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Introduction

Lung cancer is one of the most common malignant tumors 
in the world, with recent statistics indicating that about 
26% of tumor patients die from this disease (1). Moreover, 

lung adenocarcinoma (LUAD) is one of the most common 

pathological types of non-small cell lung cancer (NSCLC). 

In China, the incidence of lung cancer continues to follow 

an annually increasing trend (2), and LUAD has become 
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the most common type. Therefore, it is necessary to explore 
the mechanism of occurrence and development of LUAD, 
particularly the abnormally expressed genes that play an 
important role. By discovering genes and studying their 
corresponding functions, it may be possible to provide new 
strategies for the treatment of LUAD.

Microarray technology and bioinformatics have been 
extensively used in tumor research. Many current studies 
are performed using various analytical tools to compare 
microarray datasets to obtain DEGs in various tumors. 
Then, the role of DEGs is explored in molecular functions 
(MFs), biological processes (BPs), and different pathways to 
provide new ideas for tumor research (3,4). However, due 
to various factors such as sample size, tumor stage, grade, 
and ethnicity, a complete set of DEGs is often not available. 
Therefore, it is important for us to compare the latest 
microarray datasets repeatedly in order to obtain more 
representative DEGs. Herein, 3 LUAD messenger RNA 
(mRNA) datasets were screened from the Gene Expression 
Omnibus (GEO) database, and a total of 284 DEGs were 
discovered by intersection. Subsequently, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were employed for the functional annotation of 
DEGs, and a protein-protein interaction (PPI) network 
was established through Cytoscape (https://cytoscape.org/). 
In summary, we used the above methods to illustrate the 
molecular mechanism of LUAD. As a result, 284 DEGs 
and 10 hub genes were screened, which may be used as 
potential biomarkers for LUAD. In this study, we found low 
expression of fibroblast growth factor 2 (FGF2) in LUAD 
and it is correlated with the long-term prognosis among the 
patients. Specifically, with higher FGF2 expression, patients 
tend to have a longer life span after diagnosis, which is not 
consistent with previous studies (5,6). Thus, more effort 
is needed to clarify the mechanism between FGF2 and 
LUAD. Herein, we explore the role of FGF2 in the immune 
infiltration of LUAD, which may be another prognostic 
factor that provides a novel prospect for the LUAD’s 
treatment. We present the following article in accordance 
with the REMARK reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-21-2676/rc).

Methods

Source of data

The datasets were collected from the open GEO (https://
www.ncbi.nlm.nih.gov/geo/). We selected 3 lung cancer 

datasets, GSE2514 (7), GSE7670 (8), and GSE40275 (9), 
and human LUAD was the main pathological type. Among 
them, GSE2514 contains 19 tumor samples and 19 normal 
lung tissue samples, GSE7670 contains 57 tumor samples 
and 57 normal lung tissue samples, and GSE40275 contains 
8 tumor samples and 43 normal lung tissue samples. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

DEGs screened

The GEO2R online tool (https://www.ncbi.nlm.nih.gov/
geo/geo2r/) was used to screen tumor tissues and normal 
human lung tissues, and statistically analyze each dataset 
to calculate the adjusted P value and |logFC| and define 
the required DEGs that meet the conditions, that is, 
adjusted P<0.01, |logFC| ≥1.0. Finally, the intersection was 
acquired from the Venn diagram online drawing tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

GO and KEGG pathway analysis of DEGs

The GO analysis is a shared method for large-scale 
functional enrichment research, in which gene functions 
can be divided into cellular component (CC), MF, and BP. 
The KEGG is a common biological information database. 
The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) tool was conducted to perform GO and 
KEGG pathway analysis on DEGs (https://david.ncifcrf.
gov/). Statistical significance was considered when P<0.01 
and the gene count was ≥10.

