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Background: The global morbidity and mortality of prostate cancer (PCa) increase sharply every year. 
Early diagnosis is essential; it determines survival and outcome. So, this study extracted the texture features 
of apparent diffusion coefficient images in multiparametric magnetic resonance imaging (mp-MRI) and built 
machine learning models based on radiomics texture analysis (TA) to determine its ability to distinguish 
benign from PCa lesions using the Prostate Imaging Reporting and Data System (PI-RADS) 4/5 score.
Methods: We enrolled 103 patients who underwent mp-MRI examinations and transrectal ultrasound 
and magnetic resonance fusion imaging (TRUS-MRI) targeted prostate biopsy and obtained pathological 
confirmation at our hospital from August 2017 to January 2020. We used ImageJ software to obtain 
texture feature parameters based on apparent diffusion coefficient (ADC) images, then standardized 
texture feature parameters, and used LASSO regression to reduce multiple feature parameters; 70% of 
the cases were randomly selected from the PCa group and the benign prostate hyperplasia group as the 
training set. The remaining 30% was used as the test set. The machine learning classification model for 
identifying benign and malignant prostate lesions was constructed using the feature parameters after 
dimensionality reduction. The clinical indicators were statistically analyzed, and we constructed a machine 
learning classification model based on clinical indicators of benign and malignant prostate lesions. Finally, 
we compared the model’s performance based on radiomics texture features and clinical indicators to 
identify benign and malignant prostate lesions in PI-RADS 4/5 score.
Results: The area under the curve (AUC) of the R-logistic model test set was 0.838, higher than the R-SVM 
and R-AdaBoost classification models. At this time, the corresponding R-logistic classification model formula 
is as follow: Y_radiomics=9.396-7.464*median ADC-0.584*kurtosis+0.627*skewness+0.576*MRI lesions 
volume; analysis of clinical indicators shows that the corresponding C-logistic classification model formula is 
as follows: Y_clinical =-2.608+0.324*PSA-3.045*Fib+4.147*LDL-C, the AUC value of the model training set 
was 0.860, smaller than the training set R-logistic classification model AUC value of 0.936.
Conclusions: Radiomics combined with the machine learning classifier model has strong classification 
performance in identifying benign and PCa in PI-RADS 4/5 score. Various treatments and outcomes for 
PCa patients can be applied clinically.
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Introduction

Prostate cancer (PCa) is a common malignancy among 
adult men in the United States. According to the national 
malignant tumor survey results, the incidence of PCa is 
63.4%, and the fatality rate has reached 26.6% (1). PCa 
ranks third behind lung cancer and colorectal cancer for 
causes of death among American men (2,3). Recently, the 
mortality rate among new cases with PCa in China has 
increased sharply. The primary pathogenic factors were 
family member genetics, age, and living habits. Currently, 
it is the fastest-growing malignancy in men, primarily 
occurring in middle-aged and older men (4).

The diagnosis methods for PCa include digital rectal 
examination (DRE), transrectal ultrasound (TRUS), 
prostate-specific antigen (PSA), magnetic resonance 
imaging (MRI), and prostate biopsy. TRUS can obtain 
images from selected biopsy sites but cannot detect all areas 
affected by PCa. Although the pathologic specificity of PSA 
screening for PCa is relatively high, factors such as benign 
prostatic hyperplasia, urinary retention, prostate massage, 
and frequent sexual activity also increase PSA levels, and 
patients with relatively high PSA levels still require a 
prostate biopsy to establish the diagnosis (5). The benign 
lesions or PCa determines the treatment and outcome; 
therefore, it is essential to identify simple, effective, 
accurate, and specific methods.

With the development of medical imaging technology, 
the role of MRI in clinical practice has extended to various 
stages, including tumor detection, disease monitoring 
during active surveillance, and sequential imaging for 
follow-up. It is one of the essential methods for clinical 
diagnosis of PCa at present (6,7). The Prostate Imaging 
Reporting and Data System (PI-RADS V2) is a standardized 
prostate mp-MRI solution that combines anatomical T2-
weighted images (T2WIs) with one or more functional 
sequences, diffusion-weighted imaging (DWI), and dynamic 
contrast enhancement sequences.

Radiomics can capture the properties of tissues and 
lesions, including the shape and heterogeneity of the tumor. 
Much mining TF data can be extracted from conventional 
medical examination images with high throughput through 
a computer-aided diagnosis system. Studies showed that 

radiomics TF is associated with the heterogeneity index 
at the cellular level (8). The application of this method in 
PCa enables the automatic localization of the disease and 
provides a noninvasive solution to evaluate the biological 
characteristics of the tumor. Some investigators have 
used it to predict PCa (9). Merisaari et al. evaluated the 
characteristic texture parameters of prostate DWI-derived 
texture features, including Sobel, Kirch, Gradient, the 
repeatability of Zernike Moments, and other machine 
learning methods in PCa characterization showed that the 
surface-volume ratio and angle detector of DWI could 
classify the unknown data (10).

