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Introduction

The Hippo pathway was first described in Drosophila 
melanogaster as a tumor suppressor (1,2), which could 
inhibit the cell growth and normalize the organ size (3). 
Later, it was found that the Hippo pathway was well-
conserved in mammals and played the same role as in 
Drosophila melanogaster, e.g., managing cell behavior, 
dictating cell differentiation, and maintaining tissue 
homeostasis. More profoundly, the Hippo pathway 
perturbation and mutation have been observed in many 

types of human cancers, including lung cancer, colorectal 
cancer, breast cancer, and liver cancer, etc. (4,5).

But it is still debatable whether the Hippo pathway gives 
rise to cancer or acts as a tumor suppressor. The specific 
mechanisms that regulate the contradicting activity of the 
pathway are under intensive investigation. In this paper, 
we will give a brief overview on molecules of the Hippo 
pathway and summarize the current knowledge on the two 
faces of the Hippo-YAP pathway on cancer progression. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
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The canonical Hippo-YAP pathway members

The Hippo pathway is composed of a large network 
of proteins with serine/threonine kinase activity (5-7), 
including neurofibromatosis type 2 (NF2) (homologs of 
Drosophila Merlin), mammalian STE20-like protein kinase 
1 (MST1. also known as STK4), and MST2 (also known 
as STK3) (homologs of Drosophila Hippo), large tumor 
suppressor 1 (LATS1), LATS2 (homologs of Drosophila 
Warts), the adaptor proteins Salvador homologue 1 (SAV1), 
MOB kinase activator 1A (MOB1A), and MOB1B (Figure 1).  
Recruitment of NF2 to the plasma membrane initiates 
the phosphorylation of MST and LATS, which leads to 
phosphorylation of YAP and TAZ (8,9).

MST1/2 exis t  in  a  complex with SAV1,  which 
phosphorylates and activates the downstream kinase MOB/
LATS1/2 complex. In parallel to MST1/2, the mitogen-

activated protein kinase kinase kinase kinase (MAP4K) 
(homologs of Drosophila Hppy) family and TAO kinases 
(TAOK) perform the same function (10). The activated 
LATS1/2 phosphorylates YAP/TAZ on five (YAP) and 
four (TAZ) conserved serine residues (6), leading to its 
cytoplasmic retention by 14-3-3 and β-TrCP-mediated 
ubiquitination and proteasomal degradation.

On the other hand, when the Hippo pathway kinase 
cascade is inactivated, YAP and TAZ are dephosphorylated 
and translocate into the nucleus where YAP/TAZ regulate 
genes associated with cell growth, proliferation, survival, 
and metabolism. Without DNA-binding domain, YAP/TAZ 
play their roles by interacting with transcription factors, 
such as ErbB4, Runx2, Smad, TEAD, and p73. The major 
partner of YAP/TAZ is the TEA domain (TEAD) proteins 
(homologs of Drosophila Sd). Target genes of YAP and 
TEAD include connective tissue growth factor (CTGF) (11), 
integrin-αV (ITGAV) (12), amphiregulin (AREG) (13,14), 
etc. In the absence of nuclear YAP/TAZ, TEADs bind to 

Figure 1 The Hippo-YAP pathway in mammals. Various extracellular signals regulate YAP/TAZ phosphorylation and nuclear localization 
via the recruitment of MST1/2 (large tumor suppressor 1/2)-LATS1/2 (mammalian STE20-like protein kinase 1/2) kinase cascade by 
KIBRA and neurofibromatosis type 2 (NF2). Other proteins, such as the adaptor proteins Salvador homologue 1 (SAV1), MOB kinase 
activator 1 (MOB1), the mitogen-activated protein kinase kinase kinase kinase (MAP4K) and TAO kinases (TAOK) take parts in the cascade. 
If signals activate the core of the Hippo pathway, it brings about the cytoplasmic retention and proteasomal degradation of YAP/TAZ, but 
if they inhibit the core, YAP/TAZ enter the nucleus, bind to the corresponding DNA-binding protein, which is most likely TEA domain 
(TEAD) proteins, and promote the target gene transcription, including connective tissue growth factor (CTGF), integrin-αV (ITGAV), 
amphiregulin (AREG).
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Vg domain-containing transcriptional cofactor-like protein 
4 (VGLL4) (homologs of Drosophila Tgi), and thereby 
inhibit the expression of these target genes (15).