Construction of PPI network and selection of hub genes

The Search Tool for the Retrieval of Interacting Genes 
(STRING), an open online tool (http://string-db.org/), 
was employed to analyze PPI information. A combined 
score was >0.4. Then, the PPI network was constructed by 
Cytoscape software. Finally, the degree of each protein node 
was calculated using the cytohubba plugin of Cytoscape. 
The top 10 genes were defined as hub genes of the network 
in our study. Clustering of the top 10 genes was constructed 
using an open multi-omics and clinical/phenotypic data 
exploration tool, UCSC Xena (http://xena.ucsc.edu/) (10).

Survival analysis of hub genes

The mRNA lung cancer database was used to evaluate the 
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value of hub genes on survival and prognosis of LUAD 
patients by Kaplan-Meier plotter (http://kmplot.com/
analysis/). The Kaplan-Meier plotter is an open online 
tool that mainly analyzes the impact of 54,675 genes 
on the survival and prognosis of patients in most tumor 
types. The value of hub genes for survival and prognosis 
in LUAD patients can be assessed using the mRNA lung 
cancer database in Kaplan-Meier plotter. The gene probe 
was based on “only jetset best probe set”. According to the 
median of mRNA expression, tumor patients were divided 
into high expression group and low expression group. 
Statistical significance was considered when P<0.01. The 
immunohistochemical data of 9 hub genes in LUAD or 
normal lung tissue were obtained from the Human Protein 
Atlas (HPA) (https://www.proteinatlas.org/).

PrognoScan database analysis

PrognoScan database is an online database (http://dna00.
bio.kyutech.ac.jp/PrognoScan/), which uses a large 
number of cancer microarray dataset for the analysis of 
gene expression and relations between survival prognosis 
of patients. FGF2 expression and survival in patients with 
LUAD were analyzed in the PrognoScan database. Cox 
P<0.05 was statistically significant.

TIMER database analysis

TIMER is a comprehensive online web tool for systematic 
analysis of immune infiltration in different cancer types 
(https://cistrome.shinyapps.io/timer/). The DiffExp tool 
in TIMER was used to study the difference of FGF2 
expression between tumor and normal tissues in The 
Cancer Genome Atlas (TCGA) tumor database. The gene 
module visualized the correlation between FGF2 expression 
and immune infiltration level. The results included the 
correlation analysis with B cells, CD4+ T cells, CD8+ T 
cells, Neutrophils, macrophages, and dendritic cells. The 
scatter plots were used to show the correlation between 
FGF2 and different immune cell infiltration. The gene 
expression level was determined by log2 RSEM.

Statistical analysis

The GEO2R is used to screen DEGs. The functional 
enrichment research of DEGs uses GO analysis. The 
STRING and Cytoscape were used to construct PPI 
network. The Kaplan-Meier Plotter database and 

Prognoscan database were used to analyze the survival of 
hub gene. The correlation between gene expression and 
immune infiltration was displayed by Spearman correlation 
and statistical significance. The correlation of variables is 
established by the following absolute values: 0.00–0.19 “very 
weak”, 0.20–0.39 “weak”, 0.40–0.59 “medium”. P<0.05 was 
statistically significant.

Results

The DEGs were retained in LUAD. Through the analysis 
of GSE2514, GSE7670, and GSE40275, we obtained 
840, 1,410, and 5,454 DEGs, respectively. Afterwards, the 
intersection of the DEGs of each dataset was taken by the 
Venn diagram, and 284 DEGs were obtained, of which 77 
were highly expressed in tumor tissues and 207 were lowly 
expressed (Figure 1). 

Functional enrichment of DEGs was carried out via 
GO and KEGG analysis. The GO analysis revealed that 
DEGs were mainly enriched in BPs such as cell adhesion, 
cell division, extracellular matrix organization, positive 
regulation of gene expression, positive regulation of 
angiogenesis, response to hypoxia, and so on. CC was 
mainly enriched in extracellular exosome, extracellular 
region, plasma membrane, membrane, integral component 
of plasma membrane, extracellular space, and so on. MF was 
primarily involved protein binding, protein kinase binding, 
protein homodimerization activity, calcium ion binding, and 
heparin binding execution. The details are shown in Table 1 
and Figure 2. The KEGG analysis was mainly related to the 
cell cycle (Table 1).

