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Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype and only some of 
patients could benefit from the immunotherapy. The present study aims to investigate the expression pattern 
and prognostic value of immune checkpoint genes (ICGs) in TNBC and develop a novel ICGs-signature to 
predict the prognosis and immune status in TNBC.
Methods: ICGs expression profiles and clinical characteristics of TNBC samples were obtained from The 
Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC) database. The least absolute shrinkage and selection operator (LASSO) Cox regression 
analysis was employed to construct a multi-gene signature for predicting the prognostic outcome. The risk 
scores were calculated based on the coefficients of each ICG in LASSO-Cox regression model. The median 
score was considered as the cut-off value to divide the TNBC patients into a high-risk group and a low-risk 
group. The Kaplan-Meier survival curves were generated to further explore the association between the risk 
scores and prognostic outcomes. Finally, single sample gene set enrichment analysis (ssGSEA) was conducted 
to evaluate the immune status and immunophenoscore (IPS) score was used for the quantitative evaluation of 
tumor immunogenicity.
Results: PDCD1, PDCD1LG2 and KIR3DL2 were included in the ICGs-signature model and the risk 
scores were calculated for each sample according to the coefficients in LASSO-Cox regression. Patients in 
high-risk group were associated with unfavorable prognosis. The receiver operating characteristic (ROC) 
curves showed the area under the curve (AUC) values for predicting 1-, 2- and 3-year overall survival (OS) by 
ICGs-signature were 0.925,0.822 and 0.835, respectively. The adaptive immunity cells and innate immunity 
cells were significantly abundant in the low-risk group, and low-risk patients tended to have higher IPS 
scores of PD-1, CTLA4, PD-L1 and PD-L2.
Conclusions: A novel ICGs-signature was developed and validated, which may be not only served as a 
robust prognostic marker, but also a potential indicator reflecting immunotherapy response.
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Introduction

Triple-negative breast cancer (TNBC) is a highly aggressive 
subtype which is characterized by negative expression of 
estrogen receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor 2 (HER2). TNBC 
accounts for approximately 15–20% of all breast cancer 
patients and occurs more commonly in younger patients 
(1,2). Due to the lack of effective therapeutic targets, 
surgery combined radiotherapy and chemotherapy is the 
main therapeutic approach for TNBC patients. However, 
the resistance of the adjuvant therapy and the aggressive 
nature of TNBC triggers to the high postoperative 
recurrence rate which even reached 25–40% (2), and the 
median survival time was only 20 months (3,4). Therefore, 
it’s urgent to explore an effective therapeutic approach for 
TNBC patients.

In recent years, immunotherapy has made a rapid 
development in the treatment of several tumors such as 
melanoma (5), lymphoma (6), and lung cancer (7). Previous 
studies have also demonstrated that immunotherapy might 
be effective in TNBC (8,9). Immune checkpoints are 
considered as an important therapeutic target and immune 
checkpoint inhibitors (ICIs) were well-studied in different 
malignancies. ICIs could block immunosuppressive 
receptors and improve the cytotoxicity and proliferation 
of tumor-infiltrating lymphocytes (TILs) (10). It is worth 
mentioning that high level of genomic instability and tumor 
mutational loads results in higher tumor immunogenicity 
of TNBC in comparison with other subtypes (11,12). 
Therefore, TNBC patients are expected to benefit from 
immunotherapy. However, the overall remission rate for 
TNBC patients remained only 5–23% (13), which indicated 
that only a small number of the patients could benefit from 
the immunotherapy. Therefore, a robust biomarker is 
significant to identify the patients who can greatly benefit 
from immunotherapy.

Several published studies revealed that the expression of 
immune checkpoint genes (ICGs) correlates with the response 
of immunotherapy and prognosis outcomes in nasopharyngeal 
carcinoma, hepatocellular carcinoma and other tumors 
(14,15). However, studies for TNBC were limited to a single 
ICG and the findings were still under debate. Few studies 
have systematically investigated the expression pattern of 
ICGs in TNBC or attempted to establish an ICGs-based 
prognostic gene signature to facilitate and improve clinical 
decision making. In our present study, we aimed to identify the 
prognosis-related ICGs and construct a novel gene signature for 

TNBC based on the transcriptomic and clinical data from the 
TNBC cohort in The Cancer Genome Atlas (TCGA) database 
and the Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) database, in order to provide 
references for individual prognosis and treatment guidance. 