Hippo-YAP-regulated tumor survival

Ferroptosis

Ferroptosis is a newly discovered and utterly distinctive 
death form, first observed when RAS-selective lethal small 
molecule erastin brought about it in cancer cells (16). When 
later digging into the mechanisms of it, researchers found 
the eradication process was featured with the accumulation 
of ROS and mere iron-dependency. Ferroptosis was thus 
given the name (17). Glutathione peroxidase 4 (GPX4) (18)  
is a key element in this process. GPX4 is a membrane lipid 
repair enzyme under normal circumstances, capable of 
reducing lipid peroxides in a complex cellular membrane 
environment (19). When it malfunctions, it fails to limit 
the growth of lipid-based reactive oxygen species (ROS), 
incurring ferroptosis (20,21). Erastin inactivates GPX4 
through glutathione (GSH) depletion (18). Specifically, 
erastin inhibits system XC

-, a 1:1 cystine:glutamate exchange 
antiporter that blocks cystine uptake and reduces glutamate 
efflux at the same time (22). System XC

- can thus control 
GSH synthesis by regulating glutamine and cystine. In clear 
cell renal cell carcinoma (ccRCC), cancer cells have been 
identified highly sensitive to the depletion of glutamine 

and cystine (23). Furthermore, when taking cystine aside, 
glutamine can still do the solo dance in the death process. 
It was found that ablating glutaminolysis can protect 
heart tissue from ischemia-reperfusion injury caused by 
ferroptosis (24) (Figure 2).

Another in vitro study (25) found that erastin triggered 
severer cell death in 3D tumor spheroids formed by 
MDA231 and H1650 cells as the cell density increased, 
leading to the conclusion that high cell density more rapidly 
depletes glutamine. Li et al. (26) summarized that glutamine 
metabolic pathways play a regulatory role in ferroptosis.

What makes it more intriguing is that some cancer cells 
show higher uptake of glutamine than T cells and myeloid 
cells do (27). This phenomenon contradicts the Warburg 
effect, which is widely considered significant in tumor 
cells for adenosine triphosphate (ATP) generation through 
glycolysis (28). The way they applied ccRCC for measuring 
the consumption of glucose and glutamine resembles that of 
Miess et al. (23), who demonstrated that renal cancer cells 
are highly dependent on the GSH/GPX pathway to stay 
alive. Therefore, for RCC, glutamine is essential for tumor 
metabolism. Otherwise, the deficiency of glutamine would 
not only lead to impaired ATP production but also make 
cancer cells susceptible to ferroptosis.

Scientists agree that YAP/TAZ increase sensitivity to 
ferroptosis and that Hippo signaling pathway suppresses 
ferroptosis. The molecular mechanism behind this 
relationship has been hunted down to several ferroptosis 
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Figure 2 Clear cell renal cell carcinoma (ccRCC) cells are highly sensitive to the depletion of cystine and glutamine. Erastin inhibits 
system XC

-, thus blocking the import of cystine, causing glutathione (GSH) depletion and glutathione peroxidase 4 (GPX4) inactivation. 
Uncontrolled lipid peroxidation generates reactive oxygen species (ROS), ultimately resulting in ferroptosis. Furthermore, recent studies 
have found that ccRCC cells rely mainly on glutamine for adenosine triphosphate (ATP) generation. Ferroptosis becomes more severe as 
ccRCC cells use up glutamine.
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modulators, such as ACSL4, TFRC (25,29) and SLC7A11 (30).
Despite these solid findings, the actual anti-tumor effect 

of YAP-promoting ferroptosis is still debating. Wu et al. (25)  
demonstrated that except for MDA231 cells, the cell death 
rate went down as the cell number rose up, because the 
expression of ACSL4 and TFRC decreased along with the 
increase of cell density. Yang et al. (31) found that the 
sensitivity to ferroptosis was influenced by cell density as 
well, and that low-density but not high-density ovarian 
cancer cells were highly sensitive to ferroptosis. Similarly, 
with the confluence of HCT116 cells increasing, increased 
phosphorylation and decreased nuclear localization of YAP 
rendered cancer cells resistant to ferroptosis. It is because 
E-cadherin (ECAD) is required for building intercellular 
contact in cells (32) and that ECAD is able to activate the 
intracellular NF2 and Hippo signaling pathway. With the 
activation of NF2 and Hippo signaling, YAP/TAZ entry 
into the nucleus is inhibited, preventing the target genes, 
ACSL4 and TFRC, from playing a role in promoting 
ferroptosis. Though glutamine deprivation is the trigger 
for ferroptosis, depleting glutamine yet fails to restore 

ferroptosis in these confluent cells. The reason is that high-
density or high-confluence cells in the tumor setting do not 
die from ferroptosis while consuming glutamine (Figure 3). 
Thus, other than YAP-activated tumors, tumors irrelevant 
to the Hippo pathway perturbation are virtually unaffected 
by ferroptosis.