The PPI network was constructed and hub genes were 
extracted. The PPI network consisted of 262 nodes and 
1,363 interaction lines, in which the red nodes were highly 
expressed genes, and the green nodes were lowly expressed 
genes (Figure 3). 

Next, the PPI networks with connectivity degree were 
further screened out. The top 10 genes were obtained, 
namely enhancer of zeste 2 polycomb repressive complex 
2 subunit (EZH2), aurora kinase A (AURKA), cyclin 
A2 (CCNA2), cyclin B1 (CCNB1), FGF2, forkhead box 
M1 (FOXM1), marker of proliferation Ki-67 (MKI67), 
thymidylate synthetase (TYMS), topoisomerase II alpha 
(TOP2A), and centromere protein E (CENPE) (Table 2), and 
a network diagram of their interaction was drawn (Figure 3). 
The results of hierarchical clustering showed that the hub 
genes could basically distinguish LUAD from normal lung 
tissue (Figure 4).
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Figure 1 Venn diagram was drawn to obtain DEGs. (A) Up-regulated genes; (B) down-regulated genes. DEGs, differentially expressed genes.

Survival analyses of hub genes were performed. 
According to the hub genes expression, the survival curves 
of LUAD patients were drawn via Kaplan-Meier plotter 
(Figure 5). It was found that patients with high expression 
of EZH2, AURKA, CCNA2, CCNB1, FOXM1, MKI67, 
TYMS, TOP2A, and GEPNE have a poor prognosis, while 
patients with high FGF2 gene expression have a better 
prognosis, which is consistent with the previous expression 
results in the mRNA datasets. The expression of hub 
genes in LUAD and normal lung tissues was obtained 
from immunohistochemical data of HPA (Figure 6). The 
expression results of the hub genes in different sample types 
of immunohistochemistry were consistent with the results 
of the above database.

FGF2 and tumor immune microenvironment. We 
analyzed the expression of FGF2 in TCGA database by 
TIMER web service. It also found that FGF2 was highly 
expressed in normal tissues compared with tumor tissues 
(Figure 7A). We further confirmed that the high expression 
of FGF2 was associated with better prognosis in LUAD 
patients in PrognoScan database (Figure 7B). Then, TIMER 
was used to analyze the relationship between FGF2 and 
tumor purity in LUAD, and it was found that the expression 
level of FGF2 was negatively correlated with tumor purity 
(Figure 8). The expression level of FGF2 was found to be 
positively correlated with the immune infiltration of B cells, 
CD4+ T cells, CD8+ T cells, Neutrophils, macrophages, 
and dendritic cells. There was moderate correlation with 
neutrophils infiltration, but weak correlation with CD4+ 
T cells, CD8+ T cells, macrophages, and dendritic cells 
infiltration.

Discussion

The most common type of lung cancer is NSCLC, 
accounting for 85% of all lung cancer cases. As the 
most common subtype of NSCLC, LUAD comprises 
approximately 40% of the cases (11), and the incidence 
of LUAD is increasing annually. Although there has been 
significant improvement in the diagnosis and treatment 
strategies for LUAD, such as targeted treatments, the 
long-term survival rate of patients has remained low. 
The main reason is the dynamic drug resistance of the 
tumors (12). Therefore, it is urgent that the pathogenesis 
of LUAD be further studied in order to find new 
diagnostic and therapeutic targets. With the development 
of bioinformatics, the screening of DEGs provides a 
valuable tool for research. We may find new gene targets 
by comparing and extracting a large-scale LUAD mRNA 
expression dataset.

In this study, we screened 284 DEGs by comparing 3 
datasets, including 77 high expression genes and 207 low 
expression genes. After GO analysis of 284 DEGs, it was 
found that their biological functions were mainly concerned 
cell adhesion and division, while KEGG pathway was 
enriched in the cell cycle. We further extracted the top 10 
hub genes by PPI network, which were EZH2, AURKA, 
CCNA2, CCNB1, FGF2, FOXM1, MKI67, TYMS, TOP2A, 
and CENPE. Among them, FGF2 was a low-expression 
gene, and the others were high expression genes. Finally, 
survival analysis showed that the expression results of hub 
genes were consistent in patients, and the prognosis was 
strongly correlated with the hub gene expression.