Machine learning (ML) regressions have been widely 
used (11-13). Their advantage lies in their ability to analyze 
large amounts of data (14). ML methods automatically 
collect selective clinical disease information from large-scale 
data, and this feature has proven to carry significant value 
for diagnosis, classification, outcome, and other aspects. 
The construction of a disease prediction or classification 
model based on ML regression streamlines auxiliary 
diagnosis and early risk warning, helps clinicians make 
efficient diagnoses, reduces time and costs, and reduces the 
risks associated with a prostate biopsy. Bernatz et al. used a 
machine-learning algorithm to analyze the performance of 
texture features and quantitative computational analysis of 
apparent diffusion coefficient (ADC) images; the authors 
showed that texture features improved the diagnostic 
accuracy of clinical assessment categories while identifying 
combinations of features and models that reduce overall 
accuracy (15).

Most relevant studies focused on diagnosis and outcome 
prediction of PCa based on many texture feature parameters 
derived from the PyRadiomics package and ML (16-20). 
However, at present, there has been less study of prostate 
imaging texture analysis (TA), PI-RADS V2 score, and 
clinical indicators combined with ML regression to build a 
prediction model for differentiating benign and malignant 
lesions of PCa.

Therefore, this study was based on the PI-RADS V2 
version (21). Patients with PI-RADS V2 score 4/5 were 
selected, and three ML methods were applied. The models 
were analyzed on receiver operating characteristic curve 
(ROC), and the performance of each prediction model was 
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judged by comparing the area under the curve (AUC). We 
did this to provide a reference model for discriminating 
benign from malignant prostatic lesions in patients with PI-
RADS 4/5 score and to provide a new research approach to 
reduce overtreatment. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-21-
2271/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the First Affiliated 
Hospital of Suzhou University (No. 2021162) and informed 
consent was taken from all the patients.

Selection of clinical cases

The subjects were clinical imaging data of 250 patients 
who underwent TRUS/MRI-targeted prostate biopsy at 
our hospital from August 2017 to January 2020. Indicators 
included body mass index (kg/m2), PSA (ng/mL), free 
PSA (ng/mL), white blood cells (109/L), fibrinogen (g/L), 
albumin (g/L), neutrophil-lymphocyte ratio, C-reactive 
protein (mg/L), platelet count (109/L), low-density lipid 
protein cholesterol (mg/dL), high-density lipoprotein 
cholesterol (mg/dL), and triglyceride (mol/L). The three 
chief physicians of the Department of Radiology in our 
hospital follow Table 1, 103 case samples were collected, 
including 20 cases in the benign prostate hyperplasia 
group and 83 cases in the PCa group, with a median age 

of 71 years (70.32±8.81 years). We deleted the case data in 
which the pathological description area did not match the 
results of MRI images or where the whole tumor boundary 
could not be accurately delineated.

Pathological grouping

All patients underwent TRUS/MRI-targeted biopsy to 
obtain pathological results. Tissue specimens were fixed 
with 10% formalin, sections were embedded in paraffin, and 
routine HE staining was performed. The films were read 
by senior pathologists and confirmed by the pathological 
diagnosis as benign prostate hyperplasia (BPH) or PCa. 
Twenty cases were in the BPH group, and 83 cases were in 
the PCa group (22).

Acquisition and processing of MRI images

All patients were examined using 3.0T mp-MRI (Siemens 
Skyra) and 8-channel phased-front abdominal signal 
reception, including the prostate gland and bilateral seminal 
vesicles. The parameters are shown in Table 2.

All MRI images were downloaded from the PACS system 
in DICOM format from conventional T2WI, DWI, and 
DCE-MRI for subsequent processing. The results of the 
PI-RADS v2 score were evaluated by two professionally 
trained radiologists and were scored strictly according to 
the PI-RADS v2 score criteria: 1 – very low likelihood of 
cancer; 2 – low likelihood of cancer; 3 – moderate likelihood 
of cancer; 4 – high likelihood of cancer; and 5 – very high 
likelihood of cancer. The scoring criteria of PI-RADS v2 
are shown in Tables 3-7. The scoring criteria of PI-RADS v2 

Table 1 Case selection standards

Criteria Standard

Inclusion criteria The mp-MRI scan was performed before surgery

The PI-RADS V2 score was 4/5

Prostatic biopsy results confirmed prostatic hyperplasia or PCa

Exclusion criteria Patients with contraindication of MRI examination

The quality of MRI images was not good, or the images were incomplete and could not be analyzed

