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Background: Inhomogeneity within tumors can reflect tumor angiogenesis. Existing research into 
the quantization of angiogenesis mainly focuses on time-intensity curve parameters but has produced 
inconsistent results. In clinical work, it is difficult to achieve standardization and consistency for manual 
judgement of the inhomogeneity of contrast-enhanced images, while the artificial intelligence technology 
may be helpful. The aim of this study was to assess whether computers can assist in the artificial classification 
of tumor inhomogeneity in contrast-enhanced ultrasound (CEUS) images of rectal cancer.
Methods: A total of 500 contrast-enhanced ultrasonograms were retrospectively collected, which was 
verified of rectal cancer pathologically from 2016 to 2018 as training set. All images are from 18–80 years old 
patients with rectal cancer in our hospital. These tumors are usually located in the middle and lower segment 
of the rectum, which can be completely observed on ultrasound. The images were divided into 3 categories 
according to the inhomogeneous distribution of contrast agents inside the tumors. Computing methods 
were used to simulate manual classification. Computer processing steps included segmentation, gray level 
quantization, dimension reduction, and classification. The results of 6 different gray level quantization, 2 
dimensionality reduction methods, and 3 classifiers were compared, from which the optimal parameters were 
selected in each step. The performance of computer classification was evaluated using manual classification 
results as the reference. Ninety-seven ultrasonograms of contrast-enhanced rectal tumors were collected as 
validation set from 2018.1 to 2018.6.
Results: The optimal gray level was set at 32. Principal component analysis (PCA) was the first choice for 
dimensionality reduction. The best classifier was support vector machines (SVM). The accuracy of computer 
classification was 87.80% (439/500). The accuracy of computer classification in the validation cohort was 
60.82%. The area under the curve (AUC) of class 1, 2, and 3 were 0.76, 0.41, and 0.48, respectively.
Conclusions: Results showed that the computer methods are competent for classifying inhomogeneity of 
contrast-enhanced rectal cancers inside ultrasonograms.
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Introduction

In China, rectal cancer is one of the most common tumors 
of the digestive tract and is among the top 5 most common 
cancers, with an incidence of about 13.64 per 100,000 
people (1,2). Transrectal ultrasonography can determine 
of the shape, size, location, and infiltration depth of the 
tumors, which can be used to judge the tumor stage (3-5).

Neovascularization allows tumor cells to increase their 
nutrient supply, survive, and proliferate. New vessels of 
tumors often have structural and functional differences 
compared to normal tissue vasculature (6,7). An abundant 
and disordered blood supply of the tumor, manifested as 
an inhomogeneous inner texture, can be evaluated using 
contrast-enhanced ultrasound (CEUS), which appears as 
a difference in the distribution of contrast agent inside 
and between tumors (8). Existing research on tumor 
angiogenesis using CEUS mainly focuses on quantitative 
analysis using time-intensity curve parameters and has 
yielded inconsistent results (9-11). The parameters that 
these studies consider meaningful vary. The reasons may 
be related to different status of patients, such as cardiac 
function, body mass index (BMI), or some other factors.

At some certain point, tumors’ heterogeneity, including 
perfusion heterogeneity, is a significant feature, which 
can be observed by CEUS. The information of perfusion 
heterogeneity hidden in the still images at such point can be 
judged by readers, with some extent of subjectivity. Machine 
learning is expected to be an alternative way to increase the 
objectivity during the procedure.

In clinical work, manual evaluation of the inhomogeneity 
of contrast-enhanced images is susceptible to errors 
of subjectivity. Therefore, it is difficult to achieve 
standardization and consistency. Doctors’ classification of 
images is based on subjective perception of the whole image. 
Experienced doctors will notice the details inside the lesion, 
while inexperienced doctors cannot ensure that their results 
are based on comprehensive consideration. With the rise of 
artificial intelligence technology and its application in the 
medical field, image recognition technology has developed 
rapidly (12-15). Computers can now learn and analyze 
images for certain purposes and expand the possibilities of 
computer-aided medical imaging processing (16).