When YAP is needed for exerting its repair and 
regenerative functions at low cell density or confluence, 
cells are instead sensitive to ferroptosis. Of course we cannot 
guarantee this since the biological function of ferroptosis 
still remains unexplained under normal physiological 
conditions (30).

Except  for  that  new perspect ive  on glutamine 
metabolism, most past and recent studies have been based 
on the Warburg effect. Significant implications as the 
new view may have in imaging, the veracity of previous 
experiments should not be ignored. Thus, we elucidate the 
related mechanism from the view of glucose metabolism. 
First, aerobic glycolysis increases global O-linked beta-
N-acetylglucosaminylation (O-GlcNAcylation). As a 
monosaccharide-based modification, Uridine-diphosphate 
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Figure 3 ‘Ferroptosis on’ in low-density/confluence cells, and ‘ferroptosis off’ in high-density/confluence cells. As the number of cancer 
cells increases, more glutamine will be consumed. However, instead of being more sensitive to ferroptosis, cancer cells develop resistance 
to ferroptosis. This is due to the inhibition of YAP activation in high-density/confluence cells and reduced expression of ferroptosis genes, 
such as ACSL4 and TFRC. When there are fewer tumor cells, their metabolism scarcely requires excessive consumption of glutamine. YAP is 
activated to promote cell proliferation, but, as inferred from the scenario of high cell density/confluence, it also promotes ferroptosis.
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N-acetylglucosamine (UDP-GlcNAc) is its only sugar 
donor, which is synthesized from glucose through the 
hexosamine biosynthetic pathway (HBP) (33). It has been 
identified that O-GlcNAcylation at the Ser109 site (34) and 
Thr241 site (35) of YAP stabilized YAP by antagonizing its 
Hippo-dependent phosphorylation, which incurred high-
glucose-induced liver tumorigenesis. Interaction between 
YAP and O-GlcNAcylation links glucose abundance to 
Hippo signaling activity and tumorigenesis (36). Besides, 
YAP upregulates enzymes in glycolysis (37), including some 
critical rate-limiting enzymes. A positive loop therefore 
forms between YAP and glycolysis. Accordingly, as tumor 
cells consumed glucose, ferroptosis was eventually enhanced 
as well, proven by an increase in TFRC expression elicited 
by YAP-O-GlcNAcylation (30).

Surprisingly, erastin, Sorafenib and other system XC
- 

inhibitors could downregulate YAP at both the mRNA level 
and the protein level (38). This finding seems contradictory 
compared to the literature of Wu et al. (25). The authors (38) 
made a clarification that two theories were complementary 
to each other because the TEAD-based transcription 
program stimulated by YAP was a prerequisite for triggering 
ferroptosis, while the degree of ferroptosis was determined 
by the remaining YAP levels. They used in vitro study to 
prove that it was the accumulated endogenous glutamate 
in the lung adenocarcinoma (LUAD) cell that triggered 
the suppression of YAP through ADCY10/PKA/GFPT1 
signaling axis, in which GFPT1 was the rate-limiting 
enzyme of HBP. Meanwhile, the data about xenografts 
generated by H1975 and A549 cells validated that the 
suppression of YAP induced the inhibition of ferroptosis-
associated tumor growth.

Therefore, in the entire process of ferroptosis, YAP is 
critical for regulating both the initiation and progression of 
it. Firstly, YAP exerts a tumor-suppressive effect, but later it 
exerts an oncogenic effect.

Autophagy

Autophagy is not only a form of cell death, but also a 
mechanism of cell survival under stress, e.g., hypoxia, 
nutrient limitation, and redox stress (39,40). In normal cells 
and tissues, autophagy resembles quality inspection system, 
which maintains cellular homeostasis through wiping out 
damaged organelles and proteins. The process is regulated 
by more than 30 autophagy-related genes (ATG) (41). 
After catabolism, degradation products are recycled to the 
cytoplasm for cellular replenishment. In an in vivo study, 

conditional (acute) systemic (whole-body) Atg7 deficiency 
in adult mice resulted in a depletion of dedicated nutrient 
stores during fasting. Without exogenous nutritional 
supplementation, this systematic metabolic defect may cause 
lethal hypoglycemia (42).