The EZH2 gene is a component of polycomb repressive 



Translational Cancer Research, Vol 11, No 1 January 2022 231

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(1):227-241 | https://dx.doi.org/10.21037/tcr-21-2676

Table 1 GO and KEGG pathway analysis of DEGs in LUAD samples

Category Term Description Count P value

BP Term GO:0007155 Cell adhesion 33 7.79e−12

BP Term GO:0051301 Cell division 21 1.83e−06

BP Term GO:0030198 Extracellular matrix organization 17 1.92e−07

BP Term GO:0010628 Positive regulation of gene expression 17 8.76e−06

BP Term GO:0045766 Positive regulation of angiogenesis 16 7.94e−10

BP Term GO:0001666 Response to hypoxia 16 1.97e−07

BP Term GO:0007179 Transforming growth factor beta receptor signaling pathway 12 3.70e−07

BP Term GO:0030336 Negative regulation of cell migration 11 4.11e−06

BP Term GO:0051726 Regulation of cell cycle 11 4.34e−05

CC Term GO:0005886 Plasma membrane 92 9.65e−05

CC Term GO:0070062 Extracellular exosome 76 7.16e−07

CC Term GO:0005576 Extracellular region 59 7.18e−10

CC Term GO:0016020 Membrane 58 5.25e−05

CC Term GO:0005887 Integral component of plasma membrane 53 3.36e−09

CC Term GO:0005615 Extracellular space 52 1.78e−09

CC Term GO:0009986 Cell surface 30 6.20e−09

CC Term GO:0005578 Proteinaceous extracellular matrix 21 6.95e−09

CC Term GO:0031012 Extracellular matrix 19 8.52e−07

CC Term GO:0045121 Membrane raft 18 2.21e−08

CC Term GO:0016324 Apical plasma membrane 15 1.80e−04

CC Term GO:0009897 External side of plasma membrane 12 4.88e−04

CC Term GO:0043235 Receptor complex 11 2.77e−05

CC Term GO:0016323 Basolateral plasma membrane 11 4.96e−04

CC Term GO:0000776 Kinetochore 10 4.29e−06

CC Term GO:0030496 Midbody 10 1.77e−04

MF Term GO:0005515 Protein binding 181 9.00e−08

MF Term GO:0019901 Protein kinase binding 22 5.44e−07

MF Term GO:0042803 Protein homodimerization activity 30 4.36e−06

MF Term GO:0005509 Calcium ion binding 28 2.46e−05

MF Term GO:0008201 Heparin binding 12 4.57e−05

KEGG pathway hsa04110 Cell cycle 11 6.77e−04

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; LUAD, lung adenocarcinoma; BP, biological process; CC, 
cellular component; MF, molecular function. 
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Figure 2 GO enrichment analysis result of DEGs. (A) BP; (B) CC; (C) MF. GO, Gene Ontology; DEGs, differentially expressed genes; BP, 
biological process; CC, cellular component; MF, molecular function.

complex 2 (PRC2), a methyltransferase. Increasing DNA 
methylation and inactivating tumor suppressor genes 
are important factors by which EZH2 promotes tumor 
progression (13,14). It can also enhance cell proliferation 
by promoting cell cycle processes (15). A study found that 
EZH2 acetylation enhanced the metastasis and invasion 
ability of tumor cells and that it was correlated with poor 
prognoses in LUAD patients (16). It has been reported that 
the vascular endothelial growth factor (VEGF)/vascular 
endothelial growth factor receptor 2 (VEGFR-2) pathway 
can regulate the EZH2 expression in LUAD (17). 