In our study, we proposed a new method focusing 

on the distribution of contrast agents used for rectal 
cancer CEUS images and classifying them using a 
semiquantitative method. Machine learning is used to 
simulate the process. Machine learning in medical image 
recognition mainly consists of four parts: segmentation of 
the region of interest (ROI), feature extraction, dimension 
reduction, and classification. There are many ways to 
extract features, but gray-level co-occurrence matrix 
(GLCM) texture features are most commonly used in 
medical imaging (17-19). In the present study, GLCM 
texture features were extracted to semi-quantitatively 
analyze the extent of inhomogeneity of the distribution 
of the contrast agents within rectal cancer tumors. We 
present the following article in accordance with the 
STARD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-21-2362/rc).

Methods

Development phase

Data collection and classification
The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This 
retrospective study was additionally part of a clinical 
trial. The corresponding trial (registration No. ChiCTR-
RNC-10000932) was approved and supervised by West 
China Hospital, Sichuan University’s Institutional Review 
Board. Individual consent for this retrospective study was 
waived. We retrieved records of the rectal cancer patients 
in West China hospital Sichuan University Hospital 
from 2016 to 2018. In total, 324 patients were involved. 
The inclusion criteria were as follows: (I) patients who 
underwent a transrectal CEUS examination using the 
Esaote MyLab Twice Ultrasound Workstation; (II) 
patients who were pathologically diagnosed as having 
rectal cancer; (III) participants whose cine loops had 
complete CEUS information lasting about 3 minutes 
from the beginning; and (IV) more than 1 cine loop at 
the tumors’ largest longitudinal section as provided by a 
TRT33 probe (3–12 MHz) found inside each record. The 
patient’s personal information was masked before the study 
commenced. SonoLiver (Tomtec, Munich, Germany) 
was used to read the cine loops of the contrast-enhanced 
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tumors. Altogether, 500 images at the point of time-to-
peak were obtained.

We developed a new method for classifying the images 
of the contrast-enhanced rectal cancer tumors, which semi-
quantitatively categorizes the tumors into 3 types according 
to the inner texture. The classification criteria were as 
follows (Figure 1): for class 1 (Figure 1A,1D), the lesion is 
generally and uniformly enhanced, which means the texture 
of the tumor is homogeneous; for class 2 (Figure 1B,1E), the 
lesion is relatively uniformly enhanced, with a small area 
of hypo-enhancement or nonenhancement, which means 
the texture of the tumor is relatively inhomogeneous; for 
class 3 (Figure 1C,1F), the lesion is highly heterogeneously 
enhanced with a massive area of enhancement deficiency 
and is eccentric or uneccentric.

The images were classified by 4 colleagues, who were 
divided into two groups, each consisting of 1 ultrasound 
physician and 1 medical assistant. First, 500 images were 
classified by the two groups separately. One month later, 
they classified the same 500 pictures again. Each image was 
evaluated by two groups using a blind method. When the 
categorization of the image by the two groups reached an 
agreement, this was considered the final result. When no 
agreement could be reached within or between groups, the 
image was classified again by the 4 evaluators together. If an 
agreement was reached, this was considered the final result. 
If a consensus could still not be reached, the image was 

excluded from the subsequent analysis.

Computerized method to analyze images
Flowchart of the computer processing steps
The flowchart of the analysis process is shown in Figure 2. 
There were 5 main steps: segmentation of ROI, gray level 
quantization, feature extraction, dimension reduction, and 
training classifiers one after another.
ROI selection and segmentation
Mainstream ROI selection methods can be categorized as 
ROIin, ROIout, ROIoverlaps, and ROIposterior (Figure 3) (20). We 
manually segmented the ROI and proposed the ROI selection 
based on ROIout with some modifications (Figure 3E).  
All information outside the tumor boundary was removed. 
Dimension reduction methods included principal component 
analysis (PCA) and Relief-F. Classifiers included support 
vector machines (SVM), decision tree (DT), and linear 
discriminant analysis (LDA).

