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Introduction

Hepatocellular carcinoma (HCC) is the most frequent 
histological type of liver cancer, that accounts for 75–85% 
of all types of primary liver cancer (1). On the basis of the 
2018 global cancer statistics, HCC incidence ranks sixth, 
and the mortality rate ranks third (1). Multiple risk factors 
promoted occurrence and progression of HCC, mainly 
including hepatitis virus infection, aflatoxin exposure, 
alcohol abuse, and metabolic syndrome (2,3). At present, 

HCC treatment approaches include non-pharmacological 
and pharmacological therapies, consisting of transcatheter 
arterial chemoembolization (TACE), surgical resection, small 
molecule targeted drugs, liver transplantation, ablation, and 
monoclonal antibodies (4). Although the level of therapeutic 
approaches of HCC has advanced in recent years, long-term 
prognosis of individuals with HCC remains unsatisfactory 
due to late diagnosis and recurrence (5). Therefore, exploring 
the underlying mechanism contributing to tumorigenesis 
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of HCC is mandatory to identify novel biomarkers for early 
diagnosis and targeted therapy.

Increas ing  ev idence  ind ica ted  tha t  ce l l  cyc le 
dysregulation is strongly associated with tumor initiation 
and progression (6). The cell cycle is tightly regulated by 
cyclins and associated regulatory proteins (7,8). Currently, 
accumulated studies suggested that thorough investigation 
of biological process of cell cycle may improve survival 
prognosis and treatment effects for HCC patients. Xiao  
et al. reported that down-regulation of centromere protein 
M (CENPM) arrested cell cycle, as well as promoted 
apoptosis of HCC cells, inhibiting HCC migration and 
invasion (9). Liu et al. found that tanshinone (TA) I 
can induce G0/G1 arrest to exert anti-cancer effects in 
HCC through inhibiting cyclin D expression (10). Zeng 
et al. demonstrated that CCT6A depletion repressed 
HCC cell growth via repressing G1-to-S transition, as 
it downregulated cyclin D expression (11). Therefore, 
constructing a prediction model on the basis of cell cycle-
linked genes may help estimate the prognosis of individuals 
with HCC.

Herein, we first obtained transcriptome along with the 
matching clinicopathological data of individuals with HCC 
from The Cancer Genome Atlas (TCGA) and International 
Cancer Genome Consortium (ICGC) data resources. Then, 
TCGA cohort data were employed to create an estimation 
model on the basis of the cell cycle-linked genes, and ICGC 
cohort data were employed to validate the prediction model. 
Furthermore, relationship of the risk signature with the 
biological function, as well as clinicopathological features, 
was analyzed.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/tcr-21-1145).

Methods

Data processing

The transcriptome, somatic mutation, along with the 
matching clinical data of 371 individuals with HCC were 
abstracted from TCGA (training cohort) (https://portal.
gdc.cancer.gov/). Besides, the copy number variation (CNV) 
dataset was obtained from UCSC genome browser (https://
xena.ucsc.edu/). Similarly, transcriptome profiling along 
with the matching clinicopathological information of 231 
HCC samples were abstracted from the ICGC (https://
dcc.icgc.org/releases) (validation cohort). A total of 1,875 

cell cycle-linked genes were collected from a previous 
study. In this study, we further deleted 6 samples from the  
371 samples from the TCGA database, including 5 samples 
with a survival time of 0 days and 1 sample with a missing 
survival time. This is because before the Lasso regression 
analysis, the survival time of these samples did not meet the 
prerequisites for the Lasso regression analysis. Therefore, a 
total of 365 samples from the TCGA database were used as 
the training cohort. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of cell cycle-linked genes for constructing a 
prediction model

First, 1,875 cell cycle-linked genes were uploaded into the 
Search Tool for Recurring Instances of Neighboring Genes 
(STRING) website (https://string-db.org/) to analyze the 
protein-protein interaction (PPI) network between genes. 
Meanwhile, according to each gene’s number of adjacent 
nodules from high to low, the top 50 genes were screened 
for subsequent analysis. Then, differentially expressed 
genes (DEGs) among the 50 genes between HCC and 
neighboring non-malignant tissues were screened with the 
‘limma’ package in R. The screening criteria were |log2fold 
change (log2FC)| >1 along with false discovery rate (FDR) 
<0.05. Moreover, univariate Cox regression analyses were 
applied to identify genes which could independently 
assess the prognosis of patients (P<0.001) for the overall 
survival (OS) of individuals with HCC from the 50 genes, 
and further intersected with DEGs to obtain DEGs with 
independent prognostic value using ‘Venn’ package in R. 
Additionally, the somatic mutation and CNV information 
of DEGs with independent prognostic value were analyzed 
using R software.