Patients with prostatitis, acute infectious diseases, hematologic diseases, and other diseases that may cause 
changes in systemic inflammatory indicators

mp-MRI, multiparametric magnetic resonance imaging; PI-RADS, Prostate Imaging Reporting and Data System; PCa, prostate cancer.

https://tcr.amegroups.com/article/view/10.21037/tcr-21-2271/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-21-2271/rc
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Table 2 The parameters of the mp-MRI scan sequence

mp-MRI Sequence TR/TE (ms) Distance factor (ms) NSA FOV (mm) Matrix

T1WI TSE 700/13 5/0.5 1 320×250 0.5×0.5×3

T2WI TSE 4,000/89 3/0 3 640×640 0.5×0.5×3

DWI (b =800, 1,000, 2,000) 2D-EPI 4000/56 3/0 8 160×296 1.3×1.3×3

T1WI-DCE TWIST 3.22/1.18 3/0 1 512×512 1.4×1.4×3

mp-MRI, multiparametric magnetic resonance imaging; TR, repetition time; TE, echo time; NSA, number of signal averaged; FOV, field of 
view; T1WI, T1-weighted image; T2WI, T2-weighted image; DWI, diffusion-weighted imaging; DCE, Dynamic Enhanced; TSE, urbo spin 
echo; 2D-EPI, 2D-echo planar imaging; TWIST, Time-resolved Angiography with Stochastic Trajecories.

Table 3 PI-RADS v2 T2WI score

T2WI Standards grading

Peripheral zone

1 score The signal intensity is uniform and high

2 score Linear, wedge-shaped, or diffuse mild low signal with unclear boundary

3 score The signal intensity is not uniform, or the boundary is not clear, is round, medium-low signal, including other does not 
meet 2, 4, or 5 points standard

4 score Confined to the prostate, well defined, uniformly moderately low, signal lesion or mass, maximum diameter <1.5 cm

5 score The imaging findings were the same as those of 4 points, but the maximum diameter was more than or equal to  
1.5 cm, or there was a straightforward extension or invasion to the prostate

Transition zone

1 score Uniform medium signal strength (normal)

2 score Localized hypointense or inhomogeneous enveloped lesions (prostatic hyperplasia)

3 score Blurred edges, uneven signal strength, including others that do not meet 2, 4, or 5 score criteria

4 score Lenticular or ill-defined, uniform moderately low signal, maximum diameter <1.5 cm

5 score Imaging findings were the same as 4 points, but the maximum diameter was ≥1.5 cm, or there was a definite extension 
or invasion out of the prostate

PI-RADS, Prostate Imaging Reporting and Data System; T2WI, T2-weighted image.

Table 4 PI-RADS v2 DWI score

DWI Grading standards

1 score No abnormalities were found on ADC and high B-value images

2 score ADC diagram fuzzy low signal

3 score Focal light to moderate low signal intensity on ADC images and equal to mild high signal intensity on high B-value images

4 score There was a low focal signal on the ADC image and a high signal on the high B-value image. The maximum diameter of the 
axial plane was <1.5 cm

5 score Imaging findings were the same as 4 points, but the maximum diameter was ≥1.5 cm, or there was a definite extension or 
invasion out of the prostate

PI-RADS, Prostate Imaging Reporting and Data System; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.
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are shown in Tables 3-7.

Radiomics image TA

All ADC images were imported into the ONIS 2.5 Free 
Edition software in DICOM format. The lesion area 
images were selected, exported, and saved as uncompressed 
DICOM files. ImageJ software was used to determine 
each lesion’s full-layer volume and location for eligible 
patients according to T2WI and DWI sequences. Each 
lesion was manually delineated based on ADC images, and 
the characteristic texture parameters of full-layer lesion 
volume were derived. All standard features were extracted: 
first-order statistics, shape-based, gray level co-occurrence 
matrix, gray level run length matrix, gray level size zone 
matrix, gray level dependence matrix, and neighboring gray 
tone difference matrix, leading to texture features. As shown 
in Figure 1.

Selection of TF parameters

Feature selection is an essential part of statistical analysis 
and inference of data. In the actual modeling process, we 
need to identify independent variables with the strong 
explanatory ability to the dependent variables from the data 
to improve model prediction accuracy; that is, the quality 
of feature selection results directly affects the accuracy and 
quality of the model. We also used the LASSO regression 
to select the TF of mp-MRI in radiomics.

