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Introduction

Lung cancer is among the malignant tumors with the 
highest fatality rate. Since the 1970s, lung adenocarcinoma 
(LUAD) has become the most common pathological type of 
lung cancer (1). Radical surgery is the primary treatment for 

LUAD, but patients still have a high risk of metastasis and 
recurrence postoperatively. Moreover, the 5-year survival 
rate is still low (2). Therefore, it is urgent to study the 
mechanism of occurrence and development of LUAD and 
find potential key prognostic markers.
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Aberrations in the RNA regulatory network are an 
essential factor in cancer occurrence and development. 
RNA regulations include signal transduction pathways 
at the mRNA transcription level and noncoding gene 
regulation at the post-transcriptional level (3).

Studies associated abnormal miRNA expression 
in all basic cell processes with carcinogenesis, such as 
proliferation, differentiation and death (4). miRNAs may 
be potential markers for cancer diagnosis, prognostic 
evaluation and treatment targets. Studies have shown that 
some specific miRNAs can predict the clinical outcome 
of patients with LUAD, such as miR-432, miR-210, miR-
145 and miR-31 (5). Accumulating evidence indicates that 
lncRNAs play vital roles in the regulation of RNAs. In 2011, 
Salmena et al. (6) put forward the competitive endogenous 
hypothesis. mRNAs, LncRNAs and other noncoding RNAs 
can be regulated through the microRNA response elements 
(MRE). This competitive endogenous RNA (ceRNA) forms 
a huge RNA regulatory network.

High-throughput sequencing technology has led to 
the discovery of various new prognostic markers based on 
the gene level. Therefore, it is essential for patients and 
clinicians to establish an integrated RNA model related 
to LUAD prognoses. In our research, sequence data from 
238 early LUAD samples and 18 normal samples were 
downloaded from The Cancer Genome Atlas (TCGA), 
including mRNAs, miRNAs and lncRNAs data. Using 
these, we explored early LUAD-specific miRNA and 
lncRNA expression. Then we constructed a ceRNA co-
expression network of early LUAD. This ceRNA network 
can help clarify the functions of lncRNAs in early LUAD. 
With clinical data, we finally screened out optimized 
independent prognostic-related RNAs and constructed a 
prognostic risk prediction model for early-stage LUAD. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://dx.doi.org/10.21037/
tcr-20-3273).

Methods

Data collection and preprocessing

We searched LUAD samples in the TCGA dataset (https://
portal.gdc.cancer.gov/) and selected 256 samples. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). These samples simultaneously 
detected mRNA and miRNA expression levels with the 
Illumina HiSeq 2000 RNA sequencing platform. The 

pathologic stage factors indicated they were all early-
stage (Stage I) samples. We also downloaded each sample’s 
clinical data. In this dataset (training dataset), there are 18 
normal samples and 238 tumor samples.

To verify our results, we used “lung adenocarcinoma, 
Homo sapiens” as keywords to filter a validation dataset in the 
NCBI GEO (7) (https://www.ncbi.nlm.nih.gov/) database. 
The criteria were as follows: (I) the samples should be 
early-stage samples; (II) they all detected lncRNA, miRNA, 
and Mrna; (III) the samples have clinical data. A total of 
32 samples in datasets GSE63459 and GSE63805 met 
the criteria. Additionally, the samples were detected by 
the Illumina HumanRef-8 v3.0 Expression BeadChip and 
NanoString nCounter Human miRNA assay.

Screening of significantly differentially expressed RNA 
(DERs)

First, we downloaded detailed annotation information from 
the Ensembl genome browser 96-database (8) (http://asia.
ensembl.org/index.html), including probes, gene symbols, 
RNA types and other information. Then we re-annotated 
the data in the training and validation data set. Finally, we 
obtained the expression levels of lncRNA, miRNA and 
mRNA of the paired samples.

According to the sample source, the training data set 
samples were divided into two groups, LUAD and control. 
The expression data were analyzed with the limma package 
of R (9). |log2 foldchange (FC)| >0.5 and false discovery 
rate (FDR) <0.05 were considered significant. We generated 
a heatmap using the pheatmap package (10).