Methods

Data collection

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-21-1455/rc) 
(Figure 1). The transcriptome data and clinical characteristics 
of TNBC samples were obtained from TCGA (https://
portal.gdc.cancer.gov/) and METABRIC database (https://
molonc.bccrc.ca/aparicio-lab/research/metabric/). The 
inclusion criteria were: (I) TNBC samples determined by 
the immunochemistry results of ER, PR and HER2 status; 
(II) transcriptome data and clinical data were comprehensive 
and available; (III) the overall survival (OS) time was longer 
than 30 days. After screening, 113 TNBC patients in TCGA 
database and 286 TNBC patients in METABRIC database 
were included in our present study. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The clinical information of two cohorts was 
summarized in Table 1. R software (version 4.0.3) was utilized 
for data collection and processing.

Differentially expressed ICGs (DE-ICGs) analysis

A total of 43 ICGs according to the literatures were found in 
TCGA transcriptome data, and most of the ICGs were ligands, 
receptors or important molecules in immune checkpoint 
pathways (Table S1). The expression data of 43 immune-
checkpoint related genes (ICRGs) of TNBC tissues and 
normal breast tissues in the TCGA database were extracted. 
The R package “limma” (version 3.46.0) was used to proceed 
the DE-ICRGs analysis. |Log2fold change (log2FC)|>1 and P 
value <0.05 were the cut-off criteria for DE-ICGs.

Gene Ontology (GO) enrichment and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis

R package “ClusterProfiler” (version 3.18.0) was applied 
to perform GO functional annotation analysis and KEGG 
pathway enrichment analysis for DE-ICGs. GO functional 
analysis includes three main categories: biological processes 

https://tcr.amegroups.com/article/view/10.21037/tcr-21-1455/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-21-1455/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
https://cdn.amegroups.cn/static/public/TCR-21-1455-supplementary.pdf
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Figure 1 Flow diagram of data screening and analysis. BC, breast cancer; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast 
cancer; ICRGs, immune-checkpoint related genes; DE-ICRGs, differentially expressed ICRGs; FC, fold change; METABRIC, Molecular 
Taxonomy of Breast Cancer International Consortium.
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(BPs), cellular components (CCs), and molecular functions 
(MFs). The dotplots of the results of GO analysis and 
KEGG pathway analysis were generated.

Identification of prognosis related ICGs

We used the samples in TCGA database as the training 
cohort and the METABRIC database was employed as 

the validation cohort. The least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis was 
employed to identify the prognosis related ICGs according 
to the OS events, OS time and the expression level of DE-
ICGs. Firstly, the R package “Survival” (version 3.2-7) 
was used to conduct univariate cox regression analysis to 
screen the potential prognosis related genes. Candidate 
genes with statistical significance after screening by 
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univariable Cox regression analysis (P value: entry 0.05, 
removal 0.10) were put into the LASSO regression analysis 
to reduce collinearity between genes and prevent over-
fitting of the prognostic risk model. Finally, the genes 
identified by LASSO regression analysis were entered into 
the multivariate Cox regression analysis to construct a 
prognostic model for predicting OS in TNBC patients.

Construction and validation of ICGs-signature

The coefficients of hub genes in the multivariate Cox 
regression were used to calculate the risk score for each 
sample. The risk score = β1 × X1 + β2 × X2 + … + βn × Xn, 

where X represents the gene expression values and β 
represents the regression coefficient of each hub gene 
included in the ICGs-signature model. The median score 
was considered as the cut-off value to divide the TNBC 
patients into a high-risk group and a low-risk group. The 
Kaplan-Meier survival curves were generated by R package 
“Survival” (version 3.2-7) to further explore the association 
between the risk scores and prognostic outcomes. The 
receiver operating characteristic (ROC) curves of the risk 
score in both training and validation sets were plotted by 
R package “timeROC” (version 0.4) and the area under the 
curve (AUC) values were calculated respectively.

Immune status analysis

To further explore the correlation between the risk score 
and immune status of TNBC patients, a single sample 
gene set enrichment analysis (ssGSEA) was conducted by 
R software. Immunophenoscore (IPS), which is a machine 
learning-based algorithm, was used for the quantitative 
evaluation of tumor immunogenicity. It is calculated 
based on the Z-score of representative cell type gene 
expression including: immunomodulators, effector cells, 
immunosuppressive cells and MHC molecules. The IPS 
(range, 0–10) is calculated based on the gene expression 
in representative cell types. The IPS of patients were 
downloaded from The Cancer Immunome Atlas (TCIA). 
The IPS in the high-risk group and low-risk group was 
analyzed. The expression level of four ICGs (PD-1, CTLA-
4, PD-L1, PD-L2) was also compared between two groups.