The LASSO regression was used to analyze the 
characteristic parameters of dimension-reduction. The one 
thousand one hundred percent cross-validation method was 
used to select the optimal lambda values and then select 
the most representative characteristic values, reducing the 
model complexity using the packages pROC and glmnet. 
Then, 70% of cases were randomly selected from the PCa 
and BPH groups as the training set, and the remaining 30% 
were the testing set. Normality testing, homogeneity testing 

Table 5 PI-RADS v2 DCE score

DCE Grading standards

DCE negative (I) No reinforcement in the early stage

(II) Enhanced diffusion, with no corresponding focal expression on TWI or DWI

(III) Corresponding lesions on DWI showed features of prostatic hyperplasia with focal enhancement. Negative DCE is 
defined as having one of the three

DCE positive Focal, prior to or concurrent with the enhancement of adjacent normal prostate tissue, consistent with the 
corresponding suspicious lesions of TWI and DWI

PI-RADS, Prostate Imaging Reporting and Data System; DCE, Dynamic Enhanced; DWI, diffusion-weighted imaging; TWI, T weighted 
imaging.

Table 6 The PI-RADS V2 score the central zone

T2WI DWI DCE Score

1 Any Any 1

2 Any Any 2

3 ≤4 Any 3

3 5 Any 4

4 Any Any 4

5 Any Any 5

PI-RADS, Prostate Imaging Reporting and Data System; DWI, 
diffusion-weighted imaging; DCE, Dynamic Enhanced.

Table 7 The PI-RADS V2 score of the peripheral zone

DWI T2WI DCE Score

1 Any Any 1

2 Any Any 2

3 Any (−) 3

3 Any (+) 4

4 Any Any 4

5 Any Any 5

PI-RADS, Prostate Imaging Reporting and Data System; DWI, 
diffusion-weighted imaging; T2WI, T2-weighted image; DCE, 
Dynamic Enhanced.
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of variance, and the t-test were performed on the training 
set. The Mann-Whitney test was performed on those 
who did not meet the t-test to obtain the latest training 
set. Finally, logistic regression was used to construct a PI-
RADS 4/5 score prediction model based on radiomics TF 
to identify benign and malignant prostate lesions compared 
to the SVM and AdaBoost regressions.

Statistical analysis

Differences among variables were tested using the t-test 
and the Mann-Whitney test. We established a logistic 
regression machine learning model to distinguish benign 
disease from PCa. R software (4.0.4) was used for statistical 
analysis. A two-sided P<0.05 was regarded as statistically 
significant.

Results

R-logistic classification model based on TF

TF selection
The data were standardized to eliminate errors caused 
by dimensionality difference, self-variation, or significant 
numerical differences of each characteristic variable in the 

regression analysis. Then, the LASSO regression was used 
to reduce the dimensionality of ten TF parameters, and 
the minimum standard was used for ten cross-validations 
to select the optimal parameters of the model. The 
relationship curve between the minimum variance and 
log(λ) was made, and a vertical line was drawn at the optimal 
point (Figure 2). The optimal parameter λ in the LASSO 
model was set to 4. According to the log(λ) sequence, 
the coefficient profile was drawn (Figure 2), the LASSO 
coefficient profile of ten characteristic parameters. In the 
λ graph, the vertical coordinate of the weight coefficient λ 
curve was closer to 0, indicating higher feature similarity. 
Vertical lines were drawn using ten cross-validations of the 
selected values, where the optimal lambda results in four 
features with non-zero coefficients. In conclusion, four 
essential TF parameters can be obtained from mp-MRI-
based ADC images: median ADC value, kurtosis, skewness, 
and MRI lesion volume.

Construction and performance comparison of three 
ML classification models based on TF
This study’s model building and solving process were all 
realized in R, version 4.0.4. We used the essential TF 
after LASSO dimension-reduction to build the model and 
established an ML model of logistic regression, SVM, and 

A B C

D E F

Figure 1 MRI images of PCa and BPH. (A-C) MRI images of BPH patients; (D-F) MRI images of PCa patients. (A,D) focal, well-defined, 
low-signal lesions in the right peripheral area on T2WI (red arrow); (B,E) significant high signal on DWI (red arrow); (C,F) significant low 
signal on the ADC chart (shown as irregular yellow area). MRI, magnetic resonance imaging; PCa, prostate cancer; BPH, benign prostate 
hyperplasia; T2WI, T2-weighted image; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.
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AdaBoost to predict the PI-RADS 4/5 score benign and 
malignant lesions classifier. The PCa and BPH groups were 
randomly selected in a 7:3 ratio and divided into training 
and testing sets. The training set was used to train and 
construct the ML model, and the testing set was used to 
verify the model.

The four characteristic values identified above are as 
follows: median ADC, kurtosis, skewness, and MRI lesions 
volume were the input variables of the classification model, 
and whether PCa (0 or 1) was the output variable of the 
model. Logistic regression, SVM, and AdaBoost regression 
were used to construct the R-logistic, R-SVM, and 
R-AdaBoost classification models based on TF. ROC curve 
analysis was used to compare the model performance of the 
three ML classification models, and the classification model 
with the largest area under the ROC curve was selected. 
The ROC curve analysis of each model was as follows. We 
selected the appropriate classifier by comparing the model's 
sensitivity, specificity, accuracy, and AUC values.