Then, 360-dimensional simplified GLCM features were 
extracted from the ROI. There are redundant and irrelevant 
features among these features. Texture features underwent 
dimension reduction and were classified. The best combination 
was chosen from the 6 combinations of dimension reduction 
and classifiers. After the dimension reduction method and the 
classifier were determined, the gray level range of the ROI was 
determined as one of the six quantization levels. The gray level 
that performed best in model was selected.

A B C

D E F

Figure 1 Tumors of different class and its segmentation. (A-C) Classes 1, 2, and 3. The solid red line is the boundary of lesion. (D-F) The 
segmentation results of (A-C), respectively. ROI, region of interest.
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The optimal gray level for reducing noise
The size of GLCM was determined by the gray level of the 
images (21). The higher the gray level is, the greater the 
time consumption for computing the GLCM. Gray level 
is an important factor in the calculation of texture, and 
the selection of the appropriate gray level can also reduce 
the classification error rate (22). The effect of noise can be 
reduced to a certain extent by gray-level quantization (23). 
In this study, the following uniform quantization strategy 
was adopted for gray-level quantization:

( )min
new

max min

I GI K 1 1
G G
 −

= × − + − 
	 [1]

where I is the original input image, Gmin is the minimum 
grayscale, Gmax represents the maximum grayscale, K represents 
the quantization level, and Inew is the processed image.
Extraction of texture features
GLCM is a second-order matrix and is a function of distance 
and direction. It represents the frequency of occurrence of 
pixel pairs with gray values y1 and y2. Unser (24) showed 

that GLCM texture features can be simplified to be directly 
estimated from the sum and difference histogram, which 
can replace the large 2D co-occurrence histogram with two 
1D histograms and is nearly as accurate for classification. 
In the study by Haralick et al. (21), among the 14 GLCM 
features examined, 9 could be directly calculated using the 
sum and difference histogram, while the remaining 5 could 
be approximately calculated. The method to extract texture 
is given in the study by Unser M (24). Altogether, 40 pairs 
of sum and difference histograms were obtained in the 
given 10 relative distances and 4 directions. Nine texture 
features were extracted from each pair of sum and difference 
histograms, and thus the final number of texture features 
was 360. The methods to calculate the sum and difference 
histogram and texture features are given in Appendix 1.
Dimension reduction and classification
In machine learning, dimensionality simply refers to the 
number of features. To select the features that are helpful 
for classification, it is necessary to reduce the dimension of 
the extracted features. Dimension reduction can remove the 

A B C

D E

Figure 3 Four methods of segmentation of ROI. (A-D) ROIin, ROIout, ROIoverlaps, and ROIposterior, respectively. The solid red line is the 
boundary of lesion and the dotted line in each figure is used to extract ROI. (E) The segmentation result of our method. ROI, region of 
interest.

https://cdn.amegroups.cn/static/public/TCR-21-2362-Supplementary.pdf
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uncorrelated features to improve the interpretation of the 
features for the machine learning model. Various methods 
have been used to reduce dimensionality (25). In the 
present study, we only compared PCA with Relief-F. After 
dimension reduction, we aimed to classify rectal CEUS 
images. The simplified GLCM texture features of the image 
were used as input, and the output was the class of CEUS 
image. We used LDA, SVM, and DT to classify the texture 
features of the image.
Evaluation of the results of the computer classification
Ten-fold cross-validation was used to generate the training 
set and test set. Ten-fold cross-validation is suitable for 
small data sets and can yield reliable and stable models. The 
data were randomly divided into 10 groups. Each subgroup 
was used as the test set in turn while the remaining 9 groups 
were used as the training set.

Statistical analysis
Receiver operator characteristic (ROC) analysis was used to 

evaluate the performance of computer classification. Some 
diagnostic metrics, including accuracy and area under the 
curve (AUC), were calculated. All the experiments were 
conducted in MATLAB 2016a (MathWorks, Natick, MA, 
USA) and SPSS 23.0 (IBM Corp., Armonk, NY, USA).

Validate phase

Ninety-seven ultrasonograms of contrast-enhanced rectal 
tumors were collected as validation set from 2018.1 to 
2018.6. The inclusion and exclusion criteria were the same 
as those in the development phase. These images are used 
to verify the accuracy of the model.