Creation and verification of an estimation model using cell 
cycle-linked genes

DEGs with independent prognostic value were subjected to 
lasso regression assessment using ‘glmnet’ package to design 
a prediction model. Then, risk score of each sample was 
computed as below:

1 1 2 2 ...Risk score Exp Exp i Expiβ β β= × + + + + ×   [1]

Where β designates the regression coefficient, and Exp 
designates the levels of genes. On the basis of the median 
risk score, TCGA cohort samples were stratified to two 
risk groups: high and low. Principal component analysis 
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(PCA) and t-distributed stochastic neighbor embedding 
(t-SNE) analyses were respectively conducted using ‘Rtsne’ 
and ‘prcomp’ functions to assess the clustering ability of 
prognostic model. Furthermore, Kaplan-Meier survival 
curve along with the receiver operating characteristic (ROC) 
curve were respectively drawn using ‘survival’ and ‘survival 
ROC’ packages to explore the accuracy of prediction model. 
Besides, according to the same calculation formula of the 
risk score, ICGC cohort samples were employed to verify 
the estimation capacity of prediction model.

Assessment of independent prognostic value of cell cycle-
linked risk genes

To estimate the performance of the risk signature compared 
to conventional clinicopathologic features, were conducted 
univariate along with multivariate Cox regression analyses 
in R software.

Single-sample gene set enrichment analysis (ssGSEA)

To investigate the relationship of the risk signature with 
immune status, differences in both infiltrations of 16 kinds 
of immune cells, as well as the functions and pathways of 
13 immune-related cells between the two risk groups were 
compared using ‘GSVA’ package in R.

Investigating the relationship of somatic mutation with 
survival outcomes of HCC patients, risk signature in the 
TCGA database

Tumor mutation burden (TMB) is the total number 
of mutations present in a tumor specimen (12). In this 
research, Kaplan-Meier survival assessment was employed 
to examine the relationship of HCC patients’ survival 
outcomes with TMB, as well as TMB combined with risk 
signature. Additionally, mutation frequency differences of 
the top 30 genes between the two risk groups were analyzed 
with R software.

Exploring the differences in the expression levels of 
immune checkpoint molecules between the two risk groups 
in the TCGA database

Immune checkpoint molecules influence the efficacy 
of immunotherapy (13). The levels of three immune 
checkpoint molecules, consisting of PD-1, PD-L1, and 
CTLA-4, between the two risk groups were explored with 

R software.

Examining the relationship between subgroups of patients 
with different clinicopathological features and risk 
signature in the TCGA database

According to different clinicopathological features (age, 
gender, and TNM-stage), we first divided patients in 
TCGA cohort into different subgroups. Then, we analyzed 
the differences in risk scores between different subgroups. 
In addition, we estimated the prognostic significance of 
risk signature in different subgroups using Kaplan-Meier 
analysis.

Statistical analyses

R software (V.4.0.2) was utilized for data analysis. The 
significance between the two groups was identified using 
Wilcox test. The survival time differences between the 
two risk groups were estimated using Kaplan-Meier curves 
and log-rank test. The area under the ROC curve (AUC) 
was calculated to assess the risk signature’s accuracy. 
Independent factors of OS were determined using univariate 
along with multivariate Cox regression analyses. The 
ssGSEA scores of immune cells or functions between high- 
and low-risk groups were compared using Mann-Whitney 
test. P<0.05 was the cut-off of statistical significance.

Results

Identification of cell cycle-related genes for constructing a 
prediction model

Figure 1 illustrates the workflow of data analysis (14). 
According to PPI network, we screened the top 50 cell cycle-
linked genes in the TCGA dataset (Figure 2A). The Venn 
diagram shows 30 cell cycle-linked genes, which showed 
differential expression between HCC and neighboring 
non-malignant tissues and the potential to be independent 
prognostic biomarker (Figure 2B). Meanwhile, the heatmap 
displayed differential expression levels of 30 cell cycle-linked 
genes in HCC and neighboring non-malignant tissues 
(Figure 2C). The forest map showed that 30 cell cycle-linked 
genes were independent predictors of HCC prognosis 
[hazard ratio (HR) >1; P<0.001] (Figure 2D). Besides, the 
CNV analysis indicated that CNV deletion frequency was 
more common among 30 cell cycle-linked genes (Figure 2E). 
Based on the TCGA database, the somatic mutation analysis 
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illustrated that mutation frequency of 30 cell cycle-linked 
genes was very low (Figure 2F).