(I) ROC curve analysis of R-logistic classification 
model;

Logistic regression was carried out by combining 
R software and essential TF parameters based on 
ADC image feature selection. ROC curve analysis 
was conducted, as shown in Figure 3. The AUC 

values of the ROC curve of the training and the 
testing sets were 0.936 and 0.838. The sensitivity 
was 0.948 and 0.962. The specificities were 0.571 
and 0.600, respectively. The accuracies were 0.875 
and 0.903, respectively, suggesting that the model 
had an excellent classification performance.

(II) ROC curve analysis of the R-SVM classification 
model;

The SVM model was constructed by combining 
R software and essential TF parameters based on 
ADC image feature selection. ROC curve analysis 
was conducted (Figure 4). The AUC values of the 
ROC curve of the training and the validation set 
were 0.845 and 0.800, respectively. The sensitivities 
were 0.967 and 0.923, the specificities were 0.623 
and 0.600, and the accuracies were 0.903 and 0.871, 
respectively, suggesting that the model had an 
excellent classification performance.

(III) ROC curve analysis of R-AdaBoost classification 
model;

The AdaBoost model was constructed by 
combining R language software and essential 
texture parameter features based on ADC image 
feature selection, and ROC curve analysis was 
conducted, respectively, as shown in Figure 5. The 
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Figure 2 Texture feature parameter selection using LASSO binary logistic regression model. (A) Binomial deviation curve of radiomics 
model with parameter λ. The vertical axis represents the binomial deviation. The horizontal axis represents the log(λ) value. The upper 
number represents the optimal value (the perpendicular dotted line), where the smallest binomial deviation is found for the quantitative 
model with the selected features. (B) Graph of radiomics characteristic parameters changing with λ. LASSO, least absolute shrinkage and 
selection operator.
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AUC values of the ROC curve of the training 
set and the testing set are 0.733 and 0.800, the 
sensitivity is 0.966 and 0.923, the specificity is 
0.500 and 0.600, and the accuracy is 0.875 and 
0.871, respectively. The model had an excellent 
classification performance.

The ROC curve analysis of these three classification 
models showed that the sensitivity, specificity, and accuracy 
of the testing group of the R-logistic classification model 
were 0.962, 0.600, and 0.903, respectively. The sensitivity, 
specificity, and accuracy of the testing groups of the R-SVM 
classification model and the R-AdaBoost classification model 
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were 0.923 and 0.923, 0.600 and 0.600, and 0.871 and 0.871, 
respectively (Table 8). The sensitivity and specificity of the 
training and testing sets of the three ML classification models 
showed slight differences; therefore, the AUC value was 
used as the evaluation index to judge the performance of the 
classification model. The AUC of the training and testing sets 
of the R-logistic classification model were 0.936 and 0.838, 
respectively, which were higher than that of R-SVM and 
R-AdaBoost classification models, suggesting that the R-logistic 
classification model had better classification performance. 
Therefore, the R-logistic classification model based on TF was 
used as the classification model to differentiate benign from 
malignant prostate lesions in PI-RADS 4/5 score.

C-logistic classification model based on clinical indicators

Treatment of clinical indicators
The clinical indicators Age, PSA, fPSA, WBC, FIB, ALB, 
NLR, LDL-C, HDL-C, and TG were divided into PCa 
and BPH groups according to the pathological classification 
t-test homogeneity of variance test were performed for the 
clinical indicators. The Mann-Whitney test was used for 
data not normally distributed to determine any difference in 
data between the PCa and the BPH groups.

Difference analysis of clinical indicators
SPSS25.0 software was used to compare the clinical 
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Figure 5 ROC curve analysis of training set (A) and verification set (B) in the AdaBoost ML model. ROC, receiver operating characteristic;  
AUC, area under the curve; ML, machine learning.

Table 8 Performance comparison of three kinds of ML

Model dataset Sensitivity Specificity Accuracy AUC (95% CI)

R-logistic Training set 0.948 0.571 0.875 0.936 (0.849–1.000)

Testing set 0.962 0.600 0.903 0.838 (0.751–0.981)

R-SVM Training set 0.967 0.623 0.903 0.845 (0.762–0.973)

Testing set 0.923 0.600 0.871 0.800 (0.702–1.102)

R-AdaBoost Training set 0.966 0.500 0.875 0.733 (0.649–1.100)

Testing set 0.923 0.600 0.871 0.800 (0.703–1.101)

ML, machine learning; SVM, support vector machine; AUC, area under the curve.
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indicators in the PCa and the BPH groups. The statistical 

significance of each indicator is shown in Table 9. As can 

be seen from Table 10, the P values of Age, PSA, fPSA, 

WBC, FIB, ALB, NLR, LDL-C, HDL-C, and TG were all 

P<0.05, suggesting that the differences in these indicators 

were statistically significant.