Results

The results of manual classification

The study examined 500 images. The results of manual 
classification were 121 images for class 1, 172 images 
for class 2, and 207 images for class 3. The intragroup 
and intergroup consistency of manual classification was 
calculated to be 0.95 and 0.92, respectively.

Segmentation

The ROI of all images was successfully segmented, and the 
results of segmentation were consistent with the manually 
delineated tumor boundaries. In Figure 1A-1C are the 
original images of class 1, class 2, and class 3, respectively. 
Figure 1D-1F shows the results of segmentation. It can be 
seen from Figure 1D-1F that the information outside the 
tumor boundary was removed and only the information of 
the tumor itself was retained.

Feature reduction

Among the 360 GLCM features used for classification, 
not all were useful. PCA and Relief-F were first applied to 
reduce the dimensions of features, which was followed by 
the application LDA classifiers to distinguish the features. 
The accuracy of PCA and Relief-F was calculated. PCA had 
a higher accuracy than did Relief-F. The best accuracies 
achieved by PCA and by Relief-F were 85.20% (426/500) 
and 79.40% (397/500), respectively (Figure 4).

Classifiers

The classification accuracies of LDA, SVM, and DT were 
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Figure 4 Performance of PCA and Relief-F. The horizontal axis 
represents the number of features and the vertical axis represents 
the accuracy. PCA, principal component analysis.

Table 1 Classification accuracy obtained by different classifiers

Dimension reduction 
methods/classifiers

LDA SVM DT

PCA 85.20% 86.60% 76.60%

Relief-F 79.40% 85.80% 78.20%

Both PCA and Relief-F are methods to reduce dimension. LDA, 
SVM and DT are three classifiers to distinguish CEUS images. 
PCA, principal component analysis; LDA, linear discriminant 
analysis; SVM, support vector machines; DT, decision tree; 
CEUS, contrast-enhanced ultrasound.
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summarized (Table 1). When the same dimensionality 
reduction method was used, the accuracy of SVM in image 
classification is higher than was higher than that of LDA 
and DT. PCA worked better than did Relief-F on LDA 
and SVM. However, Relief-F worked better than did PCA 
on DT. The combination of PCA and SVM achieved the 
highest accuracy (433/500, 86.60%).

Influence of gray-level quantization

Results of different gray level quantization are shown in 

Figure 5. The first column in Figure 5A is the unprocessed 
image, and the second to seventh columns are the results 
of quantizing the grayscale of the image to 8, 16, 32, 64, 
128, and 256. As shown in Figure 5, pixels with similar gray 
values were merged by quantization.

The accuracy of SVM at different gray-level quantization 
is shown in Figure 6. Each line chart shows the change of 
accuracy as the number of features. The line chart of different 
colors represents the experimental results of different gray 
levels. All curves fluctuated upward and then stabilized. After 
selection for the appropriate number of features, the accuracy 
of all 6 experiments exceeded 80%. When the same number 
of features was selected for the experiment, in most cases, the 
classification accuracy of gray level 32 was higher than that 
of any other gray level. Table 2 shows the best classification 
accuracy (mean ± standard deviation) achieved by different 
gray levels and the number of features corresponding to the 
best accuracy. The best accuracy of gray level 32 was 87.80% 
(439/500), which was higher than the other gray levels. This 
suggests that the gray level has a certain degree of influence 
on the classification results.

Comparison of manual and computer classification results

We set optimal parameters and classified the images. 
PCA was used for feature selection, and 69 features were 
selected. SVM was implemented to distinguish rectal CEUS 
images. Table 3 shows the comparison between the result 
of manual classification and that of computer classification. 
A total of 121 images were manually classified into class 
1, and 121 were classified into class 1 by computer; 172 