Construction and functional analysis of ceRNA

Gene regulation at the post-transcriptional level is 
not a simple microRNA-mRNA silencing mechanism 
but a complex network. Many noncoding RNAs have 
microRNA binding sites and can act as miRNA sponges 
in cells (6,11). They can release miRNA’s regulatory 
effect on its target genes and change their expression 
levels. lncRNA is the most typical one. First, we searched 
the connection between DElncRNAs and DEmiRNAs 
through the DIANA-LncBasev2 database (12) (http://
carolina.imis.athena-innovation.gr/diana_tools/web/index.
php?r=lncbasev2%2Findex-experimental). We constructed 
a DElncRNA-DEmiRNA connection network according 
to the connection pairs whose expression differences 
were opposite to each other. Then we searched the target 
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genes regulated by DEmiRNA in the starBase Version  
2.0 database (13) (http://starbase.sysu.edu.cn/). We still 
used negatively correlated pairs to construct a DEmiRNA-
DEmRNA connection network.

Finally, we sorted the results of DElncRNA-DEmiRNA 
and DEmiRNA-DEmRNA and then constructed a ceRNA 
regulatory network composed of DElncRNA-DEmiRNA-
DEmRNA. We visualized the network through Cytoscape 
v.3.6.1 (14). Next, we used DAVID v.6.8 (15,16) to analyze 
the Gene Ontology (GO) biological process and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis of the DERs in the ceRNA network. A 
p-value less than 0.05 was considered statistically significant 
for enrichment screening.

Construction of prognostic score model

Screening of DERs related to prognosis
There are 232 LUAD samples in the training data set. 
Combining the clinical data of these samples, we performed 
univariate Cox regression analysis on RNAs in the ceRNA 
network using the R package of survival (17). First, we 
screened out DERs (including lncRNA, miRNA and 
mRNA) significantly related to overall survival prognosis; 
then, for these DERs, we performed a multivariate Cox 
regression analysis to screen DERs significantly related 
to independent prognosis. We selected Plog-rank<0.05 as the 
threshold for significant correlation.

Screening the optimal DER combination and 
constructing a prognostic score model
Based on the expression of the DERs that were significantly 
related to independent prognosis, the R package of 
penalized (18) screened out the optimal prognosis-
related signature DERs by the Cox-Proportional Hazards  
model (19).

According to the prognostic coefficient and the 
expression level of the optimized signature DERs, we 
constructed the following prognostic score (PS) model:

s sDER DERPS Expβ= ∑ ×   [1]

βDERs represents the prognosis coefficient of signature 
DERs, and Exp DERs represents the expression level of 
signature DERs in the training data set.

Effectiveness evaluation of the PS model

We calculated each sample’s PS value in the training data 

set and divided the samples into high-risk and low-risk 
groups according to the median value of PS. Then, we used 
Kaplan-Meier (KM) analysis to evaluate the association 
between high-risk and low-risk samples and actual survival 
prognostic information using the R survival package (17). 
Finally, we evaluated the association in the validation 
dataset.

Construction and evaluation of survival rate models

This study used the R survival package (17) to perform 
univariate and multivariate Cox regression analysis on the 
LUAD samples in the training set. After screening, we 
obtained independent survival prognostic clinical factors. 
We selected Plog-rank<0.05 as the threshold for significant 
correlation. To further investigate the relationship between 
independent prognostic factors and risk groups, we 
conducted a risk stratification analysis on these independent 
prognostic clinical factors, dividing the samples into 
different groups according to the clinical factors. Then, 
correlation analyses of risk prognosis models were 
performed in other groups.

To further study the relationship between independent 
prognostic factors and survival prognosis, we used the 
independent prognostic factors and the prognostic score 
model to construct a nomogram for three and five years of 
survival rate prediction model.