Table 9 Statistical test results of clinical indicators in PCa group and BPH group

Index PCa group BPH group t/U-value P value

Sample, n 83 20 – –

Age, years 71.39±8.624 65.9±9.819 −2.567 0.012

BMI, Kg 24.405±2.584 23.435±3.836 −0.104 0.917

PSA 25.989±17.740 9.325±6.373 −4.944 <0.001

fPSA 7.071±12.817 1.182±0.953 −3.473 <0.001

Systemic Inflammatory Index

WBC 6.793±1.830 5.831±1.041 −2.189 0.029

Fib 3.133±0.766 4.44±1.585 −3.927 <0.001

ALB 38.166±3.554 42.125±4.287 4.293 <0.001

NLR 4.077±2.255 2.645±1.249 −2.526 0.012

CPR 6.755±8.676 4.025±4.690 −0.984 0.325

PLT 184.76±49.599 224.95±84.756 −1.643 0.100

Metabolism Index

LDL-C 2.796±0.789 2.093±0.545 −3.770 <0.001

HDL-C 1.229±0.356 1.003±0.159 −2.771 0.007

TG 1.441±0.695 1.047±0.408 −2.431 0.017

PCa, prostate cancer; BPH, benign prostate hyperplasia; BMI, body mass index; PSA, prostate-specific antigen; fPSA, free 
prostatespecific antigen; WBC, white blood cells; ALB, white blood cells; NLR, neutrophil-lymphocyte ratio; CPR, C-reactive protein; PLT, 
platelet count; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride.

Table 10 Multivariate logistic regression model for predicting PCa risk

Model Intercept and variable
Prediction model

β Odds ratio (95% CI) P value

R-logistic Intercept 9.396 10.212 (9.239–15.238) <0.001

Median ADC −7.464 1.101 (0.501–2.02) <0.001

kurtosis −0.584 0.558 (0.249–1.192) 0.115

skewness 0.627 1.872 (0.864–4.961) 0.151

MRI lesion volume 0.576 1.780 (0.744–5.131) 0.229

C-logistic Intercept −2.608 0.023 (0.015–0.049) 0.592

PSA 0.324 1.382 (1.137–1.987) 0.016

Fib −3.045 0.048 (0.01–0.413) 0.051

LDL-C 4.147 63.268 (4.726–7178.178) 0.017

β is the regression coefficient. PCa, prostate cancer; PSA, prostate-specific antigen; ADC, apparent diffusion coefficient; CI, confidence 
interval; LDL-C, low-density lipoprotein cholesterol.
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ROC curve analysis of clinical indicators
R software was used to analyze the ROC curve of clinical 
indicators, as shown in Figure 6. As can be seen from the 
figure, the AUC values of ROC curve of PSA, FIB, ALB, 
fPSA, NLR, WBC, LDL-C, HDL-C and TG were 0.857, 
0.784, 0.761, 0.751, 0.683, 0.658, 0.778, 0.740, and 0.733, 
respectively. All showed high efficacy in differentiating 
benign and malignant prostate lesions.

C-logistic classification model performance based on 
clinical indicators
To reduce the complexity of the model, using difference 
analysis of clinical indicators and ROC curve analysis, the 
top three clinical indicators with the largest AUC values 
were selected to construct the C-logistic classification 
model; 70% of the samples of PCa and BPH groups were 
selected as the training set, PSA, FIB, and LDL-C were 
taken as the input variables of the model, and corresponding 
cancer and benign were taken as the output variables. The 
logistic classification model was established by combining 
R language software and clinical indicators, and ROC curve 
analysis was conducted (Figure 7). The AUC value of the 
ROC curve of the training set and the testing set were 
0.860 and 0.738, respectively. The sensitivities were 0.967 
and 0.855, the specificities were 0.857 and 0.800, and the 
accuracies were 0.944 and 0.871, respectively, suggesting 
that the model had an excellent classification performance.

Comparative analysis of R-logistic model and C-logistic 
model

Logistic regression equation of characteristic texture 
parameters and clinical indicators
Logistic regression was used to construct TF and clinical 
index data equations based on radiomics. The parameters 
and their coefficients are shown in Table 10. The R-logistic 
regression equation based on the TF of radiomics model 
was Y_radiomics =9.396 – 7.464 * median ADC – 0.584 * 
kurtosis + 0.627 *skewness + 0.576 * MRI lesion volume. 
The formula of C-logistic regression equation based on 
clinical indicators was as follows: Y_clinical = –2.608 + 0.324 
* PSA – 3.045 * FIB + 4.147 * LDL-C.

