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Introduction

Glioma is the most common primary tumor in central 
nervous system, accounting for 80% of all intracranial 
tumors (1). The World Health Organization (WHO) divides 
diffuse gliomas into WHO grade II–III astrocytoma and 
oligodendroglioma, grade IV glioblastoma, and childhood-
related diffuse glioma (2). Different grades of gliomas differ 
greatly in tumor pathology, malignant potential, treatment 
response and survival (3). Glioblastoma multiforme (GBM) 
(WHO IV), accounts for 50% of all gliomas, is the most 
aggressive type of primary brain tumor (4). The median 

overall survival of GBM patients is only 12 to 14 months, 
3% to 5% of patients can survive for more than 3 years, is 
called the long-term survivor (5-7). However, the clinical 
and molecular factors related to long-term survival are still 
scarce. Exploring changes in the genome and transcriptome 
and identifying aberrantly functioning molecular pathways 
of GBM may deepen our understanding of GBM. Currently, 
only isocitrate dehydrogenases (IDH) mutation status, O6-
methylguanine-DNA methyltransferase (MGMT) gene 
promoter methylation and joint deletion of chromosomes 
1p and 19q are widely recognized (3,8,9). The differences in 
expression levels or genomic changes of tumor driver gene 
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also reflect survival time of GBM patients.
The  f e r ropto t i c  pa thway  i s  r egu l a ted  by  the 

complex mechanisms of epigenetic, transcription, post-
transcriptional, and post-translation, including DNA 
methylation (10,11). DNA methylation can be found in 
about 80–90% of CpG islands in human genome (12) and 
participates in the regulation of various cell activities such 
as proliferation, apoptosis, invasion and differentiation. 
DNA methylation abnormalities exist in almost all forms of 
human cancer (13). Abnormal methylation in gene promoter 
might lead to the silencing of tumor suppressor genes or 
the activation of oncogenes, affecting signal transduction 
pathways and participating in cancer development (14). 
Heterogeneity of DNA methylation in tumors has been 
shown to be a feature of GBM (15). Researchers have found 
that methylated genes can be used as potential biomarkers 
to assess the malignancy of GBM (16,17).

Ferroptosis, proposed by Stockwell in 2012, is a 
newly programmed cell death modalities, achieved by 
phospholipid peroxidation, which relies on transition metal 
iron, reactive oxygen species and phospholipids containing 
polyunsaturated fatty acid chains (18,19). The proliferation 
ability of tumor cells is significantly stronger than that of 
non-malignant cells, which greatly increases their iron 
requirements. This strong iron dependence makes tumor 
cells more susceptible to ferroptosis (20). Although there 
have been researches on ferroptosis in tumor, there is no 
systematic report on the expression, prognostic value, 
and genomic and epigenetic regulatory characteristics of 
ferroptosis related genes in GBM at the same time. In this 
study, we performed survival analysis of ferroptosis related 
genes in the Cancer Genome Atlas (TCGA) and Chinese 
Glioma Cooperative Group (CGCG) cohort, and built a 
risk-gene signature act as an independent prognostic factor. 
Moreover, we verified the expression of these 16 genes 
in GBM tumor and paired normal tissues with real-time 
polymerase chain reaction (RT-qPCR), and explored the 
reasons for regulating these genes at the level of genomic 
and epigenetics. We present the following article in 
accordance with the STREGA reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-21-
2470/rc).

Methods

Specimen collection

The study protocol was approved by the Beijing Chaoyang 

Hospital, Capital Medical University, Beijing, China. All 30 
pairs of GBM tumor tissues and matched non-tumor tissues 
used in this study were recruited in the Beijing Chaoyang 
Hospital. All cases were diagnosed as GBM built on 
histopathology, confirmed by more than two pathologists 
according to the WHO guidelines. Surgically resected tissue 
samples were quickly placed in liquid nitrogen and then 
stored in a −80 ℃ freezer. One sample from each of the four 
regions was taken from each surgically resected specimen 
and performed frozen sectioning and hematoxylin and eosin 
(H&E) staining to assess the percentage of tumor cells 
and to exclude specimens with less than 50% tumor cells. 
Multiple tumor tissues from the same patient were pooled 
for RNA extraction to avoid intratumor heterogeneity.