We used the area under the ROC curve (AUC) and 
C-index to evaluate the different types of models. (I) AUC. 
It is one of the main indicators for evaluating the two-class 
model. AUROC is a quantitative indicator of the ROC 
curve. The value is distributed between 0.5 and 1. The 
closer to 1, the better the classifier performance (20). (II) 
C-index: C-index >0.70 indicates a good model (21).

Results

Screening of DERs

In our research, 16,205 mRNA, 150 lncRNA, and  
761 miRNA were obtained after annotation. According to 
the sample source, we divided the samples in the training 
data set into two groups: LUAD and control. Through 
the limma package, we filtered 2,909 DERs, including  
2,701 mRNAs (728 down- and 1,973 up-regulated),  
47 lncRNAs (5 down- and 42 up-regulated) ,  and  
161 miRNAs (20 down and 141 up-regulation). As shown in 
Figure 1, the samples cluster into two types.

http://starbase.sysu.edu.cn/
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Construction and functional analysis of ceRNA

Through the DIANA-LncBasev2 database, we obtained 
150 pairs of lncRNAs and DEmiRNAs with opposite 
expressions. Using starBase Version 2.0 database, we 
obtained 150 pairs of lncRNAs and DEmiRNAs with 
opposite expressions. Based on these results, we constructed 
a ceRNA regulatory network composed of lncRNA-
miRNA-mRNA (Figure 2). There were 293 nodes in 
the network, including 32 lncRNAs, 87 miRNAs and  
174 mRNAs.

To further elucidate the underlying biological functions 
of genes and the main signaling pathways in the ceRNA 
network, we performed functional enrichment analyses, 
including GO and KEGG analysis, for the mRNAs in the 
ceRNA. As shown in Figure 3, we obtained 20 significantly 
related GO biological processes and 15 KEGG signaling 
pathways. DEmRNA in the ceRNA regulatory network 
were significantly related to the cell cycle biological 

processes, and subsequently, significantly participates in the 
KEGG signal pathway of the cell cycle.

Construction of prognostic score model

Based on the DERNAs in the ceRNA network, univariate 
Cox regression analysis was used to screen out DERs 
significantly related to survival prognosis by the R package 
of survival. On this basis, we performed multivariate 
cox regression analysis and obtained 16 independently 
significant prognostic DERs, including ten mRNAs, four 
lncRNAs and two miRNAs. Based on the 16 DERs, we 
used the Cox-PH model of the regularization regression 
algorithm to screen the optimal combination of signature 
DERs and finally obtained 12 DERs. As shown in  
Table 1, there were two lncRNAs, two miRNAs and  
eight mRNAs.

A PS model was constructed based on the prognostic 
coefficient and their expression level of the 12 signature 
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DERs in the TCGA training set samples.
We calculated the risk score based on the PS model 

of each sample in the TCGA training data set. Then, 
according to their median, we divided all the samples into 
the high-risk and low-risk groups. The prognostic value 
of these signature DERs was demonstrated by K-M plots 
(Figure 4A). Finally, we performed the same analysis in the 
validation data set (Figure 4B). The results showed that in 
the training data set and the validation data set, and there 
was a significant correlation between the different risk 
groups obtained by dividing the samples based on the PS 
model prediction and the actual prognosis.

Construction of survival rate model

Combined with the clinical data of LUAD samples in the 
training data set, we used univariate and multivariate Cox 
regression analyses to select independent prognostic clinical 
factors (Table 2). The results significantly associated three 
clinical factors with independent prognosis: age, tumor 
recurrence, and PS model status. Figure 5 showed the KM 
curves related to the survival prognosis of age and tumor 
recurrence. It can be seen from the figure that samples with 
low age and no tumor recurrence have a better survival 
prognosis. This conclusion is consistent with the actual 

