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Background: Non-small cell lung cancer (NSCLC) is a common malignancy with a high morbidity and 
mortality rate worldwide, but the driver genes and signaling pathways involved are largely unclear. Herein, 
our study aimed to identify significant genes with poor outcome and underlying mechanisms in NSCLC 
using bioinformatics analyses.
Methods: Gene expression profiles (GSE33532, GSE19188, GSE102287, GSE27262), including 319 
NSCLC and 232 adjacent lung tissues, were downloaded from the GEO database. Differentially expressed 
genes (DEGs) were identified by the GEO2R online tool. Functional and pathway enrichment analyses 
were performed via the DAVID database. The protein-protein interactions (PPIs) of these DEGs were 
constructed by the STRING website and visualized by the Cytoscape software platform. The expression of 
hub genes in NSCLC was validated through the GEPIA database. Kaplan-Meier plotter was used to analyse 
the survival rate with multivariate Cox regression. The expression of protein tyrosine kinase 2 (PTK2) in 
NSCLC and adjacent lung tissues was evaluated on the UALCAN database platform.
Results: A total of 225 significant DEGs were obtained between NSCLC and adjacent lung tissues, 
containing 52 upregulated genes and 173 downregulated genes. The DEGs were clustered based on 
functions and signaling pathways that may be closely associated with NSCLC occurrence. A total of 174 
DEGs were identified from the PPI network complex. Top 10 hub genes were selected by CytoHubba 
plugin. As independent predictors, seven genes (COL1A1, ADAM12, VWF, OGN, EDN1, CAV1, ITGA8) 
were associated with poor prognosis in NSCLC via multivariate Cox regression (P<0.01). Four genes (VWF, 
CAV1, ITGA8, COL1A1) were found to be significantly enriched in the focal adhesion pathway (P=1.04E-04) 
and to be upstream regulators of PTK2. PTK2 was upregulated in NSCLC and associated with poor survival 
prognosis in lung squamous cell carcinoma (LUSC).
Conclusions: Taken together, the important genes and pathways in NSCLC were identified by using 
integrated bioinformatics analysis. PTK2 could be a key gene associated with the biological process of 
NSCLC formation and progression and a potential therapeutic target for NSCLC treatment.
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Introduction

Lung cancer is one of the most common malignancies 
in the world (1). Lung cancer is classified as non-small 
cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC). NSCLC is significantly more common than 
SCLC and is further subdivided based on histology (e.g., 
adenocarcinoma, squamous or large cell carcinoma) (2,3). 
Despite the introduction of several new and more effective 
biomarkers in clinical practice, only 25% of NSCLC 
patients are diagnosed at stage I–II when NSCLC patients 
are still amenable to radical surgery (4). The 5-year survival 
is 77–92% for clinical stage IA, 68% for stage IB, 60% 
for stage IIA, and 53% for stage IIB (5). Radical surgery 
indeed improved the 5-year survival rates for patients with 
stage I–II NSCLC. However, most NSCLC patients are 
diagnosed at a late stage due to the typically asymptomatic 
early stage and the lack of effective screening trial. These 
patients with advanced NSCLC are not amenable to radical 
surgery, but up to 69% of them could have a potentially 
actionable molecular target (6). Epidermal growth factor 
receptor (EGFR) and anaplastic lymphoma kinase (ALK) 
are the most common oncogenic drivers in NSCLC. 
Although EGFR tyrosine kinase inhibitor (TKI) and ALK 
TKI treatment show an encouraging improvement in 
overall survival, nearly all patients eventually have disease 
progression due to acquired resistance after treatment (7). 
The reduction of NSCLC mortality has been set as a major 
priority worldwide by detecting new molecular targets and 
prompting the development of new therapies.

Traditional gene-by-gene approaches in research are 
insufficient to meet the growth and demand of biological 
research in understanding true biology. In recent years, 
bioinformatics analysis has identified a group of cancer 
related genes that provide insight into the molecular 
mechanism of diseases progression (8,9). Nevertheless, 
there are few studies of NSCLC via these bioinformatics 
analyses. In this paper, bioinformatics analysis was utilized 
to explore the potential biomarkers and the molecular 
mechanism of NSCLC.

We present the following article in accordance with 
the REMARK reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-21-1986/rc). 

