhanced or slightly 
enhanced, and the granulation tissue was ringed, and the 
inner edge of the central necrotic area was smooth (11). The 
pattern of enhancement is related to the lack of vascular 
structure in central coagulation necrosis, surrounding 
by epithelioid cells, giant cells unequal to Langerhans, 
infiltration of peripheral lymphocytes and proliferation 
of fibroblasts (12). Research on peripheral lung cancer 
with different growth speed in all directions around the 
block structure, reaction, and tumour fibroblasts edge 
is more deep lobulated, while empty and calcification re 
relatively rare, the density of small lump is uniform. The 
surrounding shows infiltrative growth and the burrs are 

short and soft, due to mass jostled or tumour fibrous tissue 
hyperplasia. Bronchovascular bundles are usually extruded, 
contracted or gathered. The enhancement showed uneven 
enhancement from mild to moderate, like marshy, with a 
patchy and slightly fuzzy necrotic area in the center, and the 
enhancement was lower than the surrounding area (13,14). 
However, the mechanism is related to the uneven blood 
supply caused by immature intratumor vessels and static 
and dynamic fistula, and the hypoxia caused by the lower 
rate of angiogenesis than tumor growth. The absolute value 
of standardized iodine content (dNIC) in and around the 
center of inflammatory mass was significantly lower than 
that in lung cancer (12). The results of this study showed 
that the AUC of quantitative CT was 0.586–0.807 and 
that of qualitative CT was 0.569–0.986. Furthermore, the 
diagnostic efficiency of the presence of necrosis was 0.986, 
which indirectly indicates that TB masses mainly have 
caseous necrosis at their center.

Multiple studies have shown that radiomics can 
be applied to quantitatively evaluate the difference in 
texture characteristics between peripheral lung cancer 
and inflammatory masses, with differential diagnostic 
efficacy (13,14). For instance, Dennie et al. (7) studied the 
heterogeneity of lung cancer and infective granulomas, and 
found differences in texture characteristics between the central 
area and the edge of the mass. Chen et al.’s study (8) on lung 
adenocarcinoma and inflammatory granuloma reported 
that the AUC of imaging features within nodules was 0.75, 
compared to that of 0.80 for the combination of nodule and 
surrounding histological features, indicating that the omics 
features around nodules carry great value in the prediction 
of malignant tumors. Suo et al. (15) identified sex and 
age, irregular edges and lobular features of the lesion, and 
radiomics features as the main factors for distinguishing 
lung adenocarcinoma from granulomatous TB, which 
indicates that the combination of a clinical risk factor 
model and an imaging features model is of great value for 
differentiating the two diseases. Beig et al. (16) showed that 
a nomogram based on imaging features from within a 4-mm 
peripheral radius of the nodule had the highest efficiency 
for distinguishing lung cancer and TB; in the training 
group, the AUC was 0.914 (with a sensitivity and specificity 
of 0.890 and 0.796, respectively), and in the verification 
group, the AUC was 0.900 (with a sensitivity and specificity 
of 0.788 and 0.907, respectively). Their observations 
showed that the 4-mm area around the tumor had a more 
potent distinguishing value than the intratumoral features.

The 7 texture parameters screened out in this study 
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respectively. ROC, receiver operating characteristic; AUC, area 
under the ROC curve.
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showed significant differences between the TB group and 
the PLC group (P<0.05). The kurtosis of the first-grade 
radiomics features reflected the peak apex degree of the gray 
distribution within the pixel. High kurtosis indicated that 
the gray area was further away from the mean distribution; 
low kurtosis indicated the opposite distribution trend; the 
median indicated the median gray intensity level in the 
pixel; and the skewness reflected the offset characteristics 
and symmetry of the gray distribution relative to the mean. 
The closer the gray distribution was to the tail, the higher 
the tumor heterogeneity, which indicates the possibility 
of progression. The co-occurrence matrix feature (glcm_
Cluster Prominence, CP) describes the tumor complexity, 
variation, and texture thickness, as well as gray-level and 
contrast-related information, which reflects the degree 
of kurtosis and asymmetry of the gray scale matrix, and 
differences in image streaks and texture gully depth of the 
gray-scale run-length matrix (glrlm_Run Variance, RV) 
between histopathological types. Large area low gray level 
emphasis (LALGLE) reflects the proportion of the large 
area gray scale in the low-level grayscale, which indicates 
differences in tissue structure within the mass. The zone 
percentage (ZP) reflects the roughness of texture. In this 
study, the AUC of the independent texture parameter was 
0.650–0.844, which shows the high heterogeneity and 
complexity of the internal tissue composition of lung cancer. 
Meanwhile, TB masses mainly consist of caseous necrosis 
surrounded by heterogeneous granulation tissue.

