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Background: Ovarian cancer (OC) is the most lethal type of malignancies in the female reproductive 
system. This study aimed to identify novel biomarkers and potential small molecule drugs in OC by 
integrating two expression profile datasets. 
Methods: GSE18520 and GSE14407 from the Gene Expression Omnibus (GEO) database were selected 
and the overlapped differentially expressed genes (DEGs) were detected. The Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were performed 
to establish the protein-protein interaction (PPI) network of DEGs and identified the hub genes. Gene 
Expression Profiling Interactive Analysis (GEPIA), Oncomine database and The Human Protein Atlas (HPA) 
were used to validate the expression of the identified hub genes. The prognostic value of these hub genes 
were evaluated by the Kaplan Meier plotter online tool. The expression of NCAPG was further explored by 
immunohistochemistry in our OC tissues. Moreover, CMap database was used to look for prospective small 
compounds with therapeutic efficacy based on OC RNA-seq. 
Results: A total of 433 DEGs were identified. The DEGs were mainly enriched in negative regulation of 
transcription and pathways in cancer. A PPI network was constructed with 344 nodes and 1,596 interactions. 
The top ten module genes were chosen as hub genes. Among which, survival analysis showed that patients 
with high expression of CCNB1, TOP2A, NUSAP1, NCAPG, KIF20A and DLGAP5 had poorer survival 
results than those with low expression. These six genes were all overexpressed in OC tissue by means of 
bioinformatics analysis. In our clinical patients, the expression rate of NCAPG in OC tissues was significantly 
higher than that in benign serous ovarian cystadenoma and borderline serous ovarian cystadenoma tissues. 
Meanwhile, several small molecules with potential therapeutic efficacy against OC were identified in our 
study.
Conclusions: By means of bioinformatics analysis, we identified six real hub genes and indicated a group 
of candidate small molecule drugs as adjunctive agents for OC. They could be the potential novel biomarkers 
for the diagnosis and promising therapeutic targets of OC. 
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Introduction 

Ovarian cancer (OC) is the second most common 
gynecologic cancer and most deadly gynecologic malignancy 
around the world, with 1.6% incidence and 2.1% mortality 
in 2020 and a 5-year survival rate as 47.6% (1,2). As of 
2021, OC is still the fifth cause of cancer related death in 
females in the United States (3). There are approximately 
225,500 new cases and an estimated 140,200 ovarian cancer-
related deaths each year (4). The high annual mortality 
was attributed to late diagnosis and recurrence associated 
with chemotherapy-resistance. Most patients diagnosed 
with metastatic disease will have disease recurrence within  
5 years, and the 5-year survival rate is reduced to <20% (5). 
At present, the most common treatment is cytoreductive 
surgery combined with platinum-based chemotherapy. 
However, 60% of patients relapsed following first-line 
treatment and 50% were resistant to chemotherapy. 
Therefore, it is crucial to discover valid biomarkers for early 
diagnosis and find drugs that affect the mechanism of drug 
resistance.

In recent years, a significant number of genes and targets 
related to the disease were found because of the Human 
Genome Project and other genomic studies. With the 
rapid development of gene microarray technologies and 
high throughput sequencing (6), more and more ovarian 
cancer related differentially expressed genes (DEGs) and 
functional pathways having exactly been identified, leading 
to breakthroughs in the ovarian cancer research. Thanks to 
the advent of bioinformatics, direct drug development for 
biomolecules against disease-related targets has gradually 
become the primary strategy for drug development (7).