Methods

In this paper, original microarray datasets were downloaded 

from GEO. DEGs between NSCLC and adjacent lung 
tissue were filtered via the GEO2R online tool. The 
functions and pathway enrichment of the differentially 
expressed genes (DEGs) were identified via the DAVID 
online database. The protein-protein interactions (PPIs) of 
these DEGs were constructed by the STRING website and 
visualized by the Cytoscape software platform. The GEPIA 
database was used to evaluate the expression of genes. 
Kaplan-Meier plotter was used to analyse the survival rate 
with multivariate Cox regression. The expression of protein 
tyrosine kinase 2 (PTK2) was analysed via the UALCAN 
database. All procedures performed in this study involving 
human participants were in accordance with the Declaration 
of Helsinki (as revised in 2013).

Microarray data information and DEGs identification

NCBI-GEO (https://www.ncbi.nlm.nih.gov/gds/) is a 
functional genomics database that includes microarray and 
cutting edge sequencing. Four original microarray datasets 
(GSE33532, GSE19188, GSE102287, and GSE27262) were 
downloaded from the NCBI-GEO database, from which 
data on 319 NSCLC and 232 adjacent lung tissues was 
available. DEGs between NSCLC and adjacent lung tissue 
were filtered via the GEO2R online tool with P<0.05 and 
(logFC) >2 (10). The overlapping DEGs among the four 
datasets were identified through the Venn diagram database 
(http://bioinformatics.psb.ugent.be/webtools/Venn/). 
The DEGs with logFC >0 were the upregulated genes; 
in contrast, which gene was the downregulated gene with  
logFC <0.

Gene functional and pathways enrichment analysis

Gene ontology (GO), which comprises 3 independent 
ontologies (cellular component, molecular function, 
and biological process), is the most comprehensive and 
widely used knowledge base concerning the functions of  
genes (11). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a database resource for understanding 
the high-level functions and utilities of biological  
systems (12). DAVID (https://david.ncifcrf.gov/home.jsp) is 
a comprehensive functional annotation tool for investigators 
to understand the biological meaning behind a large list of 
genes (13). In the present study, the functions and pathway 
enrichment of the DEGs were identified via the DAVID 
online database. P<0.05 was used as the cut-off criterion.
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PPI network and module analysis

The PPI network of the proteins encoded by DEGs was 
constructed via the STRING database (https://cn.string-
db.org/) (14). The Cytoscape software platform (https://
cytoscape.org/) was utilized to construct and visualize the 
PPI network with a maximum number of inter actors =0 and 
confidence score  ≥0.4 (15). The nodes represent the genes, 
and the edges between the nodes represent the interactions 
between the genes in the PPI network.

Expression and survival analysis of hub genes in NSCLC

The expression of hub genes between NSCLC and adjacent 
lung tissues was compared through the GEPIA database 
(http://gepia.cancer-pku.cn/) (16). NSCLC patients were 
divided into low- and high-expression groups according 
to the median expression of each hub gene. Kaplan-Meier 
analysis was performed via Kaplan-Meier plotter (https://
kmplot.com/analysis/) (17). P value includes correction 
for multiple hypothesis testing. P<0.05 indicated that the 
difference was statistically significant.

Expression and survival analysis of PTK2 in NSCLC

The UALCAN database (http://ualcan.path.uab.edu/) 

was employed to analyse the expression of PTK2 between 
NSCLC and adjacent lung tissues (18). The survival 
prognosis of PTK2 was evaluated by Kaplan-Meier plotter.

Statistical analysis

Bioinformatics analyses of databases were described in 
detail in the above method. The two-sided Student’s t-test 
was used to compare the differences between groups. 
Differences between groups were compared using a two-
sided Student’s t-test. Kaplan-Meier analysis was performed 
via Kaplan-Meier plotter. P<0.05 was considered statistically 
significant.

Results

Microarray data information and DEGs identification

Four original microarray datasets (GSE33532, GSE19188, 
GSE102287 and GSE27262) were obtained from the 
NCBI-GEO database. A total of 3188 DEGs were extracted 
via the GEO2R online tool using P<0.05 and (logFC) >2 
as cut-off criteria. A total of 225 common DEGs were 
identified through the Venn diagram database, including 52 
upregulated genes and 173 downregulated genes in NSCLC 
tissue compared to adjacent lung tissues (Table 1, Figure 1).