The AURKA gene is a serine/threonine kinase that 
plays a key role in regulating the cell cycle and mitosis of 
normal cells (18), and its abnormal expression has been 

also correlated with various types of tumors (19-21). 
Some studies have found that the activation of AURKA in 
NSCLC can increase the resistance to anti-EGFR targeted 
therapies (22,23). In addition, the differential expression of 
AURKA in LUAD has been confirmed by previous studies 
(24,25). In our study, we also found that AURKA was highly 
expressed in adenocarcinoma, and the high expression of 
AURKA in LUAD patients was obviously correlated with 
poor prognosis. Therefore, the level of AURKA expression 
may be used as a diagnosis tool and treatment target for 
LUAD. The expression of AURKA can be further studied 
for its role in the development and progression of LUAD. 

The FGF2 gene is a member of the fibroblast growth 
factor family. It mainly binds FGFR on the cell surface 
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Figure 3 Establish a PPI network and extract the top 10 hub genes. (A) The PPI network was established by Cytoscape; (B) the hub genes 
were extracted by using cytohubba; (C) top 10 hub gene obtained by screening. PPI, protein-protein interaction; EZH2, enhancer of zeste 
2 polycomb repressive complex 2 subunit; AURKA, aurora kinase; CCNA2, cyclin A2; CCNB1, cyclin B1; FGF2, fibroblast growth factor 
2; FOXM1, forkhead box M1; MKI67, marker of proliferation Ki-67; TYMS, thymidylate synthetase; TOP2A, topoisomerase II alpha; 
CENPE, centromere protein E.

Table 2 Top 10 hub genes with higher degree of connectivity

Gene symbol Degree Gene description

EZH2 43 Enhancer of zeste 2 polycomb repressive complex 2 subunit

AURKA 41 Aurora kinase A

CCNA2 40 Cyclin A2

CCNB1 40 Cyclin B1

FGF2 39 Fibroblast growth factor 2

FOXM1 39 Forkhead box M1

MKI67 39 Marker of proliferation Ki-67

TYMS 38 Thymidylate synthetase

TOP2A 38 Topoisomerase (DNA) II alpha

CENPE 37 Centromere protein E
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and is involved in cell proliferation, metastasis, and 
angiogenesis. In previous studies, it was found that FGF2 
expression in NSCLC was negatively correlated with the 
survival rate (26,27). However, in our study, we found that 
FGF2 was lowly expressed in LUAD tissues, and survival 
analysis also showed that patients with low FGF2 expression 
had better prognoses. This shows that the mechanism of 
FGF2 in LUAD is not fully clarified, and further study 
should be undertaken. Therefore, we further investigated 
the mechanism of FGF2 affects the prognosis of LUAD 
patients. It is known that the immune microenvironment 
plays an important role in NSCLC, and immunotherapy 
(PD-L1 inhibitors) has a significant effect in the treatment 
of lung tumors (28,29). So, we analyzed the effect of 
FGF2 expression on the immune microenvironment in 
LUAD. It is noteworthy that this study found that the high 
FGF2 expression decreased tumor purity, and the FGF2 
expression level was positively correlated with immune cell 
infiltration. Although the correlation was not very strong, 
the significance was very high (Figure 8). Thus, we can 
appropriately believe that immune infiltration is one of the 
reasons for the better prognosis of patients with high FGF2 
expression.

The FOXM1 gene is a transcription factor of the 
forkhead box family. Its high expression is associated with 
various types of tumors. It plays an important role in cell 

proliferation, metastasis, drug resistance, and the promotion 
of vascular survival and cell cycling (30-32). In addition, 
studies have found that FOXM1 is correlated with the 
development of LUAD, being specifically associated with 
its proliferation, invasion, and metastasis (33-35). 

The CENPE gene is a kinesin-like motor protein, 
and its overexpression is related to the development and 
progression of tumors (36). In NSCLC, the high expression 
of CENPE was correlated with the negative prognoses of 
patients (37). In addition, studies have found that CENPE 
can directly act on FOXM1 to regulate the proliferation of 
LUAD cells (33).