Data collection

mRNA-seq data,  DNA methylation data by 450K 
BeadChip, copy number variation (CNV) annotation by 
GISTIC and corresponding clinical data of TCGA cohort 
were collection from the UCSC Xena (https://xena.ucsc.
edu/). mRNA-seq data and corresponding clinical data 
of CGCG cohort were collection from CGCG database 
(http://www.cgga.org.cn/). A total of 335 ferroptosis related 
genes were collection from FerrDb database (http://
www.zhounan.org/ferrdb; table available at https://cdn.
amegroups.cn/static/public/tcr-21-2470-1.pdf).

Identification of survival related signatures and 
construction of risk gene signature

We first used univariate Cox regression analysis to identify 
ferroptosis related genes related to the survival of GBM 
patients. Then, the most suitable ferroptosis related genes 
was selected through least absolute shrinkage and selection 
operator (LASSO) analysis to avoid overfitting, and these 
genes were included in the multivariate Cox analysis to 
construct a prognostic model. By linearly combining the 
expression level of the selected ferroptosis related genes 
and the regression coefficient of the multivariate Cox 
regression analysis, the risk score model is established as 
risk score = Ʃ(bi * Expi), where bi represents the weight of 
the respective signature and Expi represents the expression 
value.

Tumor immune infiltration analysis

We used ESTIMATE to calculate the stroma and immune 

https://xena.ucsc.edu/
https://xena.ucsc.edu/
http://www.zhounan.org/ferrdb
http://www.zhounan.org/ferrdb
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score in each GBM sample to predict the level of infiltrating 
stroma and immune cells. Moreover, we performed 
CIBERSORT to assess the degree of tumor immune 
infiltration of 22 immune cells and combine these immune 
cells into several major cell types, including CD4+ T cells, 
CD8+ T cells, B cells, macrophages and neutrophils. The 
correlation between immune infiltration score and risk 
score was calculated by Pearson’s correlation coefficient.

Differential expression analysis and enrichment analysis

We used Limma package (3.48.3) to estimate differential 
expression genes between higher and lower risk group 
in GBM. Genes with false discovery rate (FDR) <0.05 
and absolute value of fold change >1 were identified as 
differential expression gene. Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes analysis was used 
to annotation the biological function enrichment of the 
differential expression genes and FDR <0.05 was considered 
as statistically significant.

RNA preparation and RT-qPCR analysis

Total RNA was isolated from tissue samples and cell lines 
using TRIzol (Invitrogen). First-strand cDNA synthesis 
of total RNA was performed using the PrimeScriptTM 
RT reagent Kit with gDNA Eraser (TaKaRa). qRT-PCR 
was accomplished on the ABI Prism 7900 system (Applied 
Biosystems) using SYBR Green (TaKaRa) method with the 
gene specific primers showed in Table S1. Measurement 
of individual mRNA expression was determined relative 
to the levels of GAPDH transcript. Three independent 
transfection experiments were performed, and each had 
three replicates.

Statistical analysis

Paired student t-test was used to compare statistically 
significant differences between the gene expression of tumor 
and normal tissues. All assays were performed using R (4.0.2) 
and SPSS 22.0 software, P<0.05 being the statistically 
significant difference criterion.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Prognostic related ferroptosis related genes

For ferroptosis related genes, we first identified 187 genes 
that are differentially expressed in GBM tumors and 
normal tissues (84 up-regulated and 103 down-regulated) in 
TCGA cohorts, as shown in Figure 1A. These differentially 
expressed genes can distinguish tumors from matched 
normal tissues (Figure 1B,1C). 