Table 1 A total of 225 common DEGs (52 upregulated genes and 173 downregulated genes) were detected from 4 profile datasets

DEG Gene symbol

Upregulated ADAM12, TPX2, CCNB1, SULF1, HMGB3, ASPM, FERMT1, HMMR, CXCL13, KIF4A, GINS1, TMPRSS4, HS6ST2, 
SPP1, COL1A1, ADAMDEC1, ANLN, BIRC5, KIF20A, UBE2C, COL10A1, CCNB2, PSAT1, TYMS, CDCA7, MELK, 
COL11A1, KIF11, CEP55, CDC20, CTHRC1, RRM2, ZWINT, TOP2A, KIAA0101, GJB2, GREM1, TTK, GTSE1, 
CDKN3, BUB1, NUF2, CENPU, MMP1, NEK2, MMP12, AURKA, UBE2T, CENPF, TFAP2A, MAD2L1, DLGAP5

Downregulated HBA2///HBA1, EDN1, RTKN2, EMCN, SOX7, ADARB1, CHRDL1, PPP1R14A, ADGRD1, GPIHBP1, KCNT2, MFAP4, 
PEBP4, ITIH5, ERG, SLC6A4, PECAM1, KCNK3, MMRN2, NOSTRIN, SYNPO2, NCKAP5, GIMAP8, OGN, SCARA5, 
BTNL9, PCAT19, IGSF10, ACVRL1, SCGB1A1, CDO1, CA4, SDPR, WWC2///CLDN22, TEK, CLIC3, GRK5, ID4, 
EXOSC7///CLEC3B, PLA2G1B, DACH1, VGLL3, FAM150B, ANOS1, ACKR1, LIFR, STXBP6, S1PR1, EMP2, LYVE1, 
ADAMTS8, HBEGF, PTPN21, GDF10, LAMP3, LIMCH1, LEPROT///LEPR, DNASE1L3, BCHE, SPOCK2, AKAP12, 
CD36, FAM162B, PDE5A, LDB2, ROBO4, SPTBN1, CALCRL, CAV1, TBX5-AS1, PPBP, JAM2, PTPRB, QKI, FOXF1, 
ACADL, ANKRD29, PIR-FIGF///FIGF, AQP4, NEBL, ITGA8, MT1M, TNNC1, PDZD2, FAT3, ADIRF, MCEMP1, 
HBB, FHL1, RHOJ, CPB2, SRPX, FAM189A2, SORBS2, LRRN3, THBD, KLF4, EMP1, FMO2, ABCA8, MYZAP, 
SOCS2, SLC39A8, AOC3, SFTPC, ADRB1, SEMA3G, TCF21, NEDD4L, TGFBR3, HHIP, PGC, ADH1B, ARHGEF26, 
ARHGAP6, LPL, ASPA, FABP4, EDNRB, SOSTDC1, SCN4B, FCN3, MYCT1, KANK3, DLC1, STX11, LINC00312, 
FAM107A, CCDC85A, PLAC9, CCBE1, PGM5, C1QTNF7, GPX3, AGER, FOSB, RGCC, VWF, SEMA5A, PIP5K1B, 
ABI3BP, CD93, BMP2, TIE1, KIAA1462, VIPR1, AGTR1, WIF1, EPAS1, RAMP3, CLIC5, NPNT, SLIT2, GIMAP6, FHL5, 
MAMDC2, ADAMTSL3, CLDN18, C2orf40, CDH5, PDK4, GPM6A, COL6A6, FILIP1, CFD, GKN2, ANGPT1, CYP4B1, 
SMAD6, HYAL1, TMEM100, DUOX1, AFF3

DEG, differentially expressed gene.

https://cn.string-db.org/
https://cn.string-db.org/
https://cytoscape.org/
https://cytoscape.org/
http://gepia.cancer-pku.cn/
https://kmplot.com/analysis/
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http://kmplot.com/multipletesting
http://ualcan.path.uab.edu/
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Gene function and pathways enrichment analysis

Functions and pathway enrichment of DEGs were 
conducted using the DAVID database. The DEGs were 
classified into three functional groups: biological process 
group (BP), cellular component group (CC) and molecular 
function group (MF) (Figure 2, Table 2). In the BP group, 
the cell division GO term enriched both upregulated 
and downregulated DEGs, which indicates that the 
biological process of cell division may play vital roles in 
the development of NSCLC. In addition, the upregulated 
DEGs were also involved in mitotic nuclear division and 
sister chromatid cohesion, while the downregulated DEGs 
were involved in angiogenesis and the BMP signaling 
pathway. In the CC group, the upregulated DEGs were 
enriched in spindle, midbody and condensed chromosome 
kinetochore, while the downregulated DEGs were enriched 
in cell surface, extracellular region and extracellular space. 
In the MF group, the overexpressed DEGs mainly included 
molecular functions of ATP binding, metalloendopeptidase 
activity and protein homodimerization activity, whereas the 
downregulated genes included those of heparin binding, 
receptor activity and transforming growth factor beta 
binding.