Statistical analysis

The statistical significance of ICGs expression level 
between TNBC tissues and normal breast tissues were 
estimated by Student’s t-test. The Mann-Whitney test was 
used to analyze the IPS scores in high-risk group and low-
risk group. A P value of <0.05 was considered statistically 
significant.

Results

DE-ICGs in TNBC

Twenty ICGs were differentially expressed in TNBC 
tumor tissues in comparison with the normal breast tissues. 
Nineteen ICGs were down-regulated and one ICG was up-
regulated in TNBC tissues (Figure 2A,2B). Furthermore, 

Table 1 Clinical characteristics of TNBC patients in the TCGA 
cohort and METABRIC cohort [n (%)]

Variables
TCGA cohort 

(n=113)
METABRIC cohort 

(n=286)

Age at diagnosis (years)

<50 41 (36.3) 104 (36.4)

≥50 72 (63.7) 182 (63.6)

T stage

T1–2 101 (89.4) 264 (92.3)

T3–4 12 (10.6) 22 (7.7)

N stage

N0 96 (84.9) 230 (80.4)

N+ 17 (15.1) 56 (19.6)

AJCC stage

I–IIa 95 (84.0) 221 (78.1)

IIa–IV 18 (16.0) 61 (21.9)

Surgery

No 5 (4.4) 6 (2.1)

Yes 108 (95.6) 280 (97.9)

Radiotherapy

No 51 (45.1) 80 (28.0)

Yes 62 (54.9) 206 (72.0)

Chemotherapy

No 34 (30.1) 132 (46.2)

Yes 79 (69.9) 154 (53.8)

TNBC, triple-negative breast cancer; TCGA, The Cancer 
Genome Atlas; METABRIC, Molecular Taxonomy of Breast 
Cancer International Consortium.
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GO and KEGG pathway analysis were conducted. The 
results of GO enrichment analysis illustrated that the 
DE-ICGs were mostly involved in “T cell activation”, 
“positive regulation of lymphocyte activation”, “regulation 
of leukocyte cell-cell adhesion” in the BP category, “MHC 
protein complex” in the CC category, and “peptide antigen 
binding”, “antigen binding” in the MF category (Figure 2C). 
KEGG pathway analysis revealed that these DE-ICGs were 
mainly associated with cell adhesion molecules, antigen 
processing and presentation, PD-L1 expression and PD-1 
checkpoint pathway in cancer (Figure 2D).

Development of prognosis related ICGs-signature

Firstly, univariate cox regression analysis was used to 
select candidate ICGs that were associated with OS of 

TNBC patients. Ten ICGs were identified as potential 
OS predictors, including IDO1, CD274, PDCD1LG2, 
PDCD1, CTLA4, ICOS, KIR3DL2, HLA-B, HLA-F, LGA3 
(Figure 3A). All the 10 ICGs were favorable prognostic 
predictors [hazard ratio (HR) <1; P<0.05]. The correlation 
between 10 genes was depicted in Figure 3B. Secondly, 
LASSO regression analysis showed that 3 of 10 ICGs were 
the OS-related ICGs including PDCD1LG2, KIR3DL2 
and PDCD1 (Figure 3C,3D). Eventually, the 3 OS-related 
ICGs were included in the multivariant Cox regression 
model (Table 2). The coefficients of the OS-related ICGs 
were shown in Figure 3E. 

After risk scores of each sample in training set were 
calculated, 113 patients in TCGA database were divided 
into low-risk group (n=56) and high-risk group (n=57) by 
the median score (median score =−0.91; Figure 4A,4B). 