The t-test was carried out according to the logistic 
regression equation, and the corresponding results are 
shown in Table 11. The Y_radiomics in the training group 
PCa with R-logistic regression equation was 2.738±1.538, 
and the Y_radiomics in the training group BPH was 
–0.270±2.519. The P value between the two groups 
was less than 0.001. The training set of the C-logistic 
regression equation was 4.364±8.403 in the PCa group 
and –4.265±5.441 in the BPH group. The P value between 
groups was less than 0.001. In other words, both sets of 
equations can be used in studies distinguishing benign from 
malignant lesions of the prostate in PI-RADS 4/5 score.

In summary, ROC curve analysis results of the 
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R-logistic classification model based on TF and C-logistic 

classification model based on clinical indicators are shown 

in Table 12 and Figure 8. The AUC values of training and 

testing sets of the R-logistic classification model were 0.936 

and 0.838, respectively, which were higher than that of the 

C-logistic classification model based on clinical indicators. 

In other words, when differentiating benign and malignant 

prostate lesions to establish an ML classifier model, mp-

MRI radiomics TF were superior to clinical indicators. 

When the Youden index was at its maximum, the cut-off 

Table 11 t-test of R-logistic and C-logistic regression equations

Model PCa group BPH group t-value P value

Sample (n) 58 14 – –

R-logistic model 2.738±1.538 −0.270±2.519 −5.733 <0.001

C-logistic model 4.364±8.403 −4.265±5.441 −3.651 <0.001

PCa, prostate cancer; BPH, benign prostate hyperplasia.

Table 12 Performance comparison of R-logistic and C-logistic classification models

Model Sensitivity Specificity Accuracy AUC (95% CI)

R-logistic

Training set 0.948 0.571 0.875 0.936 (0.849–1.000)

Testing set 0.962 0.600 0.903 0.838 (0.751–0.981)

C-logistic

Training set 0.967 0.857 0.944 0.860 (0.771–1.281)

Testing set 0.855 0.800 0.871 0.738 (0.651–0.989)

AUC, area under the curve.
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value for identifying benign and malignant prostate lesions 
in the PI-RADS 4/5 score was 1.216; that is, when Y_
radiomics was greater than 1.216, the model would predict 
PCa, with sensitivity and specificity of 87.9% and 79.0%, 
respectively.

Further analysis of R-logistic classification model
A nomogram for predicting the risk of benign and 
malignant prostatic lesions was drawn based on Y_radiomics 
(Figure 9). The nomogram shows a patient's total score of 
imaging TF for predicting the risk of benign and malignant 
prostatic lesions. Combined with its calibration curve 
(Figure 10), the performance demonstrated good predictive 
ability. The X-axis, Y-axis, oblique dotted line, and solid 
line in the calibration curve represent the meanings of the 
predicted risk of benign and malignant prostate lesions, 
the probability of actual diagnosis, the perfect prediction 
of the ideal model, and the performance of the nomogram, 
respectively. According to the calibration curve, the 
nomogram of Y_radiomics showed a robust predictive 
performance for benign and malignant prostate lesions. 
The nomogram chart closer to the diagonal dotted line has 
a better prediction.

Discussion

In recent years, the incidence of PCa in China has shown 
a significant upward trend because early clinical symptoms 
of PCa and BPH are very similar; however, the treatment 
regimens are different. Prostate biopsy is the gold standard 
for diagnosing and assessing the risk of PCa; however, it can 
cause complications because it is an invasive test. PSA is of 
great value in screening PCa; however, it is nonspecific.

Improving the early diagnosis rate of PCa can improve 
survival. Many studies have tried to improve the diagnostic 
efficiency of PCa using several clinical experimental 
indicators and diagnostic models. Li et al. established a 
logistic regression model to provide the basis for a prostate 
needle biopsy and found that DRE, TRUS, MRI, PSAD, 
and f/tPSA affected prostate biopsy (23). According to the 
logistic regression model of PCa established by regression 
coefficient, prostate biopsy should be performed when the 
P value is greater than 0.12.

In the present study, we considered PSA, fPSA, systemic 
inflammatory indicators, and metabolic indicators of 
patients. Using the t-test and ROC curve analysis results, 
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we found that the AUC value of PSA was 0.857, which 
was higher than the systemic inflammatory indicators and 
metabolic indicators.

We selected the best three indicators to establish a 
logistic regression model to differentiate benign and 
malignant prostate lesions and obtained Y_clinical = –2.608 
+ 0.324 * PSA – 3.045 * FIB + 4.147 * LDL-C. The AUC 
values of the training and testing sets were 0.860 and 0.738, 
respectively.