In order to explore the correlation between ferroptosis 
related genes and the survival of GBM patients, we 
found that 39 of the 335 ferroptosis related genes were 
significantly related to the overall survival of GBM through 
univariate Cox-regression analysis. Among them, 36 
genes had a hazard ratio (HR) >1, which was considered 
risk genes, and the remaining 3 genes with HR <1, were 
considered protective genes. Similar to the total ferroptosis 
related genes, these survival-related genes showed 
different expression patterns in tumors and normal tissues  
(Figure 1D). Next, we used the LASSO Cox regression 
algorithm to further analyze the 39 survival-related genes 
in the TCGA data set to avoid data overfitting. Fifteen 
ferroptosis related genes were selected as prognostic 
factors for GBM patients to construct risk characteristics, 
and the risk score was obtained by combining the 
risk coefficients and expression values of these genes  
(Figure 1E). We used the receiver operating characteristic 
(ROC) curve to examine whether the risk score could 
provide early predictions for the prognosis of GBM patients. 
In the TCGA cohort, the 1-, 3-, and 5-year survival areas 
under the curve (AUCs) of risk score were 0.763, 0.856, and 
0.907, respectively, indicating a well effective prediction 
accuracy of the risk score for the prognosis of GBM  
(Figure 1F). The median of the risk score was used as a 
cut-off value to divide patients into high-risk and low-risk 
groups. Regardless of the TCGA cohort or the CGCG 
cohort, the overall survival of patients in the low-risk 
group was significantly longer than in the high-risk group  
(Figure 1G). Patients with recurrent/secondary, advanced 
age, IDH wild type and 1p/19q noncodel had higher 
risk scores. The status of the MGMT promoter did 
not affect the patient’s risk score. In univariate Cox 
regression analysis, we found that risk score, radiotherapy, 
chemotherapy, histology, IDH, and 1p/19q status were 
significantly related to the survival of GBM patients, 
and multivariate Cox regression analysis indicated that 
risk score was independently related to patients’ survival  

https://cdn.amegroups.cn/static/public/TCR-21-2470-Supplementary.pdf
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Figure 1 Survival related ferroptosis related genes in GBM. (A) Volcano plot of the ferroptosis related genes differentially expressed 
between GBM tumor and normal tissues. The significance was by Fisher's exact test and adjusted by Benjamini-Hochberg correction. (B) 
Heatmap of the ferroptosis related genes differentially expressed between GBM tumor and normal tissues. (C) PCA plot of the ferroptosis 
related genes differentially expressed between GBM tumor and normal tissues. (D) Heatmap of the survival related ferroptosis related 
genes. (E) Forest plot of 15 survival-related ferroptosis related genes. (F) ROC curves of risk scores on 1, 3, 5-year survival in TCGA data. 
(G) Kaplan-Meier survival curves of GBM patients grouped by risk score. (H) Risk score of histology, age, IDH status, 1p/19q status and 
MGMTp status in CGCG data. *, P<0.05; **, P<0.01; ***, P<0.001. AUC, area under the curve; CGCG, Chinese Glioma Cooperative 
Group; GBM, glioblastoma multiforme; IDH, isocitrate dehydrogenases; MGMTp, O-6-methylguanine-DNA methyltransferase promoter; 
PCA, principal component analysis; ROC, receiver operating characteristic; TCGA, the Cancer Genome Atlas.

Down-regulation Up-regulation
Not-significant

−l
og

10
 P

 v
al

ue

30

20

10

0

10

0

–10

SLC2A14 
POR

ANGPTL7 
WIPI2
STAT3

SMPD1 
VDR

IFNG
TFR2

PRNP
MAP1LC3A 

CHAC1
ALOX15B 

RGS4
GLUD1

2
0
–2

2
0
–2

log2 fold change

Normal

Normal

Normal

Tumor

Tumor

Tumor

Exp

Exp

P
C

2 
(1

1.
1%

 v
ar

ia
nc

e)

PC1 (13.4% variance)
–2 –1 0 1 2

Hazard ratio

Hazard ratio

TCGA cohort

P<0.001

AUC

P<0.001

CGCG cohortRisk score

R
is

k 
sc

or
e

High High
Low Low

Risk score

Hazard ratioP value

0 2 4 6

–10 0 10 20

1.00

0.75

0.50

0.25

0.00

40

30

20

10

0

30

20

10

0

30

20

10

0

30

20

10

0

30

20

10

0

1.00

0.75

0.50

0.25

0.00

1 year: 0.763
3 years: 0.856
5 years: 0.907

0.00 0.25 0.50 0.75 1.00

Tr
ue

 p
os

iti
ve

 r
at

e

S
ur

vi
va

l p
ro

ba
bi

lit
y

False positive rate

Primary Recurrent Secondary Wildtype Non-codel Non MethylatedCodelMutant≤46 years >46 years