As shown in Table 3, KEGG analysis results demonstrated 
that the upregulated DEGs were significantly enriched in 
oocyte meiosis, the cell cycle and the p53 signaling pathway, 
while the downregulated DEGs were particularly enriched 
in malaria, vascular smooth muscle contraction and the 
PPAR signaling pathway.

PPI network and module analysis

A total of 174 DEGs, including 48 upregulated genes 
and 126 downregulated genes, were filtered into the PPI 
network complex, which included 174 nodes and 816 
edges, via the STRING database and Cytoscape software 
platform (Figure 3A). There were 51 of the 225 DEGs 
that failed to fall into the PPI network. Two significant 
modules in the PPI network complex were collected for 
further analysis using the MCODE plugin of the Cytotype 
software platform. A total of 32 central nodes and 511 edges 
were identified in module 1, and all 32 central nodes were 
upregulated genes and mainly associated with the oocyte 
meiosis, the cell cycle, the p53 signaling pathway and the 
progesterone-mediated oocyte maturation (Figure 3B,  
Table 4). In addition, module 2, which included 9 nodes 
and 29 edges, was mainly associated with the PI3K-Akt 
and HIF-1 signaling pathways (Figure 3C, Table 4). The 
CytoHubba plugin was used to identify the top 10 hub 
genes (COL1A1, ITGA8, VWF, MMP1, ADAM12, CD36, 
OGN, EDN1, CTHRC1 and CAV) in the PPI network 
(Figure 3D, Table 4), which were mainly involved in ECM-
receptor interaction, focal adhesion, and the PI3K-Akt 
signaling pathway.

Expression and survival analysis of hub genes in NSCLC

The GEPIA database was utilized to analyse the expression 
of the top 10 hub genes in NSCLC and adjacent lung 
tissues. COL1A1, MMP1, ADAM12 and CTHRC1 were 

Figure 1 Venn diagram of the GSE33532, GSE19188, GSE102287 and GSE27262 datasets. (A) 52 upregulated genes overlapped in the four 
profile datasets; (B) 173 downregulated genes overlapped in the four profile datasets.
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Figure 2 GO analysis of DEGs in NSCLC. (A) GO analysis of the upregulated DEGs; (B) GO analysis of the downregulated DEGs. GO, gene 
ontology; DEGs, differentially expressed genes; NSCLC, non-small cell lung cancer. 
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Table 2 GO analysis of differentially expressed genes in NSCLC