Figure 2 Identification and enrichment analysis of DE-ICGs between TNBC and normal breast tissues in TCGA database. (A) Heatmap of 
DE-ICGs; (B) volcano plot of DE-ICGs; red dot represent up-regulated genes, and the blue dot represent down-regulated genes; (C) GO 
enrichment analysis of DE-ICGs; (D) KEGG pathway enrichment analysis of DE-ICGs. DE-ICGs, differentially expressed ICGs; ICGs, 
immune checkpoint genes; TNBC, triple-negative breast cancer; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; FC, fold change; BP, biological process; CC, cellular component; MF, molecular function.
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Figure 3 Identification of prognostic related ICGs in TNBC patients. (A) Forest plot demonstrating univariate Cox regression analysis of 
ICGs associated with OS; (B) the correlation network of ten OS-related ICGs; (C,D) LASSO regression analysis to select relevant variables 
and cross-validation results; (E) histogram showing the risk coefficients of three hub genes in multivariate Cox regression analysis. ICGs, 
immune checkpoint genes; TNBC, triple-negative breast cancer; OS, overall survival; LASSO, least absolute shrinkage and selection 
operator.

Table 2 Description and coefficients of hub genes identified by LASSO-Cox regression

Gene symbols Description Coefficients

PDCD1LG2 Programmed cell death 1 ligand 2 −0.199675855

KIR3DL2 Killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 2 −3.200022817

PDCD1 Programmed cell death 1 −0.171493072

LASSO, least absolute shrinkage and selection operator.

Kaplan-Meier survival curve showed that patients in the 
high-risk group had worse OS than those in the low-risk 
group (P<0.001; Figure 4C). The predictive value of the 
3-ICGs signature was assessed by ROC curve. The AUC 
of the ROC curve for predicting 1-, 2- and 3-year OS 
were 0.925, 0.822 and 0.835, respectively (Figure 4D). The 

risk scores of patients in METABRIC cohort were also 
calculated and the patients were then divided into low-risk 
group (n=143) and high-risk group (n=143) (Figure 4E,4F).  
In the validation cohort, patients in the high-risk group 
exhibited a worse prognosis than those in the high-risk 
group (Figure 4G). ROC curves also indicated a fairly good 
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Figure 4 Construction and validation of prognostic gene signature based on ICGs. (A) Risk score distribution of patients in the TCGA 
cohort; (B) survival status of patients in the TCGA cohort; (C) survival status of patients in the TCGA cohort; (D) 1-, 2-, and 3-year ROC 
curves of the gene signature in the TCGA cohort; (E) risk score distribution of patients in the METABRIC cohort; (F) survival status of 
patients in the METABRIC cohort; (G) survival status of patients in the METABRIC cohort; (H) 1-, 2-, and 3-year ROC curves of the 
gene signature in the METABRIC cohort. ICGs, immune checkpoint genes; TCGA, The Cancer Genome Atlas; ROC, receiver operating 
characteristic; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; AUC, area under the curve.

predictive value of 3-ICGs signature in the validation 
cohort (Figure 4H). Moreover, higher pathological stages 
and lower expression level of these hub genes were found in 
the high-risk group (Figure 5).

In order to further confirm the weight of 3-ICGs 
risk score in prognostic prediction, the univariant and 
multivariant Cox regression analyses were conducted. The 
results showed that the 3-ICGs risk score was a significant 
indicator for predicting the OS of TNBC patients 
compared with other clinical characteristics (Table 3).

Patterns of immune cell infiltration of TNBC patients

To evaluate the difference of immune status in high-risk 
and low-risk group, the enrichment scores of different 
immune cell subpopulations or immune-related pathways 

were evaluated by ssGSEA analysis. As expected, adaptive 
immunity cells and innate immunity cells were significantly 
abundant in the low-risk group, including B cells, CD8+ T 
cells, DCs, macrophages and NK cells (Figure 6A). Higher 
enrichment scores were observed for cytokine-cytokine 
receptor interaction, checkpoint, cytolytic activity and T 
cell co-stimulation signaling pathways in low-risk group. 
Furthermore, the scores of type I and II IFN response 
were significantly higher than that in the high-risk group 
(Figure 6B). Above all, these results indicated that effective 
immune response was more activated in the low-risk 
group, which may contribute to the therapeutic response 
difference.

Moreover, the IPS scores were calculated to reveal 
the immunogenicity of patients in high-risk and low 
risk groups. Our results showed that low-risk patients 
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tended to have higher IPS scores of PD-1, CTLA4, PD-
L1 and PD-L2 (Figure 6C). Similarly, the expression level 
of immune checkpoint molecules (PD-1, CTLA4, PD-L1 
and PD-L2) was higher in low-risk group (Figure 6D). We 
could speculate that low-risk group patients might get a 
favorable response to immunotherapy due to their higher 
immunogenicity.