Autophagy has the potential to fuel almost all aspects 
of central carbon metabolism through mediating the 
degradation of various macromolecular complexes, such 
as carbohydrates, proteins, DNAs, and lipids. The main 
catabolic process is carried out by the degradative enzymes 
from lysosomes in autolysosomes that are formed by the 
fusion of autophagosomes and lysosomes (43-45).

Even though autophagy has been extensively studied, 
effects of autophagy on tumor development remain 
contradictory. For example, there are two conflicting papers 
published in Nature. One (46) declared that depletion 
of Atg5/7 impaired metabolism, proliferation, survival 
and malignancy of spontaneous tumors in autologous 
cancer models; but the other one (47) introduced the 
concept of replication crisis and noted that autophagy, if 
inhibited, could lead to tumors bypassing the replication 
crisis, which is necessary for the initiation of cancer. Wen  
et al. (48) confessed that they still did not know whether 
autophagy promoted or inhibited cancer. Kimmelman  
et al. (49) also reviewed that autophagy was initially thought 
to have a tumor-suppressive role, capable of removing 
damaged or redundant organelles and eliminating ROS. 
More recently, however, autophagy has been found to 
have a key tumorigenic role, particularly in promoting 
tumor metabolism in a variety of cancer types. It has been 
demonstrated that autophagy could help tumors to cope 
with low-nutrient conditions and chemotherapy-induced 
stress (50).

Leaving aside the dual role of autophagy on tumors, 
the relationship between the Hippo-YAP pathway and 
autophagy is quite contradictory as well. High mobility 
group box 1 (HMGB1),  a  renowned regulator of  
autophagy (51), can be enhanced by YAP, resulting in glioma 
progression. In a simulated tumor microenvironment 
(TME) with high cell density and high cell confluence, 
YAP/TAZ double knockdown inhibits autophagosome 
formation, and autophagy promotes the cell proliferation 
with activated YAP/TAZ.

Conversely, in liver cancer development, impaired 
autophagy triggers YAP stabilization, while YAP can 
be degraded by autophagy (52). In colorectal cancer  
(CRC) (53),  YAP-TEAD complex upregulates the 
transcription of the apoptosis-inhibitory protein Bcl-2, 
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which subsequently shuns autophagy-related cell death 
and promotes CRC progression. Furthermore, rapamycin-
activated autophagy counteracts YAP to exert its function.

Pavel et al. (54) summarized that autophagy compromise 
could either activate or inhibit YAP/TAZ in different 
cell lines. Downregulation of YAP/TAZ upon autophagy 
suppression was observed in MCF10A, HEK293T, HeLa, 
and pMECs cells, while upregulation of YAP/TAZ activity 
was spotted in HepG2 and THLE2 cells. Then it was found 
that CTNNA1 determined the function of YAP/TAZ-
autophagy axis. In cells where autophagy and YAP/TAZ 
were cooperative, the relative ratio of CTNNA1 basal levels 
was higher than 0.5, while in cells where autophagy was 
antagonistic to YAP/TAZ, it was around 0.3 or less. Thus 
CTNNA1, as one of α-catenins, determines the differential 
effects of autophagy on YAP/TAZ activity.

Apoptosis

Compared to autophagy and ferroptosis, apoptosis is now 
a less popular or controversial topic when it comes to the 
relationship with cancers. A fair amount of literature has 
suggested that apoptosis and the Hippo-YAP pathway 
were closely linked. By inducing cell-cycle arrest, cellular 
senescence and apoptosis, the p53 family proteins take a 
tremendous part in tumor suppression, among which the 
role of p53 is particularly prominent (55). Other family 
members include p63 and p73, two homologs of p53 that 
share homology in DNA sequence, protein structure and 
functional features (56).

Apoptosis is a vital mechanism to eliminate oncogenesis. 
p53 earns its title ‘Guardian of the genome’ (57) because of 
its ability to detect DNA damage, hypoxia, and oncogenic 
events, and to eliminate them through cell-cycle arrest, 
senescence, apoptosis (58,59). In fact, over half of human 
cancers harbors mutant p53 (60).