Figure 5 Results of different gray levels quantization. The first column in (A-C) is the unprocessed image, and the second to seventh 
columns are the results of quantizing the grayscale of the image to 8, 16, 32, 64, 128 and 256. (A-C) Example diagrams of class 1, 2, and 3.
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Figure 6 The classification accuracy of different gray levels using 
PCA and SVM. The curves of different colors represent the 
experimental results of different gray levels. The horizontal axis 
represents the number of features, and the vertical axis represents 
the classification accuracy. PCA, principal component analysis; 
SVM, support vector machines.
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images were classified into class 2 manually, and 181 images 
were classified into class 2 by computer; 207 images were 
classified into class 3 manually, and 198 images classified 
into class 3 by computer. There were 439 images with 
consistent classification results between both methods. The 
number of cases that the computer classified from class 
1 erroneously into class 3 was zero. The number of cases 
that the computer classified from class 3 erroneously into 
class 1 was zero. The main errors were that the computer 
classified the images of class 1 and class 3 into class 2 
or classified the images of class 2 into class 1 or class 3. 
The ROC curve is shown in the supplementary materials  
(Figure S1). The AUC of class 1, 2, and 3 was 0.97, 0.93, 
and 0.98, respectively.

Validation phase

Data collection and classification
A total of 97 ultrasonograms of contrast-enhanced rectal 
tumors were included. The images were divided into 
3 classes according to the abovementioned standards. 
Computing methods were used to simulate manual 
classification. The performance of manual and computer 
classification was evaluated and compared.

Accuracy of computer classification in the validation 
cohort
The ability of the computer to predict the tumor 

inhomogeneity in rectal cancer CEUS images was evaluated 
in the validation cohort. SVM and gray level 32 were used 
to distinguish rectal CEUS images. Table 4 shows the result 
of the comparison between manual classification and that of 
computer classification. A total of 59 images had consistent 
classification results by both methods (60.82%). The main 
errors were that the computer classified the images of class 
1 and class 3 into class 2 or classified the images of class 
2 into class 1 or class 3. The ROC curve is shown in the 
supplementary materials (Figure S2). The AUC of class 1, 2, 
and 3 was 0.76, 0.41, and 0.48, respectively.

Discussion

The inhomogeneity of contrast-enhanced rectal cancers 
in ultrasonograms can provide reference information with 
the details of rectal tumors vasculature, but the judgment 
of inhomogeneity depends on the training, experience, and 
expertise of the radiologists. Computer technology can 
assist doctors in routine diagnostic work to obtain more 
accurate, objective, and reproducible results.

Common applications of computer technology in 
medical imaging include automatic measurement, 
automatic detection and segmentation of tissue, and 
classification of benign and malignant tissues. In recent 
years, artificial intelligence, especially deep learning, has 
made the classification task of benign and malignant tissues 
increasingly convenient and accurate. As a branch of 

Table 2 The best accuracy of different gray levels

Gray level 8 16 32 64 128 256

Number of features 90 61 69 63 42 8

Accuracy (%) 86.80±4.40 86.80±4.54 87.80±4.47 87.00±3.43 86.80±3.29 86.60±4.12

The best classification accuracy (mean ± standard deviation) achieved by different gray levels and the number of features corresponding 
to the best accuracy.

Table 3 Comparison of manual classification and computer 
classification in the development cohort

Manual classification
Computer classification

Total
1 2 3

1 104 17 0 121

2 17 146 9 172

3 0 18 189 207

Total 121 181 198 500

Table 4 Comparison of manual classification and computer 
classification in the validation cohort

Manual classification
Computer classification

Total
1 2 3

1 23 12 1 36

2 5 13 10 28

3 0 10 23 33

Total 28 35 34 97

https://cdn.amegroups.cn/static/public/TCR-21-2362-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-2362-Supplementary.pdf
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artificial intelligence, traditional machine learning involves 
data cleaning, feature extraction, dimensionality reduction, 
and training the model. Traditional machine learning is 
well supported by theoretical foundations; therefore, it 
is easier for researchers to design a model and adjust the 
hyperparameters. Feature extraction is the process of 
extracting image information by computer. As a kind of 
feature extraction, texture feature is widely used in medical 
image analysis. Some studies use the texture feature to 
classify lesions and injuries or distinguish between benign 
and malignant tumors, indicating that texture analysis is 
an effective method for analyzing ultrasonograms (26-30). 
In the present study, we focused on the inhomogeneity of 
contrast-enhanced rectal cancers in ultrasonograms and 
found that this was closely related to the distribution of 
microvessels. Therefore, we classified the inhomogeneity 
of contrast-enhanced rectal cancers in ultrasonograms by 
using texture information and machine learning. Results 
showed that the computer methods were competent for 
classifying the inhomogeneity of contrast-enhanced rectal 
cancers inside ultrasonograms.