0 500 01000 1500 2000 2500 1000 2000 3000 4000
Time, days Time, days

ns
*** ***

***
**

** *

A

F

B

G

C

H

D E



Translational Cancer Research, Vol 11, No 4 April 2022 607

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2022;11(4):603-614 | https://dx.doi.org/10.21037/tcr-21-2470

(Table S2). Furthermore, histology, age, IDH status and 
1p/19q status were all significant different between high- and 
low-risk patients. Risk scores were higher in patients whom 
were recurrent, older, IDH wild-type or 1p/19q non-codel 
(Figure 1H). Therefore, we can conclude that the risk score is 
an independent prognostic indicator of GBM patients.

Differential expression analysis between higher- and 
lower-risk groups

Herein, we performed gene set variation analysis 
(GSVA) analysis both in TCGA and CGCG dataset by 
the differential expressed genes to research enriched 
functional signaling pathway between high- and low-risk 
group. Furthermore, we performed GSEA analysis both 
in TCGA and CGCG dataset by the differential expressed 
genes to research enriched functional signaling pathway 
between high- and low-risk group. The results showed 
that genes highly expressed in high-risk group were mainly 
enriched in the biological processes that regulated adaptive 
immune response, chemokine signaling pathway and B cell 
activation. Corresponding pathways could also be observed 
in enrichment pathway analysis on CGCG data set  
(Figure 2A-2C).

The correlation of tumor immune infiltration and 
ferroptosis related genes

In order to further explore the correlation between 
risk score and immune response, we first analyzed the 
differential expression of 1,040 immune-related genes 
(table available at https://cdn.amegroups.cn/static/public/
tcr-21-2470-1.pdf) collected from the InnateDB database 
between the higher- and lower-risk groups, and found 308 
of the 386 differentially expressed genes were significantly 
highly expressed in the higher-risk group (Figure 3A). As 
shown in the Figure 3B, the cytokine and chemokine C-C 
motif chemokine ligand 2 (CCL2), C-C motif chemokine 
receptor 4 (CCR4), C-X-C motif chemokine ligand 14 
(CXCL14), C-X-C motif chemokine ligand 2 (CXCL2), 
C-X-C motif chemokine receptor 1 (CXCR1), C-X-C motif 
chemokine receptor 3 (CXCR3), interleukin (IL)-10, IL-6 
and IL-7R and inflammatory response gene IKBKB, NFKB1, 
NFKB2, S100A8, S100A9, SPP1, TNFRSF1A, TNFRSF1B 
and TNFRSF9 were increased in the higher-risk group  
(Figure 3B). Next, we calculated the stromal scores and 
immune scores of immune cell subgroups through the 
Estimation of Stromal and Immune cells in MAlignant 

Tumour tissues using Expression data (ESTIMATE) and 
CIBERSORT algorithms. By ESTIMATE analysis, we 
found that high-risk group showed higher immune score 
compared with low-risk group in TCGA cohort, and the 
immune score was significantly correlated with the risk 
score. There was no significant difference of the stromal 
scores between the two groups, and there was no correlation 
with the risk score (Figure 3C,3D). We also calculated the 
infiltration ratio of 22 immune cells through CIBERSORT, 
and found that the scores of Treg, natural killer (NK) 
cells resting, mast cells activated and neutrophils were 
significantly up-regulation in high-risk group, while M2 
Macrophage and mast cells resting were down-regulated 
(Figure 3E). In addition, there was a positive correlation 
between the B cells infiltration and the risk score, which was 
consistent with the results of the GSEA analysis (Figure 3F).