In an earlier report (61), LATS2 activated p53 in the 
nucleus and transcription of LATS2 was positively regulated 
by p53. Then, Aylon et al. (62) came up with an indirect and 
novel way LATS2 regulated the p53 pathway. Apoptosis-
stimulating protein of p53-1 (ASPP1) plays a key role in 
proapoptotic response. LATS2 phosphorylates ASPP1 and 
drives its nuclear localization in HCT116 cells, shunting 
p53 to the proapoptotic promoter. YAP antagonizes the 
tumor suppression function of the LATS2/ASPP1/p53 axis 
by disrupting LATS2-ASPP1 binding. Vigneron et al. (63) 
confirmed it from the opposite side: YAP would remain 
nuclear and ASPP1 would remain cytoplasmic in cancers 

with reduced LATS2 activity. Additionally, LATS1/2 can 
bind to murine double minute2 (MDM2) and inhibit it, 
which is the first identified inhibitor of p53; hence the 
stabilization of p53 (61,64,65) (Figure 4A). It seems that 
LATS1/2 does suppress oncogenesis by promoting p53, 
while YAP stands against this anti-tumor process.

p63 consists of full-length transactivation domain 
(TA) isoform, TAp63, and the amino-deleted ΔN 
isoform. The paradox is that the former structurally and 
functionally resembles p53, while its counterpart, ΔNp63, 
facilitates oncogenesis by indirectly affecting YAP nuclear 
transposition in head and neck squamous carcinoma (66,67), 
as evidenced by the overexpression of ΔNp63 and YAP in 
this kind of cancer (68).

In response to genotoxic stresses, p73 functions similarly 
to p53 (69,70). Firstly, the non-receptor tyrosine kinase 
c-Abl (ABL1), activated by stresses, phosphorylates p73 
at Tyr99 and initiates the DNA damage-induced apoptosis 
(71,72). There is also an indirect way to apoptosis. 
Activated c-Abl can phosphorylate YAP at Tyr357 (73). The 
modified YAP preferentially associates with p73 in targeting 
apoptotic gene promoters (74,75) and stabilizes it by 
preventing nuclear export and subsequent degradation (76).  
It should be noted that the interaction of p73 with Abl 
and YAP is an independent event, as binding to c-Abl 
and tyrosine phosphorylation of p73 are not required for 
association with YAP (77) (Figure 4B). Nevertheless, such 
interaction differs from YAP in the p53 pathway: c-Abl-
mediated phosphorylation of YAP is proapoptotic (73), 
and it can be deducted that LATS1/2 is not proapoptotic 
in the p73 pathway, since LATS1/2 phosphorylates YAP at 
different sites. Despite the oncogenic and pro-proliferative 
property of YAP, YAP can be a tumor suppressor (77). 
Another research (78) also validated the idea. It proved 
that under DNA damage, the reintroduction of YAP in 
acute lymphoblastic leukemia (ALL) (Jurkat) or AML 
(OCI/AML3) reduced cell proliferation and induced 
apoptosis, while the overexpression of LATS prevented the 
phosphorylation of p73 and inhibited apoptosis. Still, in the 
absence of this condition, YAP prefers to interact with the 
oncogenic transcription modulator RUNX, bringing about 
increased degradation of p73 (79).

Apart from ABL1-centered apoptosis, RAS association 
domain family 1A (RASSF1A) elicits apoptosis through the 
p73 pathway as well (80). A previous study (81) demonstrated 
that the Raf1 proto-oncogene bound to MST2, preventing 
its activation and proapoptotic signaling. RASSF1A can 
abrogate the Raf1-MST2 complex, and downregulation 
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of endogenous MST2 in MCF7 decreases RASSF1A-
induced apoptosis (80) (Figure 4C). Thus, MST2 may 
serve as a hub that functionally connects proliferative and 
proapoptotic pathways. More interestingly, the authors (80)  
suggested that LATS1 also had a dual role. It is widely 
acknowledged that LATS1/2 results in the cytoplasmic 
sequestration and proteasomal degradation of YAP/TAZ, 
but in response to RASSF1A, it may help YAP bind to p73 
and nuclear translocation (80).

There are some more dizzy contradictions. For example, 
unlike epithelial carcinomas, hematologic malignancies 
do not appear to require p53 inactivation, but they 
need the early inactivation of the ABL1-YAP-p73 axis. 