The ROI selected, the relative direction and distance 
of features, and the gray level of the image can influence 
classification results produced by models. The most 
commonly used method of ROI selection is ROIout, through 
which the texture information regarding the internal and 
external parts of the lesion can be extracted (20,27,30). The 
advantage of the ROIout method is that the information 
concerning the lesion’s surroundings can be obtained. 
However, if this secondary information has no relevance 
to the lesion, it becomes a kind of interference. Our study 
only focused on the inhomogeneity of contrast-enhanced 
rectal cancers in ultrasonograms; therefore, any information 
concerning the lesion’s surroundings was excluded. We used 
a mask to mark the lesion itself and then calculated only 
the texture information of the lesion area. Any information 
regarding outside the lesions area that could be interference 
was therefore discarded.

The texture information is related to the direction 
and distance of pixels. Therefore, the choice of GLCM 
direction and distance becomes particularly important. A 
few studies empirically chose the direction and distance 
of the texture, with only 4 directions and 1 distance being 
considered (18,20). Empirically selecting the texture distance 
and direction of GLCM may lead to inadequate texture 
information being extracted. We calculated texture from 10 
distances and 4 directions to enrich the texture information. 
A total of 360 texture features were extracted, and irrelevant 

information was shrunk by dimension reduction. The 
PCA algorithm achieved higher accuracy than did the 
Relief-F algorithm. While texture features totaled 360, 
the final number of features for classification was only 
69. This indicated that the 69 features contained enough 
information to classify the inhomogeneity of rectal CEUS. 
The 3 different classifiers of LDA, SVM, and DT were also 
compared, among which SVM performed the best.

In addition, we studied the influence of gray quantization 
on the classification results. We found that classification 
accuracy was improved by gray-level quantization and 
that pixels with similar values were merged by gray-level 
quantization, which reduced noise to some extent. If the 
gray level was too high or too low, the accuracy of the 
model will decrease. By comparing the experimental results 
of different gray-level quantization, we found that gray level 
32 produced the highest classification accuracy, and was 
hence the best choice.

The degree of inhomogeneity of class 2, which was 
between class 1 and class 3, therefore is more challenging 
for radiologists to distinguish. This difficulty was also 
encountered in the computer classification: the AUC of 
class 2 was lower than that of class 1 and class 3.

Despite these findings, the present study had 3 major 
limitations. First, our results may be biased because 
data in this study were collected from the same type of 
equipment, without considering the impact of different 
devices on image quality. Images from different devices 
should be considered for analysis in the future. Second, our 
data for analysis were static and not dynamic because we 
only focused on the images at peak moments and did not 
consider the dynamic change during the whole period of 
contrast. Future research should examine the impact of the 
changing process of contrast enhancement by analyzing the 
features of CEUS images in a time series. Finally, we did 
not conduct any comparative studies between clinical and 
pathological results, and thus further research in this vein is 
still needed.
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Supplementary

Sum and difference histogram and texture feature

Pixel pairs in image I with relative distances of d1 and d2 are expressed as:

( )1 ,y I m n= 	 [2]

( )2 1 2,y I m d n d= + + 	 [3]

y1 and y2 represent the pixel values at image positions (m, n) and (m + d1, n + d2), respectively.
The sum and difference of the pixel pairs y1 and y2 are:

, 1 2m ns y y= + 	 [4]

, 1 2m nd y y= − 	 [5]

Histogram of sum and difference of image I is:

( ) ( ) ( )1 2 ,; , { , | }s s m nh i d d h i Card m n I s i= = ∈ = 	 [6]