Discussion

In recent years, immunotherapy for malignancies developed 
rapidly. Immunotherapy is expected to improve the 
outcomes of TNBC patients. However, TNBC patients 
could hardly achieved complete pathological remission 
from ICI therapy (16,17). Therefore, it is critical to identify 
biomarkers for predicting the response of immunotherapy in 
TNBC patients. Considering the tumor heterogeneity, the 
predictive value of a single biomarker is limited. Previous 
studies have indicated that several ICG signature models 
had favorable predictive value in long-term prognostic 
outcomes and therapeutic response in lung cancer, 
endometrial cancer and hepatocellular carcinoma. However, 

systematic and comprehensive studies are lacking in TNBC. 
In our present study, based on TCGA and METABRIC 
database, the expression pattern and prognostic value of 43 
ICGs were analyzed. A novel 3-ICGs signature was finally 
developed for predicting the prognostic outcomes and 
immune status in TNBC patients.

In the 3-ICGs signature, PDCD1 (PD-1), PDCD1LG2 
(PD-L2) and KIR3DL2 were significantly associated with 
a favorable prognosis in TNBC patients. Programmed 
cell death receptor (PDCD1/PD-1) is an important 
immunosuppressive molecule, mostly expressed on the 
surface of activated T cells and B cells. PD-1 can bind to 
its ligands (PD-L1, PD-L2) on the surface of tumor cells 
and contributes to the immune escape of tumor cells and 
promotes tumor development (18). Antibodies targeting 
PD-1 showed promising antitumor activity in melanoma, 
non-small cell lung cancer and kidney cancer. Interestingly, 
Wang et al. (19) found that PD-1 was also expressed on the 
surface of several tumor cell lines, which could contribute to 
anti-tumor effects by inhibiting AKT and ERK1/2 signaling 
pathways. In addition, PD-1 could be intrinsically expressed 
by tumor cells and could bind to self-expressed PD-L1 (20). 
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Table 3 The Cox regression analysis of clinical characteristics and risk score

Variables
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age (years)

<50 1.000 1.000

≥50 1.13 0.45–2.88 0.791 1.12 0.30–4.12 0.868

Surgery

No 1.000 1.000

Yes 0.43 0.12–1.58 0.104 0.25 0.05–1.29 0.098

Chemotherapy

No 1.000 1.000

Yes 1.85 0.60–5.74 0.285 2.87 0.81–10.17 0.102

T stage

T1–2 1.000 1.000

T3–4 2.78 0.89–8.65 0.078 1.25 0.48–3.28 0.147

N stage

N0 1.000 1.000

N+ 3.56 2.29–14.98 0.026 1.27 0.40–4.07 0.685

AJCC stage

I–IIa 1.000 1.000

IIa–IV 6.96 2.57–18.85 <0.001 4.14 0.81–21.23 0.089

Risk score

Low risk 1.000 1.000

High risk 8.80 2.12–36.45 <0.001 10.82 1.72–68.05 0.011

HR, hazard ratio; CI, confidence interval.

Ren et al. (21) proposed that higher PD-1 expression in 
tumor was correlated with favorable disease-free survival 
and OS of TNBC patients, which was consistent with our 
findings. In addition, PD-L2 plays different roles in different 
tumors. Lin et al. (22) showed that PD-L2 might be a marker 
for poor prognosis in some digestive system tumors, while 
the opposite result was found in head and neck cancer (23).  
However, Asano et al. (24) reported that the expression 
level of PD-L2 was not related to the prognosis of TNBC 
patients, which seems not to be consistent with the 
findings of our study. We considered that the sample size 
of previous study was relatively small and further research 
is necessary. Similarly, KIR3DL2 could inhibit the tumor-
killing ability by suppressing the cytotoxic function of NK 
cells and the secretion of IFN-γ and TNF-α (25). The effect 

of Lacutamab, an anti-KIR3DL2 monoclonal antibody, was 
now evaluated by the clinical trial with encouraging results 
(26,27). However, the role of KIR3DL2 in TNBC has not 
been reported.