However, in chronic myeloid leukemia (CML), ABL1 can 
be tumorigenic since it is also a pro-proliferative factor if 
its activation goes uncontrollable (82-84); For WT and 
p53-mutant MM (multiple myeloma) cell lines, MST1 
knockdown recovers apoptosis, suggesting that restoring 
YAP levels could be a new treatment strategy in tumors with 
p53 inactivation (78); Likewise, a positive feedback loop 
also exists between YAP and p53: YAP can bind to TP53 
gene promoter and upregulate p53 expression, resulting in 
apoptosis. In turn, p53 can bind to the YAP promoter and 
upregulate YAP expression (Figure 4D). This feedback loop 
serves as an important part to increase chemosensitivity of 
hepatocellular carcinoma cells (58,85).

Figure 4 The conflicting relationship between the Hippo pathway and apoptosis. (A) LATS1/2 helps p53 bind to the proapoptotic promoter 
by promoting apoptosis-stimulating protein of p53-1 (ASPP) entry into the nucleus and inhibiting YAP and murine double minute2 
(MDM2); at the same time, p53 also actively regulates LATS2, thus forming a positive loop of LATS1/2 and p53. (B) Having received the 
signal of genotoxic stress, the non-receptor tyrosine kinase c-Abl phosphorylates p73 and YAP at different tyrosine sites, different from the 
phosphorylation by LATS, the latter being able to stabilize p73 after phosphorylation. Furthermore, c-Abl is a negative regulator of TEADs, 
which co-activates anti-apoptotic target genes with YAP. (C) The MST2-Raf1 complex prevents MST2 activation. The complex can be 
abolished and the inactivation can be reversed by RAS association domain family 1A (RASSF1A). When RASSF1A is present, LATS1/2 does 
not isolate YAP outside the nucleus, but facilitates its entry into the nucleus and binding to p73, thereby transcribing proapoptotic genes. 
Although YAP is not phosphorylated at tyrosine sites at this point, it exerts a proapoptotic effect. It is LATS1/2 that plays the ‘the Yin-Yang 
dynamics’ role. (D) Instead of dampening apoptosis by disrupting LATS2-ASPP1 binding, YAP upregulates p53 expression, bringing about 
apoptosis by directly binding to TP53 gene promoter, but the transcription factor remains unknown. p53 can bind to the YAP promoter and 
upregulate YAP expression as well, forming another positive loop.
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Cell proliferation

Uncontrolled cell proliferation is often the first step in the 
development of cancer. The inhibition of cell proliferation 
by activation of the Hippo pathway was established as 
early as it was discovered. Under physiological conditions, 
the Hippo pathway is well established for size control of 
organs (3). This trait was initially applied in regenerative 
medicine to promote regeneration of damaged tissues 
and proliferation of stem cells by activating YAP. Specific 
mechanisms include inhibition of differentiation, 
expansion of the stem cell pool, as well as reprogramming 
differentiated cells into a more primitive and stem cell-
like progenitor cell state (86). It has been confirmed 
that in developing skin, ectopic YAP activation causes 
decreased expression of differentiation markers (Krt1, 
Ivl and Lor) and increased expression of progenitor cell 
markers (87). Another important effect is its involvement 
in facilitating the entry of non-dividing cells or quiescent 
cells into the cell cycle. Activation of YAP/TAZ has been 
applied to stem cell expansion in injured intestine, oval cell 
expansion, hepatocyte injury, and even regeneration of the 
cardiomyocyte after myocardial infarction (88,89), which is 
one of the typical quiescent cells.

It was subsequently found that this function and cancer 
development are also closely related. When the Hippo 
pathway kinase is mutated and loses its inhibitory effect on 
YAP/TAZ, YAP/TAZ promote the growth of cells and the 
tumorigenic potential by binding to TEADs and mediating 
the downstream target genes, including growth promoter 
such as ANKRD1 (90), Fos (91), cell cycle regulators such 
as FOXM1 (92), p27 (93), and apoptosis regulator such as 
Diap1 (94), NR4A1 (95). Accordingly, YAP is frequently 
amplified or overactivated in some human solid tumors. 
The truth is the stem cell properties, or ‘stemness’, 
conferred by YAP, finally leads to tumorigenesis plus other 
pro-tumorigenic events (88).

The process of YAP activation leading to tissue 
overgrowth and tumor formation is reversible after 
cessation of YAP activation (9). Therefore, this finding 
provides a solution to balance the treatment of damaged 
tissues with the prevention of tumorigenesis. As noted by 
Moya et al. (88), there existed a therapeutic window of YAP/
TAZ activation that could be used to induce regeneration 
while avoiding organ overgrowth.