Constructing a prediction model using TCGA cohort

The 30 DEGs with independent prognostic value were 
conducted lasso regression analysis. Six genes (PLK1, 
CDC20, HSP90AA1, CHEK1, HDAC1, and NDC80) were 
selected to construct a prediction model. Risk scores were 
computed as below:

( ) ( )
( ) ( )
( ) ( )

0.007 1 0.155 20

+ 0.191 90 1 0.013 1

+ 0.189 1 0.085 80

Risk score PLK CDC

HSP AA CHEK

HDAC NDC

= × + ×

× + ×

× + ×  [2]

Evaluating the predictive ability of the prediction model 
using TCGA cohort

Based on the median risk score, all TCGA data set samples 
were stratified into high- (N=182) and low-risk (N=183) 

HCC RNA-seq data in TCGA HCC clinical data in TCGA

Differentially expressed genes with 
independent prognostic value  

(N=30)

Lasso regression analysis  
(N=6)

Construction of prediction model

Identification of differentially 
expressed genes  

(N=35)

Identification of genes with 
independent prognostic value   

(N=30)

Integration of cell cycle-related 
genes in previous literature 

(N=1,875)

PPI network analysis 
(N=50)

Relationship between 
risk signature and 

clinicopathological features

Identification of prognostic 
factors in TCGA

Single samples gene set 
enrichment analysis

Estimation of prediction 
model

Identification of prognostic 
factors in ICGC

Relationship between 
risk signature and some 

biological functions  

Validation with the ICGC 
database

Figure 1 Flow chart of data analysis. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; PPI, protein-protein interaction; 
ICGC, International Cancer Genome Consortium.
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groups (Figure 3A). The risk plot indicated that high-risk 
score patients exhibited shorter survival times in contrast 
with those with low-risk scores (Figure 3B). Besides, PCA 
along with t-SNE tests uncovered that the prediction 

model exhibited good clustering ability (Figure 3C,3D). 
Additionally, Kaplan-Meier analysis demonstrated that 
high-risk scores correlated with poorer OS (P=7.232e-05) 
(Figure 3E). The AUC values were determined using ROC 
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Figure 2 Prediction model based on cell cycle-linked genes. (A) The top 50 genes according to their interaction degrees. (B) Venn plot 
showing cell cycle-linked genes with differential expression and independent predictive value. (C) Heatmap showing genes with differential 
expression between HCC and neighboring non-malignant tissues. (D) Forest plots illustrating cell cycle-linked genes with independent 
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cycle-linked genes mutation frequency. T represents HCC tissue and N represents neighboring non-malignant tissue. HCC, hepatocellular 
carcinoma; OS, overall survival; CNV, copy number variation; DEGs, differentially expressed genes.
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curve analysis (0.737 at 1 year, 0.712 at 2 years, and 0.683 at 
3 years) (Figure 3F).

Validating the performance of the prediction model using 
ICGC cohort

To test the predictive ability of the estimation model, 
ICGC data set samples were utilized for validation. The 
risk score of each sample was computed on the basis of 

the same formula from TCGA cohort. ICGC data set 
samples were then stratified into high- (N=115) and low-
risk (N=116) groups (Figure 4A). Similarly, patients with 
high-risk scores had worse outcomes in contrast with those 
with low-risk scores (Figure 4B). Likewise, PCA and t-SNE 
analyses showed that prediction model could well separate 
patients in different groups into two regions (Figure 4C,4D). 
Similarly, Kaplan-Meier data validated that patients with 
high-risk scores had a poorer survival prognosis in contrast 

Figure 3 Estimation of prediction model using the TCGA data set. (A) The distribution of the risk scores. (B) The distributions of survival 
status. (C) PCA analysis of the risk scores. (D) t-SNE analysis of the risk scores. (E) Kaplan-Meier curves showing OS of patients. (F) ROC 
curves and AUCs were constructed to assess the predictive performance of the model. TCGA, The Cancer Genome Atlas; PCA, principal 
component analysis; t-SNE, t-distributed stochastic neighbor embedding; OS, overall survival; ROC, receiver operating characteristic; 
AUC, area under ROC curve.
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with those with low-risk scores (P=1.403e-04) (Figure 4E). 
Besides, the AUC values were 0.742 at 1 year, 0.743 at  
2 years, and 0.741 at 3 years, respectively (Figure 4F).