Expression Category Term Count % P value FDR

Upregulated GOTERM_BP_DIRECT GO:0051301 15 17.04 1.45E-12 2.07E-09

~cell division

GOTERM_BP_DIRECT GO:0007067 13 14.77 7.87E-12 1.12E-08

~mitotic nuclear division

GOTERM_BP_DIRECT GO:0007062 8 9.09 2.47E-08 3.52E-05

~sister chromatid cohesion

GOTERM_BP_DIRECT GO:0000086 8 9.09 1.77E-07 2.52E-04

~G2/M transition of mitotic cell 
cycle

GOTERM_BP_DIRECT GO:0007051 4 4.54 1.44E-05 0.02049

~spindle organization

GOTERM_BP_DIRECT GO:0007094 4 4.54 2.90E-05 0.04136

~mitotic spindle assembly 
checkpoint

GOTERM_CC_DIRECT GO:0005819 8 9.09 4.34E-08 4.77E-05

~spindle

GOTERM_CC_DIRECT GO:0030496 8 9.09 6.76E-08 7.43E-05

~midbody

GOTERM_CC_DIRECT GO:0000777 7 7.95 1.51E-07 1.66E-04

~condensed chromosome 
kinetochore

GOTERM_CC_DIRECT GO:0005654 24 27.27 3.90E-07 4.28E-04

~nucleoplasm

GOTERM_CC_DIRECT GO:0000922 7 7.95 5.77E-07 6.34E-04

~spindle pole

GOTERM_CC_DIRECT GO:0000776 6 6.82 3.06E-06 0.00337

~kinetochore

GOTERM_MF_DIRECT GO:0005524 12 13.63 0.00316 3.56706

~ATP binding

GOTERM_MF_DIRECT GO:0004222 4 4.54 0.00430 4.82813

~metalloendopeptidase activity

GOTERM_MF_DIRECT GO:0042803 7 7.95 0.01842 19.21940

~protein homodimerization 
activity

Table 2 (continued)
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Table 2 (continued)

Expression Category Term Count % P value FDR

Downregulated GOTERM_BP_DIRECT GO:0001525 14 5.37 8.86E-08 1.44E-04

~angiogenesis

GOTERM_BP_DIRECT GO:0007155 18 6.91 6.24E-07 0.00101

~cell adhesion

GOTERM_BP_DIRECT GO:0030509 7 2.69 5.57E-05 0.09039

~BMP signaling pathway

GOTERM_BP_DIRECT GO:0042310 4 1.54 4.17E-04 0.67403

~vasoconstriction

GOTERM_BP_DIRECT GO:0051591 5 1.92 7.09E-04 1.14466

~response to cAMP

GOTERM_BP_DIRECT GO:0001666 8 3.07 8.34E-04 1.34494

~response to hypoxia

GOTERM_CC_DIRECT GO:0009986 20 7.68 2.72E-07 3.30E-04

~cell surface

GOTERM_CC_DIRECT GO:0005576 34 13.05 2.85E-06 0.00345

~extracellular region

GOTERM_CC_DIRECT GO:0005615 29 11.13 1.43E-05 0.01737

~extracellular space

GOTERM_CC_DIRECT GO:0005578 12 4.61 2.40E-05 0.02907

~proteinaceous extracellular 
matrix

GOTERM_CC_DIRECT GO:0045121 10 3.84 8.31E-05 0.10057

~membrane raft

GOTERM_MF_DIRECT GO:0008201 9 3.45 5.11E-05 0.06988

~heparin binding

GOTERM_MF_DIRECT GO:0004872 8 3.07 0.00206 2.77954

~receptor activity

GOTERM_MF_DIRECT GO:0050431 3 1.15 0.00739 9.63795

~transforming growth factor 
beta binding

GO, gene ontology; NSCLC, non-small cell lung cancer; FDR, false discovery rate; BMP, bone morphogenetic protein.
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Table 3 KEGG pathway enrichment analysis of differentially expressed genes in NSCLC

Expression Pathway ID Name Count % P value Genes

Upregulated hsa04114 Oocyte meiosis 6 6.82 2.11E-05 CCNB1, MAD2L1, CCNB2, BUB1, 
AURKA, CDC20

hsa04110 Cell cycle 6 6.82 3.62E-05 CCNB1, MAD2L1, CCNB2, BUB1, 
TTK, CDC20

hsa04115 p53 signaling pathway 4 4.55 0.00119 CCNB1, CCNB2, RRM2, GTSE1

hsa04914 Progesterone-mediated 
oocyte maturation

4 4.55 0.00253 CCNB1, MAD2L1, CCNB2, BUB1

hsa04512 ECM-receptor interaction 4 4.55 0.00253 COL1A1, COL11A1, SPP1, HMMR

hsa04974 Protein digestion and 
absorption

3 3.41 0.03166 COL1A1, COL11A1, COL10A1

Downregulated hsa05144 Malaria 4 1.54 0.01182 CD36, PECAM1, ACKR1, HBB

hsa04270 Vascular smooth muscle 
contraction

5 1.92 0.02681 RAMP3, AGTR1, PLA2G1B, CALCRL, 
PPP1R14A

hsa03320 PPAR signaling pathway 4 1.54 0.02717 LPL, CD36, FABP4, ACADL

hsa04610 Complement and 
coagulation cascades

4 1.54 0.02931 VWF, THBD, CFD, CPB2

hsa04514 CAMs 5 1.92 0.04910 CLDN18, ITGA8, PECAM1, JAM2, 
CDH5

KEGG, Kyoto Encyclopedia of Genes and Genomes; NSCLC, non-small cell lung cancer; ECM, extracellular matrix; PDAR, peroxisome 
proliferator-activated receptor; CAMs, cell adhesion molecules.