Hippo-YAP-regulated tumor immunity

The Hippo-YAP pathway is not only associated with cell 

proliferation, but also implicated in the suppression of 
host antitumor immune response, including both innate 
immunity and adaptive immunity. Rather through the 
canonical path, many molecules in the Hippo-YAP pathway 
regulate immune cell activity and function independently.

First, in terms of innate immunity, the Hippo-YAP 
pathway plays an important role in anti-tumor response 
through detecting tumor DNA, inducing IFN-1, pro-
inflammatory cytokines and chemokines, recruiting 
inflammatory cells, and subsequently stimulating adaptive 
immune responses (96,97). Genes related to the Hippo-YAP 
pathway include S1PR1, PDGFB, and NLRP3 (98); pro-
inflammatory cytokines and their receptors include IL1α/β, 
IL8, CXCR4, CXCL1/2/3/5, CCL2, and CSF1 (98-100); 
complement factors include CFI, C3 (98), and cells include 
myeloid-derived suppressor cells (MDSCs) (101), tumor-
associated macrophages (TAMs) and M2 macrophages (102).

The Hippo pathway functions in tumorigenesis through 
regulating the tumor immune microenvironment rather 
than intra-tumor cell signaling. On the one hand, the 
Hippo-YAP pathway can be activated by innate immune 
receptors. Some innate immune receptor ligands, such as 
poly (I:C), LPS and CpG, are efficient anti-tumor agents, 
which can induce strong activation of IFN signaling and 
activation of the Hippo-YAP pathway (103). On the other 
hand, Hippo-YAP pathway dysregulation can in turn lead 
to cancer development through YAP accumulation and 
inhibition of anti-tumor response. Wang et al. (101) found 
that in a murine prostate adenocarcinoma model, YAP 
directed MDSCs to tumor sites via the CXCL5-CXCR2 
axis to help establish the TME. In a murine liver tumor 
model, Hagenbeek et al. (104) also identified that TAZ 
induced myeloid cell infiltration and pro-inflammatory 
cytokine secretion. Apart from that, YAP can either direct 
TAMs differentiation to an immunosuppressive/“pro-
tumor” M2 phenotype or directly recruit M2 macrophages 
to suppress immune clearance (105). In most cases, the 
Hippo signaling is a positive factor in the innate immune 
response, but with the establishment of the TME, YAP/
TAZ dismisses the role of the Hippo signaling in anti-
tumor immune responses.

Second, in adaptive immunity, many clinical successes 
have dictated that anti-tumor immunity is  T-cell  
centered (96). Rather than function in the TME, YAP/
TAZ directly regulate immune cells, of which the T cell 
is the main victim. Disruption of MST1/2 significantly 
reduces the level of peripheral T cells and impairs the 
function of T cells (97,106). Overexpression of YAP induces 
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differentiation of CD4+ T lymphocytes to Regulatory 
T cells (Treg) (107) and also negatively regulates the 
proliferation of CD4+ T lymphocytes (108). Same with 
the Hippo-YAP pathway, Tregs are also characterized 
by the Yin-Yang dynamics in cancer, as they suppress 
inflammation-driven tumorigenesis by restraining 
inflammation, whereas their ability to curb inflammatory 
cells encourages non-inflammatory tumorigenesis. The 
“unproductive” immunosuppression even leads to cancer 
progression (109). Ni et al. (110) reported that YAP was 
highly expressed in Tregs and enhanced Treg production 
through the activin-activin receptor signaling axis, causing 
it to enrich in the tumor. Transcriptional regulation of the 
star molecule programmed death ligand-1 (PD-L1) gene 
is another important mechanism for YAP/TAZ to regulate 
T cells. PD-L1 is constitutively expressed on the surface 
of cancer cells, while the receptor of PD-L1, programmed 
death protein-1 (PD-1), is mostly expressed on the surface 
of T cells. Therefore, the interaction between them prevents 
cancer cells from immune surveillance of T cells (111).  
YAP/TAZ and PD-L1 have a bidirectional interaction in 
suppressing anti-tumor T cell responses. Not only does 
YAP/TAZ directly upregulate the expression of PD-L1 
(97,112), but the overexpression of PD-L1 also effectively 
increases the level and transcriptional activity of YAP (113).