lncRNA
miRNA
mRNA

0 4−4

Log2 FC

Figure 2 ceRNA regulatory network. The square, triangle, and circle represent DElncRNA, DEmiRNA, and DEmRNA, respectively. The 
change in color from green to red indicates a significant down-regulation to up-regulation of logFC. The red lines: DElncRNA-DEmiRNA 
connections; The gray lines: DEmiRNA-DEmRNA connections. ceRNA, competitive endogenous RNA; DElncRNA, differentially 
expressed lncRNAs; DEmiRNA, differentially expressed miRNAs; DEmRNA, differentially expressed mRNAs.
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situation. Additionally, we grouped the samples according 
to age (>65 and ≤65) and tumor recurrence (recurrence and 
without recurrence). Finally, we analyzed the correlation 
between the PS model’s prediction results and the actual 
prognosis in each group (Figure 5, middle and right).

Construction of survival rate model with independent 
prognostic clinical factors

To further analyze the correlation between age, tumor 
recurrence, PS model status and survival prognosis, we 

constructed a nomogram (Figure 6A). The nomogram uses 
the “Total points” axis in the first row to integrate various 
clinical indicators and predict the sample’s survival. The 
C-index for 3-year and 5-year survival were 0.775 and 0.715, 
respectively, suggesting an excellent prediction performance 
(Figure 6B).
Additionally, based on independent prognostic clinical 
factors, we constructed separate prognostic clinical models 
of clinical factors. Then we compared them with the 
previously-constructed PS prognostic model (Figure 6C, 
Table 3).
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Table 1 Optimal signature DERs

Symbol Type
Multi-variate Cox regression analysis

LASSO coef
HR 95% CI P value

MIR99AHG lncRNA 0.313 0.0859–0.911 4.78E−02 −0.0519 

MEG8 3.869 1.327–11.283 1.32E−02 0.4764 

hsa-miR-490-3p miRNA 0.309 0.130–0.732 7.64E−03 −0.7347 

hsa-miR-542-5p 1.770 1.201–2.609 3.91E−03 0.3371 

MFAP3L mRNA 1.463 1.184–2.491 1.62E−02 0.2376 

RIMS4 2.544 1.454–4.451 1.07E−03 0.5450 

KIF23 0.420 0.205–0.860 1.77E−02 −0.2931 

SLC38A3 0.342 0.104–0.623 4.77E−02 −0.6480 

ANLN 1.573 1.025–2.742 1.10E−02 0.3258 

E2F7 2.340 1.114–4.915 2.48E−02 0.2904 

HMGA2 1.178 1.033–1.633 3.24E−02 0.1643 

POU4F1 1.057 1.051–1.701 4.95E−02 0.0531 

Figure 4 KM survival plots. (A) Training set; (B) validation set. Left: KM survival plots of samples with low-risk and high-risk; Right: ROC 
curve for prognostic risk model. The AUC value of 0.905 and 0.756 showed excellent performance of risk prediction. KM, Kaplan-Meier; 
ROC, receiver operating characteristic; AUC, area under the curve.
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Table 2 Screening of clinical factors

Clinical characteristics TCGA (n=232)
Uni-variable cox Multi-variable cox

HR (95% CI) P value HR (95% CI) P value

Age (years), mean ± SD 65.96±9.90 1.041 (1.011–1.072) 4.968E−03 1.046 (1.011–1.082) 1.011E-02

Gender (male/female) 93/139 0.617 (0.355–1.073) 8.399E−02 – –

Pathologic M (M0/M1/–) 145/0/87 – – – –

Pathologic N (N0/N1/N2N3/–) 228/0/0/0/4 – – – –

Pathologic T (T1/T2) 117/115 0.919 (0.543–1.555) 7.534E−01 – –

Radiation therapy (yes/no/–) 16/204/12 2.118 (0.992–4.523) 5.258E−02 – –

Smoking history (never/reform/current/–) 10/54/32/152 0.971 (0.499–1.889) 9.301E−01 – –

Tumor recurrence (yes/no/–) 58/151/23 2.141 (1.289–4.522) 4.563E−03 2.185 (1.159–4.117) 1.566E-02

PS status (high/low) 116/116 3.029 (1.726–5.316) 5.313E−05 3.443 (1.655–7.166) 9.450E-04