The TOP2A gene mainly acts on DNA transcription 
and replication enzymes, and its overexpression is 
associated with many tumors. Also, studies have shown 
that TOP2A can target CCNB1 and CCNB2 in LUAD to 
promote tumor proliferation and metastasis (38), leading 
to poor patient prognosis (39). In addition, CCNA2 and 
CCNB1 are proteins that can regulate the cell cycle. Their 
abnormal expression was correlated with the development 
and progression of NSCLC and poor patient prognosis  
(40-42). For example, CCNA2 can promote the epithelial-
mesenchymal transition of NSCLC cells via integrin (43). 

The TYMS gene is a key enzyme that maintains DNA 
synthesis and repair, and is considered one of the targets 
of new antifolate drugs such as pemetrexed (44). Its 
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Figure 5 Survival analysis of hub gene. P<0.05. HR, hazard ratio. EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; 
AURKA, aurora kinase; CCNA2, cyclin A2; CCNB1, cyclin B1; FGF2, fibroblast growth factor 2; FOXM1, forkhead box M1; MKI67, 
marker of proliferation Ki-67; TYMS, thymidylate synthetase; TOP2A, topoisomerase II alpha; CENPE, centromere protein E.
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Figure 6 Immunohistochemical images of lung adenocarcinoma and normal lung tissue from the Human Protein Atlas database. 
Magnification: ×100. EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; AURKA, aurora kinase A; CCNA2, cyclin 
A2; CCNB1, cyclin B1; FGF2, fibroblast growth factor 2; FOXM1, forkhead box M1; MKI67, marker of proliferation Ki-67; TYMS, 
thymidylate synthetase; TOP2A, topoisomerase II alpha.

high expression was also linked to the poor prognosis of  
NSCLC (45). 

The expression of MKI67 is related to the proliferation 
and growth of tumors. It is widely used as a proliferation 

and prognostic marker for research (46). It is also highly 
expressed in lung cancer (46-48).

In summary, 284 DEGs and 10 hub genes were obtained 
from the GEO database in our study. These 10 hub 
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Figure 7 The expression of FGF2 in LUAD. (A) The expression of FGF2 in lung adenocarcinoma was analyzed from TCGA database by 
TIMER. (B) Kaplan-Meier survival curves comparing the FGF2 differential expression in lung adenocarcinoma in the PrognoScan database. 
*, P<0.05; **, P<0.01; ***, P<0.001. FGF2, fibroblast growth factor 2; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; 
TPM, transcripts per million; HR, hazard ratio; CI, confidence interval.

genes were strongly correlated with patient prognosis. 
Previous studies have demonstrated that the abnormal 
expression of hub genes was often strongly correlated with 
the development and prognosis of lung cancer, which is 
consistent with our results with LUAD. In the future, genes 
with high expression of EZH2, AURKA, CCNA2, CCNB1, 
FGF2, FOXM1, MKI67, TYMS, TOP2A, and CENPE 
may be used as targets for tumor therapy to prolong the 
survival time of LUAD patients. The relationship between 
FGF2 and immune microenvironment can also be explored 
to provide new strategies for the study and treatment of 
LUAD. However, some detailed mechanisms of hub genes 
in LUAD remain unclear and require further study in the 
future. In summary, we screened the GEO database to 

obtain hub genes that were highly correlated with LUAD. 
These genes may be potential biomarkers or therapeutic 
targets for LUAD.

We used some bioinformatics methods to find key genes 
via this study. However, due to the technical condition 
limitations, some other bioinformatics hot issues include 
weighted gene co-expression network analysis, competing 
endogenous RNA (ceRNA) network, DNA repair gene 
mutations and increased Neoantigen load and activated T 
cell infiltration were not carried out in this study, which will 
be the direction of our future research in LUAD. At the 
same time, as a result of the limitation of basic experimental 
conditions, this research was limited to the analysis of open 
database, and did not conduct functional research on hub 
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genes. It is necessary to explore the mechanism of hub 
genes in the development of LUAD through functional 
research in the future.
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