significantly upregulated (P<0.05), whereas VWF, CD36, 
OGN ,  EDN1 ,  CAV1  and ITGA8  were significantly 
downregulated (P<0.05) in NSCLC (Figure 4A). Survival 
curves were generated to assess the diagnostic efficiency 
of the 10 hub genes via Kaplan-Meier plotter. As shown in 
Figure 4B, two upregulated genes (COL1A1 and ADAM12) 
and five downregulated genes (VWF, OGN, EDN1, CAV1, 
and ITGA8) were significantly associated with survival 
prognosis in NSCLC (P<0.01).

Reanalysis of hub genes via KEGG enrichment analysis

KEGG enrichment analysis was reanalyzed to explore 
the possible pathways of the 7 hub genes via the DAVID 
database. Four genes (VWF, CAV1, ITGA8, COL1A1) 
were markedly enriched in the focal adhesion pathway 
(P=1.04E-04) and were upstream regulators of FAK (PTK2) 
(Table 5).

Expression and survival analysis of PTK2 in NSCLC

The expression of PTK2 between NSCLC and adjacent 

lung tissues was analysed using the UALCAN database. 
Compared to adjacent lung tissues, PTK2 was significantly 
overexpressed in both lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) (P<0.01,  
Figure 5A,5B). PTK2 was associated with a poor prognosis 
in LUSC (HR =1.43, P<0.05, Figure 5C) but not in LUAD 
(HR =0.69, P>0.05, Figure 5D).

Discussion

NSCLC is the most common malignant cancer and has the 
fourth lowest survival rate of cancer types worldwide (19). 
Although numerous basic and clinical studies have been 
conducted to reveal the causes and underlying mechanisms 
of NSCLC formation and progression, the gene and 
mechanism of gene expression in NSCLC have not been 
systematically studied.

This study utilized bioinformatics methods to deeply 
analyse the four profile datasets downloaded from the 
GEO database. A total of 225 DEGs were obtained via the 
DAVID online database and classified into three groups 
(MF, BP and CC groups) by GO terms. The cell division 
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Figure 3 The PPI network of DEGs and top 10 hub genes. (A) The PPI network consisted of 174 nodes and 816 edges (48 upregulated 
genes marked in red, 126 downregulated genes marked in green); (B) module 1 was composed of 32 nodes and 511 edges; (C) module 2 was 
composed of 9 nodes and 29 edges; (D) the top 10 hub genes were identified by the cytoHubba plugin. PPI, protein-protein interaction; DEGs, 
differentially expressed genes. 

GO term enriched both upregulated and downregulated 
DEGs, which indicates that the biological process of cell 
division may play vital roles in the development of NSCLC. 
For pathway analysis, upregulated DEGs were particularly 
enriched in oocyte meiosis, cell cycle and the p53 signaling 
pathway, while downregulated DEGs were enriched in 
malaria, vascular smooth muscle contraction and the 
PPAR signaling pathway (P<0.05). As a tumor inhibitor, 
p53 plays a pivotal role in cell biological functions, such as 

cell cycle progression, DNA damage response, apoptosis, 
senescence, and angiogenesis (20). Tac2-N (TC2N) acts as 
a novel oncogene by inhibiting apoptosis and promoting 
the proliferation of lung cancer cells by inhibiting the p53 
signaling pathway (21).

On the basis of CytoHubba plugin of the Cytoscape 
software platform, the top 10 hub genes were identified, 
which were mainly involved in ECM-receptor interaction, 
focal adhesion and the PI3K-Akt signaling pathway. Four 

A

C D

B
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Table 4 KEGG pathway analysis of module 1 and module 2 genes