( ) ( ) ( )1 2 ,; , { , | }d d m nh j d d h j Card m n I d j= = ∈ = 	 [7]

Total number of elements in the sum or difference histogram:

( ) ( )s dN h i h i= ∑ = ∑ 	 [8]

Histogram normalization:

( ) ( ) , 2,3 2sh i
Ps i i Ng

N
= = ⋅⋅⋅ 	 [9]

( ) ( ) , 1, , 1dh j
Pd j j Ng Ng

N
= = − + ⋅⋅⋅ + 	 [10]

Ps is normalized sum histogram and Pd is normalized difference histogram. Mean, variance, energy, correlation, entropy, 
contrast, homogeneity, cluster shade and cluster prominence are calculated by Ps and Pd:

( )1mean μ
2 i

i Ps i= ⋅ =∑ 	 [11]

( ) ( ) ( )2 21variance 2
2 i j

i u Ps i j Pd j
  = − ⋅ + ⋅ 
  
∑ ∑ 	 [12]

( ) ( )2 2energy
i j

Ps i Pd j≈ ⋅∑ ∑ 	 [13]

( ) ( ) ( )2 21correlation 2μ
2 i j

i Ps i j Pd j
  = − ⋅ − ⋅ 
  
∑ ∑ 	 [14]

( ) ( )( ) ( ) ( )( )entropy log log
i j

Ps i Ps i Pd j Pd j= − ⋅ − ⋅∑ ∑ 	 [15]

( )2contrast
j

j Pd j= ⋅∑ 	 [16]

( )
( )2

1homogeneity
j

Pd j
i j

= ⋅
+

∑ 	 [17]
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( ) ( )3cluster shade 2
i

i Ps iµ= − ⋅∑ 	 [18]

( ) ( )4cluster prominence 2
i

i Ps iµ= − ⋅∑ 	 [19]

PCA and Relief-F

The main idea of PCA is to carry out orthogonal basis transformation on the data and project the data of n-dimensional space 
onto the k-dimensional space, meanwhile maximizing the variance of the projected data. The k dimension is a completely new 
orthogonal feature also known as the principal component. The role of PCA is to find a set of mutually orthogonal coordinate 
axes sequentially from the original space. The choice of new coordinate axes is closely related to the data itself.

Relief-F algorithm is a feature weighting algorithm, which assigns different weights to features according to the relevance 
between features and categories. The higher the weight of the feature is, the more powerful the classification ability of the 
feature is. Thus, features can be selected according to the weight.

LDA, SVM and DT

LDA is a classic algorithm for pattern recognition, which is nonparametric and easy to train. The idea of LDA is to project 
high-dimensional samples into one-dimensional space, making the distance between samples of the same category as small as 
possible and the distance between samples of different categories as large as possible.

SVM is a supervised learning algorithm, which uses an optimal hyperplane to separate samples in feature space. In the case 
of linear inseparability, samples can be mapped to high-dimensional space by kernel function, so that samples can be linearly 
separable in high-dimensional space. SVM is suitable for small sample classification.

DT is a prediction model expressed in the form of tree structure. DT consists of nodes and directed edges. There are two 
types of nodes: internal nodes and leaf nodes. Internal nodes represent a feature or attribute, and leaf nodes represent a class. 
The key of DT is how to choose the optimal partition attribute at each split node. In our study, Iterative Dichotomiser 3 (ID3) 
algorithm is used to generate DT.

Figure S1 ROC curve of different class. Each class was considered 
as a positive sample in turn and the rest was treated as a negative 
sample, thus there are three ROC curves. The AUC of class 1, 
2, and 3 were 0.97, 0.93, and 0.98, respectively. ROC, receiver 
operator characteristic; AUC, area under the curve.

Figure S2 ROC curve of different class in the validation cohort. 
Each class was considered as a positive sample in turn and the 
rest was treated as a negative sample, thus there are three ROC 
curves. The AUC of class 1, 2, and 3 were 0.76, 0.41, and 0.48, 
respectively. ROC, receiver operator characteristic; AUC, area 
under the curve.