Methylation analysis of ferroptosis related genes

In order to clarify the regulation of the expression of 
these 15 risk genes at the genomic and epigenetic level, 
we performed CNV and methylation analysis on the 
TCGA data. Although mutation was the most common 
event in the tumor genome, the correlation between 
mutation and expression change was weak, and we did not 
analyze the mutation here. We have not observed which 
of these 15 genes had frequent copy number amplification 
or deletion (Figure 4A and Figure S1). However, there 
were 11 genes with methylation sites that significantly 
negatively correlated with gene expression. For example, 
in WIPI2 gene, the methylation values of four sites were 
negatively correlated with the expression, and the maximum 
correlation coefficient reached −0.45 (Figure 4B). These 
results indicate that most of the expression alterations of 
these might be explained by methylation. 

Verify the expression of ferroptosis related genes in paired 
GBM tumor and normal tissues

Since there was little expression data of tumor paired 
normal tissues regardless of TCGA or CGCG data, we 
collected 30 pairs of GBM and adjacent normal tissue 
samples to investigate the expression of risk score related 
15 genes by RT-qPCR. ALOX15B, POR, STAT3 and VDR 
expresses higher in tumor tissues compared with normal 
tissues, while CHAC1, MAP1LC3A and RGS4 expressed 
lower (Figure 5A). In order to further analyze the expression 
of these four high expressed genes between tumor 

https://cdn.amegroups.cn/static/public/TCR-21-2470-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-21-2470-1.pdf
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Figure 2 Enrichment analysis of differentially expressed genes between high- and low-risk groups. (A) GO (upper panel) and KEGG (lower 
panel) enrichment analysis of differentially expressed genes between high- and low-risk groups in TCGA cohort. (B) GO enrichment 
analysis of differentially expressed genes between high- and low-risk groups in TCGA cohort. (C) GO (left panel) and KEGG (right 
panel) enrichment analysis of differentially expressed genes between high- and low-risk groups in CGCG cohort. CGCG, Chinese Glioma 
Cooperative Group; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, the Cancer Genome Atlas.

and adjacent normal tissues in a variety of tumors, the 
differential expression results from the TIMER database to 
illustrate that these four genes were significantly increased 
in several TCGA tumors tissues compared with normal 
tissues. ALOX15B and VDR was up-regulated in ten types 
of tumors tissues, POR was up-regulated in nine and STAT3 
was up-regulated in six, and all these four genes expressed 
significantly higher in GBM tumors tissues compared with 
normal tissues (Figure 5B).

Discussion

In this study, by analyzing survival-related ferroptosis 
related genes in GBM, a risk score model was constructed 
to predict the prognosis of GBM patients, and good 
prediction results were achieved. We downloaded the 
mRNA expression profiles of 613 and 364 patients from 
the TCGA database and CGCG database, respectively, 
and obtained 15 survival-related ferroptosis related genes 
through univariate and multivariate Cox regression analysis. 
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Figure 3 The correlation of tumor immune infiltration and ferroptosis related genes. (A) Heatmap of 1,041 immune-related genes in 
TCGA cohort. (B) Gene expression in high- and low-risk groups. (C) Correlation of risk score and immune or stromal score. (D) Immune 
or stromal score in high- and low-risk groups. (E) CIBERSORT analysis of tumor-infiltrating immune cells. (F) Correlation of risk score 
and CIBERSORT of six types of tumor-infiltrating immune cells. *, P<0.05; **, P<0.01; ***, P<0.001. CCL2, C-C motif chemokine ligand 
2; CCR4, C-C motif chemokine receptor 4; CXCL14, C-X-C motif chemokine ligand 14; CXCL2, C-X-C motif chemokine ligand 2; 
CXCR1, C-X-C motif chemokine receptor 1; CXCR3, C-X-C motif chemokine receptor 3; IL, interleukin; NK, natural killer; ns, not 
significant. 
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We verified the expression of these 15 genes in 30 pairs 
of tumors and adjacent normal tissues, and found that 
ALOX15B, POR, STAT3 and VDR were mainly enriched 
in tumor tissues. The survival time of patients in the high-
risk group was significantly lower than that of the low-risk 
group. Multivariate Cox regression analysis showed that this 
risk score was an independent risk factor for the prognosis 
of GBM. The results of pathway enrichment analysis of 
genes that differ between high and low risks suggested 
that there were significant differences in the activity of 
immune-related pathways between the two groups. Next, 
we estimated the immune score through the ESTIMATE 