Assessment of independent predictive significance of cell 
cycle-linked risk score signature

Univariate along with multivariate Cox regression analyses 

were employed to assess the independent predictive 
significance of risk signature for OS in TCGA, as well 
as ICGC cohorts. For TCGA cohort, univariate analysis 
indicated that TNM stage and risk signature were 
independent predictors of OS (Figure 5A). Moreover, 
multivariate analysis confirmed that TNM stage along 
with risk signature remained independent predictive 
factors (Figure 5B). Besides, ICGC cohort analysis results 

Figure 4 Validation of prediction model using the ICGC data set. (A) The distribution of the risk scores. (B) The distributions of survival 
status. (C) PCA analysis of the risk scores. (D) t-SNE analysis of the risk scores. (E) Kaplan-Meier curves showing OS of patients. (F) 
ROC curves and AUCs estimating the performance of the risk model. ICGC, International Cancer Genome Consortium; PCA, principal 
component analysis; t-SNE, t-distributed stochastic neighbor embedding; OS, overall survival; ROC, receiver operating characteristic; 
AUC, area under ROC curve.
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also demonstrated that TNM stage along with risk 
signature were independent predictive indicators of OS  
(Figure 5C,5D).

The association between the immune status and risk 
signature

In this study, the infiltration of 13 immune cells, as well 
as the activity of 16 immune-linked functions or cascades 
were used to represent immune status and were quantified 
based on ssGSEA strategy. TCGA cohort patients were 
employed to explore the relationship of immune status 
with the risk signature, and ICGC cohort patients were 
used for validation. The scores of immune cell invasion 
showed that the scores of activated dendritic cells (aDCs), 
inhibited dendritic cells (iDCs), macrophages, and T 
helper 2 (Th2) cells were higher in high-risk group in 
contrast with those in low-risk group, whereas natural 
killer (NK) cells were lower in the high-risk group in 

contrast with those in low-risk group (Figure 6A,6B). 
Furthermore, the immune-linked functions or cascades 
analysis indicated that type II interferon (IFN) response 
was lower in the high-risk group in contrast with that 
in the low-risk group (Figure 6C,6D). These results 
confirmed that risk signature could better reflect the 
immune status in HCC.

The relationship between somatic mutation and survival 
outcomes, risk signature in the TCGA database

Kaplan-Meier analysis illustrated that patients with high 
TMB exhibited shorter survival times in contrast with those 
with low TMB (Figure 7A). Moreover, patients with high 
TMB and high-risk scores had the worst survival outcomes 
(Figure 7B). Besides, TP53 is the most commonly mutated 
gene, and mutation frequency of TP53 was remarkably 
higher in the high-risk group (43%) in contrast with that in 
the low-risk group (12%) (Figure 7C,7D).
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The differences in the expression of immune checkpoint 
molecules between high- and low-risk groups in the TCGA 
database

The box plots showed that expression levels of PD-1 
(P=8.1e-11), PD-L1 (P=0.044), and CTLA-4 (P=1e-11) 
were remarkably higher in high-risk group in contrast with 

those in the low-risk group (Figure 8A-8C).

The relationship between subgroups with different 
clinicopathological features and risk signature in the 
TCGA database

In this study, we found that patients with age ≤65 or with 
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stage III–IV exhibited remarkably higher risk score in 
contrast with corresponding those with age >65 or with 
stage I–II (Figure 9A-9C). Additionally, there was significant 
differences between high- and low-risk groups for patients 
with age >65 (P≤0.001) or male (P<0.001) or stage I–II 
(P=0.003) or stage III–IV (P=0.014) (Figure 10A-10C).