TA in radiomics is a processing process that uses 
image processing software to extract texture characteristic 
parameters and obtain quantitative or qualitative 
descriptions of texture. TA has been applied in medicine. 
TA of CT, MRI, and PET-CT images can be used to obtain 
texture parameters related to disease, which is essential for 
detection and diagnosis of PCa, Gleason score and clinical 
staging, prediction of recurrence, metastasis, and efficacy 
evaluation. Xiong et al. explored the potential value of 
MRI TA combined with prostate-related biomarkers for 
predicting high-grade PCa (HGPCA). Logistic regression 
and ROC curve analysis of TA parameters from T2WI and 
DWI in the HGPCA group and non-high-grade PCa group 
showed kurtosis, skewness, and entropy obtained from ADC 
mapping predicted HGPCA (24).

Many studies extracted the textural parameters of the 
region of interest from a single layer to obtain the TF of the 
lesion. Imaging studies in other tissues have demonstrated 
the importance of measuring TF using an approach 
based on whole lesions volume and providing a complete 
representation of the entire tumor. This also facilitates the 
calculation of more advanced metrics to reflect the overall 
lesions texture and inhomogeneity (25,26). In the present 
study, TF were determined from all ADC images that 
included lesions covering the entire PI-RADS v2 4/5 score. 
This analytical approach may better reveal intra-tumor 
heterogeneity and improve clinical evaluation.

Based on R software, we performed classification, 
regression, clustering, dimension-reduction, model 
selection, statistical analysis, and data preprocessing, which 
can quickly complete the entire process of ML (27). In 
the present study, we considered patients whose mp-MRI 
examination indicated PI-RADS v2 4/5 score and used 
ImageJ and other software to extract the TF of all lesions. R 
software was used to conduct data normalization for these 
TF parameters, and the LASSO regression was performed 
to reduce the dimensions of the parameters. The four most 
essential feature parameters were obtained: median ADC, 
kurtosis, skewness, and MRI lesion volume. These texture 

parameters were combined using SVM, logistic regression, 
and an AdaBoost ML model to establish a classifier model 
for PCa. We found that the AUC value of the ROC curve 
of the logistic regression testing set was 0.838, which was 
higher than the prediction model of benign and malignant 
prostate lesions established by SVM and AdaBoost, and 
similar to the results of other researchers, suggesting 
the essential clinical value of logistic regression in the 
differentiation of benign from malignant prostate lesions.

MRI examination of the prostate can save patients from 
the trauma and potential complications caused by prostate 
biopsy; however, MRI detection of clinically significant PCa 
has limitations, especially since the accuracy of diagnosis 
varies significantly between individual radiologists (28). 
Radiomics TA uses advanced image processing technology 
to extract many feature parameters from images and its 
potential to improve diagnostic accuracy (29). In the 
present study, logistic regression was applied to construct a 
classification model for PCa based on the TF of radiomics. 
In this case, the corresponding R-logistic classification 
model was Y_radiomics = 9.396 – 7.464 * median ADC – 
0.584 * kurtosis + 0.627 * skewness + 0.576 * MRI lesions 
volume. The AUC value of the ROC curve of the R-logistic 
training set was 0.936, which was better than that of the 
C-logistic classification model. When the Youden index was 
at its maximum, the cut-off point value for differentiating 
benign from malignant prostatic lesions was 1.216, and 
its sensitivity and specificity were 87.9% and 79.0%, 
respectively. Because these four variables in the PI-RADS 
4/5 score medium prostate lesions can be easily obtained 
clinically, we believe that this equation can predict PCa 
in daily clinical practice. Nomograms are widely used in 
oncology to predict outcomes. Nomograms rely on the 
advantages of a friendly digital interface and higher accuracy 
to help better clinical decision-making (30). Our nomogram 
was based on Y (radiomics) to differentiate benign from 
malignant prostate lesions, and its calibration curve showed 
good predictive power.

In summary, based on patients with a 4/5 PI-RADS v2 
score, we extracted TF in mp-MRI combined with the ML 
models R-SVM, R-logistic regression, and an R-AdaBoost 
classifier to establish a prediction model discriminating 
between benign and malignant prostate lesions. The AUC 
of the R-logistic regression classifier was the highest and 
better than that of C-logistic regression established by 
clinical indicators, suggesting that the application value of 
PI-RADS v2 4/5 score in predicting benign and malignant 
prostate lesions was strong.
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There are some limitations to this study. First, the sample 
size was relatively small, and all studies were retrospective; 
therefore, a large sample size expansion is needed to 
conduct prospective studies in the future. Second, the 
samples in this study were from a single center, and there is 
a lack of independent verification data set. In the future, a 
multi-center study will be used to validate the present study 
results. Third, this study manually delineated the ROI, 
which is inefficient and subjective to some extent and is not 
conducive to big data processing. It may be possible to use 
computer-aided systems to identify and segment lesions in 
the future automatically.

Conclusions

The ML classifier models are established based on the TF 
of radiomics. It has a strong classification performance in 
identifying benign and malignant prostate lesions in PI-
RADS 4/5 score. Various treatments and outcomes for PCa 
patients can be applied clinically.
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