Module Pathway ID Name Count % P value Genes

Module 1 hsa04114 Oocyte meiosis pathway 6 10.43 1.16E-06 CCNB1, MAD2L1, CCNB2, BUB1, 
AURKA, CDC20

hsa04110 Cell cycle 6 10.43 2.01E-06 CCNB1, MAD2L1, CCNB2, BUB1, 
TTK, CDC20

hsa04115 p53 signaling pathway 4 6.95 2.36E-04 CCNB1, CCNB2, RRM2, GTSE1

hsa04914 Progesterone-mediated 
oocyte maturation pathway

4 6.95 5.10E-04 CCNB1, MAD2L1, CCNB2, BUB1

Module 2 hsa04151 PI3K-Akt signaling pathway 4 25.82 0.00223 VWF, TEK, ANGPT1, SPP1

hsa04066 HIF-1 signaling pathway 3 19.37 0.00279 EDN1, TEK, ANGPT1

Hubba Top 10 hsa04512 ECM-receptor interaction 
pathway

4 40 3.80E-05 VWF, CD36, ITGA8, COL1A1

hsa04510 Focal adhesion pathway 4 40 4.95E-04 VWF, CAV1, ITGA8, COL1A1

hsa04151 PI3K-Akt signaling pathway 3 30 0.03289 VWF, ITGA8, COL1A1

KEGG, Kyoto Encyclopedia of Genes and Genomes.

of the top 10 genes were enriched in the focal adhesion 
pathway and were upstream regulators of FAK (PTK2), 
including VWF, CAV1, ITGA8 and COL1A1. The integrin-
activated adhesion kinase (FAK)-mediated signaling 
pathway is an important pathway in tumor invasion and 
metastasis (22). PTK2, as an adhesion protein kinase, plays 
an important role in the FAK-mediated signaling pathway, 
which includes the transduction of signals released from 
integrins and growth factor receptors (23-25). In the 
present study, PTK2 expression was significantly higher in 
NSCLC than in adjacent lung tissues. Moreover, PTK2 
overexpression has been associated with poor survival in 
LUSC, while no correlation has been found in LUAD. 
As in our study, multiple studies demonstrated that PTK2 
is overexpressed and/or activated in many tumor types, 
including NSCLC (26-30). It was previously reported that 
PTK2 overexpression evaluated by IHC has been correlated 
with worse overall survival (31,32). These above data 
illustrate that PTK2 may play an important role in tumour 
formation and progression. Therefore, small-molecule 
inhibitors targeting the PTK2 kinase domain have been 

undergoing preclinical and clinical investigation and induce 
cancer regression in solid cancers, including NSCLC  
(33-37). As a robust inhibition of PTK2, PF-562, 271 
provides the potential to enhance cancer therapy with 
its novel target and dual antitumor and antiangiogenesis 
mechanisms of action and represents an unprecedented 
approach  to  NSCLC t rea tment  th rough  PTK2  
inhibition (38).

Conclusions

In summary, 225 DEGs were identified in the current study. 
Among them, four hub genes were found, which were 
enriched in the focal adhesion pathway and were upstream 
regulators of PTK2. PTK2 may be a key oncogene leading 
to tumour formation and progression and associated with 
poor survival in NSCLC. However, clinical experiments 
are urgently needed to evaluate the molecular role of PTK2 
in NSCLC. As a biomarker of NSCLC, the molecular 
mechanisms and clinical application of PTK2 require 
exploration in future studies.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/integrins
https://www.sciencedirect.com/topics/medicine-and-dentistry/growth-factor-receptor
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Figure 4 The expression and survival prognosis of the top 10 hub genes in NSCLC. (A) Compared to normal specimens, four genes were 
upregulated and six genes were downregulated in NSCLC specimens (P<0.05); (B) Kaplan-Meier plotter was used to analyse the survival 
rate of the top 10 hub genes. Seven of 10 hub genes were correlated with survival prognosis in NSCLC (P<0.01). *, P<0.05. LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-small cell lung cancer.
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Table 5 KEGG pathway analysis of hub genes in NSCLC

Pathway ID Name Count % P value Genes

hsa04510 Focal adhesion 4 57.14 1.04E-04 VWF, CAV1, ITGA8, COL1A1

hsa04512 ECM-receptor interaction 3 42.86 9.33E-04 VWF, ITGA8, COL1A1

hsa04151 PI3K-Akt signaling pathway 3 42.86 0.01407 VWF, ITGA8, COL1A1

KEGG, Kyoto Encyclopedia of Genes and Genomes; NSCLC, non-small cell lung cancer.

Figure 5 Expression and survival prognosis of PTK2 in NSCLC. (A,B) PTK2 was significantly upregulated in both LUAD and LUSC (P<0.01); 
(C) PTK2 was associated with a worse survival rate in LUSC (P<0.05); (D) PTK2 was not correlated with survival prognosis in LUAD (P>0.05). 
**, P<0.01. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-small cell lung cancer.
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