Discussion

Herein, we not only analyzed the differential expression of 
50 cell cycle-linked genes in HCC and neighboring non-
malignant tissues but also assessed the relationship of the 
expression of these genes with OS of individuals with HCC. 
Besides, a prediction model using six cell cycle-linked 
genes was built and validated based on public database. 
Importantly, this prediction model can not only predict the 
survival prognosis and biological function of HCC patients 

well but also provide novel biomarkers for precision 
treatment.

The cell cycle dysregulation is one of the most significant 
features of tumors, and the elucidation of the underlying 
mechanisms is expected to improve tumor therapy 
development (15). Recently, with the rapid development 
of high-throughput sequencing technology and the release 
of public databases, it is possible to systematically explore 
the expression and function of cell cycle-linked genes in 
HCC tissues. For instance, a study based on bioinformatics 
reported that MITD1, involved in cell cycle regulation, 
can be employed as an independent predictive factor for 
individuals with HCC, and MITD1 expression is associated 
with clinicopathological characteristics and natural killer 
cell infiltration (16). Additionally, increasing findings using 
bioinformatics demonstrated that DEGs between HCC 
and neighboring non-malignant tissues were remarkably 
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enriched in cell cycle pathway (17-19). Therefore, the utility 
of bioinformatics to study the function of cell cycle-linked 
genes in HCC pathogenesis is necessary for improving the 
therapeutic effect of HCC.

Furthermore, we constructed an estimation model 
using six cell cycle-linked genes, including PLK1, CDC20, 
HSP90AA1, CHEK1, HDAC1, and NDC80. For PLK1, 
several studies indicated that PLK1 expression was higher 
in HCC tissues in contrast with that in neighboring non-
malignant tissues, and PLK1 overexpression was linked to 
poor prognosis in individuals with HCC (20-22). Moreover, 
PLK1 has proven to be a promising therapeutic target, and 
its knockout can effectively repress the proliferation and 
migration of HCC cells (23,24). Deng et al. found that PLK1 
inhibition induces mitotic arrest at G2/M phase, leading 
to HCC cell apoptosis (25). Numerous findings based on 
bioinformatics confirmed that CDC20 might have a critical 
regulatory role in the occurrence and progression of HCC 
(26-28). Moreover, increased CDC20 was linked to poor 
prognosis of individuals with HCC (29,30). Additionally, 

Liu et al. stated that CDC20 inhibition could activate HCC 
cell apoptosis and autophagy (31). For HSP90AA1, Chen 
et al. illustrated that HSP90AA1 expression was remarkably 
increased in HCC tissues, and high HSP90AA1 expression 
is an indicator of unfavorable prognosis in individuals with 
HCC (32). Shi et al. indicated that preventing HSP90AA1 
degradation can activate c-MYC, leading to initiation 
and progression of HCC (33). Regarding CHEK1 (also 
known as CHK1), Gong et al. illustrated that CHEK1 was 
remarkably up-regulated in HCC tissues and demonstrated 
that CHEK1 inhibition could diminish proliferative and 
invasive potentials of HCC cells (34). Another study has also 
confirmed CHEK1 significance as a potential therapeutic 
target for HCC (35). They found that interferon regulatory 
factor 1 (IRF-1) can inhibit CHEK1 expression by inducing 
miR-195, contributing to apoptosis of HCC cells and 
infiltration of NK cells (35). For HDAC1, a previous study 
demonstrated that HDAC1 was up-regulated in HCC tissues, 
and high expression of HDAC1 was linked to poor tumor 
differentiation, contributing to tumor progression (36). In 
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addition, two studies indicated that HDAC1 upregulation 
could facilitate HCC development by promoting epithelial-
mesenchymal transition (EMT) (37,38). Besides, some 
findings demonstrated that HDAC1 inhibition could 
repress growth of HCC cells and trigger cell cycle arrest 
and apoptosis in HCC cells (39-42). For NDC80, Ju et al. 
documented that NDC80 expression is remarkably increased 
in HCC tissues in contrast with that in neighboring 
non-malignant tissues, and NDC80 silencing can inhibit 
proliferation and contribute to apoptosis for HCC cells (43). 
Liu et al. also manifested that NDC80 knockdown can inhibit 
growth of HCC cells (44). In general, the expression levels 
of these six genes (PLK1, CDC20, HSP90AA1, CHEK1, 
HDAC1, and NDC80) are remarkably increased in HCC 
tissues, and the up-regulated expression was linked to poor 
prognosis of individuals with HCC.