Immune microenvironment plays a significant role 
in the tumorigenicity and development of TNBC. Our 
findings showed that significantly abundant TILs, CD8+ 
T cells, B cells, NK cells and Th cells were observed 
in low-risk group patients identified by the 3-ICGs 
signature. The proportion of TILs in TNBC was related 
to the prognostic outcome (28). Moreover, it is generally 
believed that enriched CD8+ T cells, B cells, NK cells were 
associated with favorable prognosis in TNBC patients. 
Likewise, Th cells could also help the B cells to regulate 
the anti-tumor immune response in TNBC (29). In terms 
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Figure 6 The association between gene signature and immune cell infiltration as well as immunotherapy response. (A,B) Comparison of the 
ssGSEA scores of immune infiltrating cells and immune-related functions between patients in the low- and high-risk group; (C) correlation 
analysis of IPS score and risk signature; (D) gene expression of PD-1, CTLA-4, PD-L1, and PD-L2 in the low- and high-risk groups. *, 
P<0.05; ***, P<0.001; ns, not significant. ssGSEA, single sample gene set enrichment analysis; IPS, immunophenoscore.

of immune signaling pathways, impaired immune activity 
was associated with a higher risk score, including cytolytic 
activity, T cell co-stimulation, type I or II IFN-response. 
In addition, IPS and the expression level of PD-1, CTLA-
4, PD-L1 and PD-L2 were significantly higher in low-
risk group. IPS has been used to evaluate the response of 
tumors to ICIs (30). It is suggested that low-risk patients 
were more likely to have higher immunogenicity and 
expected to greatly benefit from immunotherapy.

Since the 3-ICGs signature contains only three genes, 
it is cost-effective and easy-to-use in clinical practice. The 
score of 3-ICGs signature could guide the immunotherapy, 
surveillance strategy and clinical decision making. However, 

there were some limitations in our study. All the clinical 
and transcriptome data collected in our study were based on 
publicly available datasets, the accuracy of the model should 
by further verified in clinical practice. A further in vitro or 
in vivo experimental study is necessary to be conducted to 
demonstrate the result of the present study findings.

Conclusions

A novel 3-ICGs signature based on the expression pattern 
of PDCD1, PDCD1LG2 and KIR3DL2 was developed and 
validated. The 3-ICGs signature may be not only served as 
a robust prognostic marker, but also an indicator reflecting 
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immunotherapy response.
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Table S1 Forty-three ICGs retrieved from literatures

Gene symbol Descriptions

BTLA B and T lymphocyte associated

BTN2A1 Butyrophilin subfamily 2 member A1

CD160 CD160 molecule

CD209 CD209 molecule

CD226 CD226 molecule

CD274 CD274 molecule

CD276 CD276 molecule

CD28 CD28 molecule

CD40 CD40 molecule

CD40LG CD40 ligand

CD47 CD47 molecule

CD86 CD86 molecule

CD96 CD96 molecule

CEACAM1 CEA cell adhesion molecule 1

CTLA4 Cytotoxic T-lymphocyte associated protein 4 

HLA-A Major histocompatibility complex, class I, A

HLA-B Major histocompatibility complex, class I, B

HLA-C Major histocompatibility complex, class I, C

HLA-DMB Major histocompatibility complex, class II, DM beta

HLA-DPB1 Major histocompatibility complex, class II, DP beta 1

HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1

HLA-DQB1 Major histocompatibility complex, class II, DQ beta 1

HLA-DRA Major histocompatibility complex, class II, DR alpha

HLA-B Major histocompatibility complex, class I, B

HLA-F Major histocompatibility complex, class I, F

ICOS Inducible T cell costimulator

ICOSLG Inducible T cell costimulator ligand

IDO1 Indoleamine 2,3-dioxygenase 1

KIR2DL1 Killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1

KIR2DL3 Killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 2

KIR3DL2 Killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3

LAG3 Lymphocyte activating 3

LGALS9 Galectin 9

PDCD1 Programmed cell death 1

PDCD1LG2 Programmed cell death 1 ligand 2

PVR PVR cell adhesion molecule

SIRPA Signal regulatory protein alpha

TDO2 Tryptophan 2,3-dioxygenase

TNFRSF14 Tumor necrosis factor receptor superfamily member 14

TNFRSF18 Tumor necrosis factor receptor superfamily member 18

TNFSF14 Tumor necrosis factor superfamily member 14

TNFSF18 Tumor necrosis factor superfamily member 18

TNFSF9 Tumor necrosis factor superfamily member 9

ICGs, immune checkpoint genes.
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