Vital status (death/alive) 57/175 – – – –

Overall survival time (months), mean ± SD 34.59±34.67 – – – –

Figure 5 KM survival plots. (A) Left: KM curve plot of age and survival prognosis. Black lines: age ≤65; red lines: age >65. Middle: KM 
survival plots of samples with low-risk and high-risk based on the samples of age ≤65. Right: KM survival plots of samples with low-risk and 
high-risk based on the samples of age >65. (B) Left: KM curve plot of tumor recurrence and survival prognosis. Black lines: without tumor 
recurrence; red lines: tumor recurrence. Middle: KM survival plots of samples with low-risk and high-risk based on the samples without 
tumor recurrence. Right: KM survival plots of samples with low-risk and high-risk based on the samples with tumor recurrence. KM, 
Kaplan-Meier.
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Discussion

LUAD is a subtype of lung cancer with a high incidence 
and complex pathogenesis. Advances in molecular biology 
helped us better understand the molecular mechanism of 
LUAD occurrence and development to discover potential 
molecular markers. In recent years, the ceRNA hypothesis 
has received increasing attention in cancer research. The 
mutual regulation of various types of RNA provides new 
clues for cancer research.

In our research, we used LUAD samples from patients 

in early-stage from the TCGA database. We constructed 
a ceRNA regulatory network composed of lncRNA, 
miRNA, and mRNA. In the ceRNA network, there are 
32 lncRNAs, 87 miRNAs, and 174 mRNAs. It reveals the 
interrelationship between lncRNA, miRNA, and mRNA. 
By GO and KEGG pathway analyses, mRNAs in the 
ceRNA network were enriched in 20 biological processes 
and 15 signal pathways. They are significantly related to 
the biological process “cell cycle” and signal pathway “cell 
cycle”. Combined with clinical data, we screened 16 RNAs 
that are independently significantly related to prognosis.
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Many of these RNAs play a regulatory role in cancer. 
Abnormal LncRNA expression will affect cancer patients’ 
prognoses. LncRNA MIR99AHG plays an essential role 
in gastric cancer progression by inhibiting apoptosis via 
miR577/FOXP1 axis (22). The overexpression of lncRNA 
MEG8 can inhibit the expression of microRNA-34a 
and microRNA-203. It is essential for TGF-β-induced 
epithelial-mesenchymal transition in lung cancer cells 
(23). miRNA is a type of noncoding RNA molecule 
and plays a vital role at the post-transcriptional level. 
Li et al. (24) proved that the overexpression of miRNA 
miR-490-3p will promote lung cancer metastasis. The 
expression of miRNA hsa-miR-542-5p is significantly 
different between non-small-cell lung cancer and normal 
tissues (25). All biological activities in cells are ultimately 
manifested through the expression and biological 
functions of proteins. ANLN, SLC38A3, and HMGA2 
played important roles in metastases in lung cancer 
(26-28). They may act as potential therapeutic targets. 
MFAP3L amplification is related to poor prognosis by 
promoting cell invasion and metastasis in colorectal  
cancer (29). KIF23 has been identified as a prognostic 
signature for ovarian cancer (30).

Using the Cox-PH model, we obtained an optimal 
combination of 12 RNAs to construct a PS model to 
predict prognosis. Kaplan-Meier survival curves indicated 
that the PS model significantly correlates with poor 
survival among patients with early-stage LUAD. Analyzing 
the clinical data, age and tumor metastasis were two 
important factors related to LUAD prognosis. According 
to the PS model, age, and tumor metastasis information, 
we can predict patients’ 3-year and 5-year survival rates 
through the nomogram.

Conclusions

In this study, a ceRNA network was established for 
early-stage LUAD. Combined with the clinical data, we 
conducted prognostic risk-related and biological function 
analysis of RNAs in the ceRNA network. This provides 
reference and research directions for an in-depth study of 
LUAD gene regulation and offers potential biomarkers for 
the prognoses of patients with LUAD.
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