In this study, logistic regression analysis of variables and 
characteristics with significant differences between groups 
showed that kurtosis and the presence of clear-edge necrosis 
were independent predictive factors for distinguishing 
mass-like TB from peripheral lung cancer, with an AUC 
of 0.982 and a sensitivity and specificity of 87.8% and 
100%, respectively. The sensitivity in this study is similar 
to that reported in the literature (8), while the specificity is 
higher than that reported previously. This difference may 

be related to the TB masses in this study consisting mostly 
or completely of caseous necrosis, and there being obvious 
differences in the deviation of gray distribution from the 
mean value and the symmetry of the fine structure and the 
gray-scale distribution in lung cancer.

With the clinical application of multimodal quantitative 
parameter imaging and artificial intelligence (AI), the 
imaging diagnosis of intrapulmonary mass has gone 
beyond morphological evaluation, and its accuracy 
has been significantly improved.  It was reported that 
energy spectrum CT quantitative analysis has certain 
advantages in the differential diagnosis of lung cancer 
and inflammatory myofibroblastoma (17). Cui et al. (18) 
applied MRI combined with diffusion-weight imaging 
(DWI) sequence imaging to study pulmonary tuberculosis, 
and the features of nodular changes, nodules or masses, 
cavities and other features showed a high consistency with 
CT. T2WI can effectively distinguish caseous necrosis and 
liquefaction necrosis, predict different pathological stages 
of tuberculosis, and the apparent diffusion coefficient 
(ADC) can quantify the degree of limited diffusion of water 
molecules in different cells and tissues, and distinguish the 
cell density of granuloma and malignant tumor. Yu et al. (19) 
constructed a convolutional neural network CNN training 
set model based on 3d deep learning based on the data of 
more than 40,000 CT images of pulmonary nodular lesions 
based on AI computer-aided diagnosis technology. In the 
test set, 94.4% confidence intervals were obtained. Xing 
et al. (20) quantified bronchiectasis and cavitation in lung 
CT images of 116 patients and obtained 103 quantitative 
features. Linear Support Vector Machine (SVM) was used 
to classify and identify discriminative features, realizing 
quickly diagnose nontuberculous mycobacter in the lungs.

However, this study has a number of limitations. First, 
the sample size was small and the results might have bias. 
Second, manual ROI delineation was limited to two-
dimensional data at the largest level of the lesion rather 

Table 4 Logistic regression analysis

Model AUC (95% CI) Sensitivity Specificity P

Texture feature 0.856 (0.759–0.925) 65.85% 89.19% <0.001a

Morphology 0.950 (0.875–0.986) 85.37% 94.59% <0.001a

Combined prediction 0.982 (0.923–0.999) 87.80% 100.00% <0.001a

a, indicated statistically significant difference (P<0.05) between the two groups. AUC, area under the receiver operating characteristic 
curve; CI, confidence interval.
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than three-dimensional volume data, which might have 
caused deviations in the structure and heterogeneity of 
tissue components. Third, this study was a retrospective 
rather than prospective study with training group models 
and verification. In the future, the results of this study need 
to be further verified by using an enlarged sample size and 
multicentral clinical trials.

In conclusion, the lungs tumor CT morphology 
performance article shallow lobe, long cable, satellite, 
calcification and enhance oven is mild or circular 
reinforcement, necrosis. Prediction model of evaluating 
diagnostic performance is set up by combining omics level 
gray-scale image (kurtosis, the median, partial degrees) and 
gray level co-occurrence matrix, the length of the gray-level 
run-length matrix and gray area size matrix characteristics 
and difference between lung cancer., It can predict the 
diagnosis of tuberculosis at the maximum level of the lesion, 
effectively and noninvasively improve the accuracy of 
diagnosis, further promote the management of pulmonary 
mass and the formulation of treatment plans, and improve 
the quality of life of patients. 
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