algorithm and the infiltration ratio of 22 immune cells 
through CIBERSORT algorithm, and further explored the 
differences in immune infiltrating cells between the two 
groups. In order to identify the factors that regulated the 
expression of risk genes in GBM, we analyzed the effects 
of CNV and methylation on gene expression in the TCGA 
data, and found that 11 of the genes were regulated by 
methylation sites.

In our study, 14 of the 15 survival-related genes used 
to construct the risk model are risk factors. These genes 
are also involved in the carcinogenesis and development 
of various tumors too and affect the prognosis of tumor 

Figure 4 The correlation of methylation and ferroptosis related genes. (A) Heatmap of CNV in 15 risk score ferroptosis related genes. (B) 
Correlation of methylation level and gene expression. All P<0.05. CNV, copy number variation. 
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Figure 5 Verified the expression of risk related genes. (A) RT-qPCR verified the expression of target genes in tumors and adjacent normal 
tissues. (B) The expression in tumor and adjacent normal tissues for ALOX15B, POR, STAT3, and VDR across all TCGA tumors. *, P<0.05; 
**, P<0.01; ***, P<0.001. RT-qPCR, real-time polymerase chain reaction; TCGA, the Cancer Genome Atlas; ns, not significant.
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patients. For example, STAT3  is extensively over-
activated in cancer and non-cancer cells in the tumor 
microenvironment and plays a central role in regulating 
the anti-tumor immune response. STAT3 is involved in 
many biological processes, including cell proliferation, 
survival, differentiation, and angiogenesis, and is usually 
associated with poor clinical prognosis. Excessive activation 
of STAT3 in tumor-infiltrating lymphocytes leads to 
immunosuppression by suppressing innate and adaptive 
immune responses (21-24).

Studies have reported that innate immune cells such as 
NK cells were enriched in groups with high ferroptosis-
related gene expression in GBM (25),  which was 
consistent with our study. Furthermore, the researchers 
have demonstrated that in mouse model of GBM, 
neutrophil-mediated tumor cell necrosis was achieved 
through ferroptosis (26). Our results also showed a higher 
proportion of neutrophil infiltration in the patient with a 
higher ferroptosis risk score.

Gene methylation silencing is a common epigenetic 
event in tumors. Overall hypomethylation is commonly 
observed in malignant cells (27). Studies have shown that 
methylation of the MGMT promoter region in GBM 
has important clinical significance, which indicates the 
increased benefit of temozolomide chemotherapy (28). 
In this study, we first explored the regulatory factors of 
ferroptosis related genes expression in GBM at the genomic 
and epigenetic levels, and found that these genes are mainly 
affected by methylation rather than CNV. Abnormal 
methylation of these genes can also be observed in other 
tumors. In gastric cancer, Helicobacter pylori infection 
induced methylation silencing of the tumor suppressor gene 
MAP1LC3A through impairing autophagy, and facilitated 
gastric carcinogenesis (29). In undifferentiated embryonic 
carcinoma P19C6 cells, demethylation of the nucleotide 
region between −599 and −238 at the transcription initiation 
site can be observed, and the expression of PRNP was 
significantly increased (30). SLC2A14 had a difference in 
methylation status between all patients and controls (31). 
Although there is abnormal methylation of these genes in 
a variety of tumors, the regulatory relationship between 
specific methylation sites and expression is often tumor type 
specific. For example, the methylation level of cg16739198 
site and the mRNA value of WIPI2 are significantly 
negatively correlated in GBM (r=−0.42), but they are not 
correlated in colon adenocarcinoma (r=−0.066), esophageal 
carcinoma (r=−0.095), lung adenocarcinoma (r=−0.010), or 
even brain lower grade glioma (r=−0.064).

It is undeniable that our research still has some 
flaws. It would be better if we can use experiments, such 
as pyrosequencing, to verify the regulation between 
methylation and risk genes in an independent tumor and 
normal sample paired verification cohort.