The first paradox is the relationship between MST1 
and Tregs. As an upstream inhibitory molecule of YAP/
TAZ, MST1 is supposed to perform the opposite function 
to YAP; but it turns out that MST1 can yet enhance Treg 
function (114) and its deficiency results in autoimmune 
diseases due to impaired Tregs (115).

The second paradox, also the most concerned, is the 
finding in an article (116) published in Cell. The authors 
first observed that the loss of LATS1/2 significantly 
inhibited tumor growth in a variety of cancer types in mice, 
e.g., melanoma, breast cancer, squamous cell carcinoma. 
LATS1/2 are a pivotal factor with growth inhibitory/
tumor-suppressive functions in the Hippo signaling, but 
without LATS1/2, tumor cells secret nucleic acid-rich 
EVs to promote TLRs-Myd88/TRIF signaling and type 
I IFN production, thereby accelerating DC maturation, 
CD8+ T lymphocyte expansion, and tumor growth  
arrest (116). Thus, LATS1/2 depletion stimulates the 
activity of innate and adaptive immunity to completely 
destroy the TME, resulting in strong anti-tumor immunity. 
Besides, the researchers added that under physiological 
conditions, the inhibition of LATS and activation of 
YAP during wound healing and tissue regeneration both 

promoted cell proliferation and prevented overgrowth and 
metastasis from an immunosurveillance perspective. This 
view complements the above account of the relationship 
between the Hippo pathway and cell proliferation. 
Nevertheless, there are limitations to the article. The first 
is that it acknowledged that the relationship between the 
Hippo pathway and immune cells in mouse models could 
not be reproduced in human cancer for the time being (116). 
Similarly, regarding the relationship between YAP/TAZ and 
PD-L1 in human cancers, Janse van Rensburg et al. (117) 
also found that the phenomenon could not be identified 
in mouse cell lines. Taha et al. (97) made a conjecture that 
there were species-specific differences in the transcriptional 
targets of the above molecules. Comparing the Hippo-YAP 
pathway across species might be a good direction to solve 
the problem. The second is, other articles (105,118) held 
converse standpoints: knockdown of LATS1/2 recruited 
type II macrophages and established an immunosuppressive 
microenvironment. The difference lies in the properties of 
the animal model of different cancers. In addition to species 
specificity, there is also tumor specificity in the Hippo-
YAP pathway, which has been mentioned in some of the 
contradictory points above.

Conclusions and future prospect

In this investigation, the aim was to assess recent advance 
of the Hippo-YAP pathway in oncology and analyze the 
contradictions that have emerged over the years in a wide 
range of literature. Considering that all these contradictions 
have a solid experimental basis, the Hippo pathway should 
not be simply categorized as a tumor suppressive pathway 
(Yin) or a tumor promoting pathway (Yang), but should be 
fully investigated from the view of the Yin-Yang dynamics. 
More recently, a series of controversial studies (119,120) on 
breast cancer and the Hippo pathway have been published 
in Nature. Ma et al. (119) found that LATS1/2 promoted 
the growth of ERα+ breast cancer cells by maintaining 
ERα expression, while over-activation of YAP/YAZ was 
sufficient to inhibit ERα expression, challenging the 
findings of Britschgi et al. (121) in 2017. Britschgi et al. 
replied to their query, suggesting that the differences could 
stem from different subclones, experimental methods, 
culture conditions, etc. They also acknowledged that 
LATS1/2 should not be recognized simply as a tumor 
suppressor. Although the pathogenesis of breast cancer 
was well established and the literature was published in 
topical journals, four years later the researchers (119) still 
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found a surprising and paradoxical role in breast cancer for 
one of the Hippo pathway molecules. Thus, we can infer 
that with many new theories about cancer being proposed, 
more mechanisms and contradictions of Hippo pathway 
regulation of cancer will keep coming out in the future. This 
brings us opportunities for curing cancer and challenges in 
practical applications at the same time. Many reviews have 
mentioned that it is yet unknown how to curb YAP/TAZ 
activation safely and effectively in human patients, and that 
YAP/TAZ inhibition may have unintended consequences 
(89,122). However, there is a silver lining: if a therapeutic 
window for YAP/TAZ activators can be explored in the 
future, and if YAP/TAZ activators are moderately applied, it 
is very likely that both the oncogenic potential of YAP/TAZ 
will be eliminated and the potential of organ regeneration 
will be fulfilled.
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