Currently, TNM staging system has been widely used 
to assess survival prognosis and guide treatment in HCC. 
However, since TNM staging system cannot consider 
the heterogeneity of patients at the same stage, it cannot 
always reliably predict a patient’s survival. The occurrence 
and development of tumors are closely linked to disorders 
of some biological functions. Therefore, exploring the 
function of linked genes involved in these biological 
processes is expected to improve prediction accuracy and 
therapeutic effects in the future. Herein, we constructed 
an estimation model using cell cycle-linked genes. We 
found that this cell cycle-linked risk signature can make 
a good prediction of prognosis and disease progression 
of individuals with HCC, even for subgroups of patients 
with different clinicopathological features. Importantly, 
this risk signature also can reflect some important status of 
biological functions, such as immune-linked function, gene 
mutation frequency, and expression of immune checkpoint 
molecules, which helps clinicians adopt more accurate and 
personalized treatments for individuals with HCC.

Based on ssGSEA results, we discovered that infiltration 
of tumor-associated macrophages in the high-risk group 
was dramatically higher in contrast with that in the low-risk 
group. In recent years, increasing basic and clinical studies 
have illustrated that the number and phenotype of tumor-
linked macrophages infiltrated in tumor tissues are closely 
linked to the prognosis of tumor patients (45). As the main 
component of the tumor microenvironment, tumor-linked 
macrophages secrete numerous cytokines to repress the 
body’s adaptive immune response, accelerate the growth 
of tumor cells, and promote tumor-linked angiogenesis 
and tumor metastasis (46). Yao et al. found that HCC cells 

cultured with M2-like macrophages exhibit enhanced 
metastatic ability and upregulation of EMT-linked markers 
via TLR4/STAT3 signaling cascade (47). In addition, 
a recent study reported a new type of subpopulation in 
tumor-associated macrophages (48). These special cells 
can dramatically promote tumor angiogenesis because of 
expressing tyrosine-protein kinase receptor Tie-2 (also 
referred to as angiopoietin-1 receptor), which can bind to 
all known angiopoietins (49,50).

Additionally, we found that TP53 mutation is the most 
common type of mutation, and the frequency of TP53 
mutation is higher in high-risk groups in contrast with that in 
low-risk groups. A previous study indicated that individuals 
with HCC with TP53 mutation are correlated with worse 
clinical stage and prognosis (51). Long et al. reported that 
TP53 mutation led to downregulation of immune response in 
HCC, correlating higher infiltration of immunosuppressive 
cells and immune checkpoint molecule expression (52). 
Interestingly, we also found that the expression levels 
of immune checkpoint molecules were higher in high-
risk group in contrast with that those in low-risk group, 
consistent with a previous study suggesting that tumor cells 
can suppress T cell-mediated immune responses by up-
regulating immune checkpoint molecules, thereby evading 
immune attacks and promoting metastasis (53). Gao et al. 
demonstrated that PD-L1 overexpression was dramatically 
associated with progression and postoperative recurrence (54). 
Another study revealed that adding anti-CTLA-4 antibody 
can further enhance antitumor effect of tumor-specific T 
cells (55). These findings further support that expression 
levels of immune checkpoint molecules are correlated with 
survival prognosis and therapeutic effect of HCC.

As far as we know, this is the first study to use cell cycle-
linked genes to create an estimation model for prognosis of 
individuals with HCC. Meanwhile, the prediction model 
had good predictive ability. Besides, this risk signature can 
be utilized not only as an independent prognostic factor 
for OS but also to assess differences in biological function 
status between different groups. Notably, six cell cycle-
linked genes are expected to be novel biomarkers for HCC 
diagnosis, as well as treatment. Nevertheless, this study has 
some limitations. Firstly, all findings were retrospectively 
obtained based on a public database, which required 
further prospective verification. Secondly, the underlying 
function of the six genes requires additional validation via 
experimental studies. Thirdly, identifying these six genes 
comes from comparing the DEGs between HCC and non-
malignant tissues, and the influence of different HCC 
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pathogenic factors on the expression of cell cycle-linked 
genes needs to be further explored.

Conclusions

We established a prognostic model using six cell cycle-
linked genes for predicting HCC prognosis, implying good 
predictive ability and proved to be an independent predictor 
of OS. Hence, the six genes were expected to be novel 
biomarkers for HCC diagnosis and treatment.
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