Conclusions

We analyzed the correlation between the expression of 
ferroptosis related genes in GBM and patient survival, 
obtained 15 survival-related events and constructed a 
prognostic risk prediction model. We found that the 
expression of these risk genes in GBM is mainly regulated 
by methylation rather than CNV.
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Supplementary

Table S1 Primer used in RT-qPCR

Gene Forward sequence Reverse sequence

ANGPTL7 TGCCATCTACGACTGCTCTTCC GCCTGAAGTCTCCATGTCACAG

SLC2A14 CAATCGGCTCTTTCCAGTTTGGC CAAGGACCAGAGATTCGTGAGC

IFNG GAGTGTGGAGACCATCAAGGAAG TGCTTTGCGTTGGACATTCAAGTC

SMPD1 GCTGGCTCTATGAAGCGATGGC AGAGCCAGAAGTTCTCACGGGA

POR ACTCTGCTCTCGTCAACCAGCT TGGGTGCTTCTTGTTGGACTCC

VDR CGCATCATTGCCATACTGCTGG CCACCATCATTCACACGAACTGG

WIPI2 CGACAACTGCTACTTGGCGTAC AGTGCCGCTAAAGGACTGTCGT

TFR2 GCACCTCAAAGCCGTAGTGTAC CCACCTGTTCATAGAGAGTCTGC

GLUD1 CTCCAGACATGAGCACAGGTGA CCAGTAGCAGAGATGCGTCCAT

STAT3 CTTTGAGACCGAGGTGTATCACC GGTCAGCATGTTGTACCACAGG

ALOX15B CAATGCCGAGTTCTCCTTCCATG TGATGTGCAGGGTGTATCGGGT

MAP1LC3A GCTACAAGGGTGAGAAGCAGCT CTGGTTCACCAGCAGGAAGAAG

CHAC1 GTGGTGACGCTCCTTGAAGATC GAAGGTGACCTCCTTGGTATCG

PRNP TTCGGCAGTGACTATGAGGACC TTGTGGTGACCGTGTGCTGCTT

RGS4 ACATCGGCTAGGTTTCCTGCTG CAGGTTTTCCAGTGATTCAGCCC

GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA

RT-qPCR, real-time polymerase chain reaction.
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Table S2 The univariate and multivariate Cox analysis

Clinical features
Univariate Cox analysis Multivariate Cox analysis

HR 95% CI P value HR 95% CI P value

Gender 1.1 0.87–1.39 0.412

Age, years

≤46 1 (reference)

>46 1.15 0.92–1.45 0.214

Radio

Treated 1 (reference) 1 (reference)

Un-treated 1.44 1.10–1.89 0.008 1.16 0.86–1.55 0.327

Chemo

TMZ 1 (reference) 1 (reference)

Un-treated 1.98 1.51–2.59 <0.001 2.11 1.58–2.84 <0.001

Histology

Primary 1 (reference) 1 (reference)

Recurrent 1.55 1.22–1.97 <0.001 1.85 1.44–2.38 <0.001

Secondary 2.16 1.45–3.23 <0.001 3.2 2.02–5.07 <0.001

IDH

Mutant 1 (reference) 1 (reference)

Wildtype 1.34 1.01–1.75 0.038 1.53 1.12–2.10 <0.001

1p/19q

Codel 1 (reference) 1 (reference)

Non-codel 2.014 1.16–3.51 0.014 1.82 1.00–3.30 0.049

MGMTp

Methylated 1 (reference)

Un-methylated 1.09 0.87–1.37 0.442

Risk score

Low 1 (reference) 1 (reference)

High 5.65 4.22–8.48 <0.001 1.71 1.35–2.16 <0.001

CI, confidence interval; HR, hazard ratio; IDH, isocitrate dehydrogenases; MGMTp, O-6-methylguanine-DNA methyltransferase promoter; 
TMZ, temozolomide.
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Figure S1 The CNV status of ferroptosis related genes. Heatmap of CNV in 334 ferroptosis related genes. CNV, copy number variation.