In this research, GSE18520 and GSE14407 from 
the Gene Expression Omnibus (GEO) database were 
selected and the overlapped DEGs were detected. The 
Gene Ontology (GO) analysis and Kyoto Encyclopedia 
of Genes and Genome (KEGG) pathway enrichment 
analysis were performed to establish the PPI network of 
DEGs and identified the hub genes. Furthermore, we 
validated the expression of the identified hub genes by using 
Gene Expression Profiling Interactive Analysis (GEPIA), 
Oncomine database and Human Protein Atlas (HPA) 
databases. The prognostic value of them were evaluated 
by the Kaplan Meier plotter online tool. NCAPG is one 
of the identified hub gene. The expression of NCAPG was 
further explored by immunohistochemistry in our OC 
tissues. Moreover, we used the CMap database to look for 
prospective small compounds with therapeutic efficacy 
based on OC RNA-seq, indicating the way for future 

drug development. We present the following article in 
accordance with the REMARK reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-21-
2890/rc).

Methods 

Data resources 

Two original microarray datasets were downloaded from 
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). 
GSE18520, which was based on the GPL570 (HG-U133_
Plus_2; Affymetrix Human Genome U133 Plus 2.0 Array), 
contained 53 high-grade serous papillary carcinoma 
samples and 10 normal ovarian surface epithelium samples. 
The platform for GSE14407 is also GPL570, contained  
12 serous papillary ovarian cancer samples and 12 normal 
ovarian epithelium samples. 

Data preprocessing and DEGs screening 

The GEO2R online tools were utilized to identify the 
DEGs between OC samples and normal tissue samples 
with the cutoff threshold of adjust P<0.05 and |log2(fold 
change)| >2. The online Venn 2.1.0 software (https://
bioinfogp.cnb.csic.es/tools/venny/) was applied to get the 
overlap genes between the two datasets. 

Functional annotation and pathway analysis

GO enrichment analysis is a commonly used approach to 
investigate the biological process (BP), molecular function 
(MF) and cell component (CC) of genes or gene products. 
KEGG is a widely used database for identifying functional 
and metabolic pathways. The DAVID (Annotation, 
Visualization and Integrated Discovery) database (version 
6.8; http://david.abcc.ncifcrf.gov/) was used to carry out 
GO function and KEGG pathway enrichment analysis. 
P<0.05 was set as the cut-off criterion for the significant 
enrichment.

Protein-protein interaction (PPI) network construction 
and module analysis

The online database Search Tool for the Retrieval of 
Interacting Genes (STRING, version 11.0, https://
string-db.org/) was used to illustrate the potential 
interrelationships among the overlapping DEGs. Then 
the Cytoscape software (https://cytoscape.org) was utilized 

https://tcr.amegroups.com/article/view/10.21037/tcr-21-2890/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-21-2890/rc
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
http://david.abcc.ncifcrf.gov/
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to construct the network and investigate the interaction 
relationship of the DEGs encoding proteins in OC. A 
combined score above 0.4 was set as the cut-off value. 
Finally, the MCODE (Molecular Complex Detection) plug-
in of Cytoscape software was used to visualize and identify 
significant modules from the PPI network for the selection 
of hub genes (degree =5, node score =0.2, k-core =2, and 
maximum depth =100).

Validation of key genes 

The intersecting genes from the enrichment pathways and 
top 10 nodes in PPI network were identified as hub genes. 
“Expression analysis-Box Plots” module of The Gene 
Expression Profiling Interactive Analysis (GEPIA, http://
gepia.cancer-pku.cn) was adopted for analyzing hub genes 
mRNA levels in OC, considering that the default setting 
cut-off value are the |Log2FC| Cutoff:1, P value Cutoff: 
0.01, and “Match TCGA normal and GTEx data”. The 
Oncomine database (https://www.oncomine.org/) were also 
used to analyze their expression in OC compared with levels 
in normal specimens. The threshold value was set as follows: 
fold change: 1, P value: 0.05, and gene ranking: 10%.

The immunohistochemical results of the real hub genes 
were obtained from the Human Protein Atlas (version 18, 
https://www.proteinatlas.org/). The Kaplan-Meier-plotter 
(http://kmplot.com/analysis) online database was used to 
evaluate survival analysis of these 10 hub genes. A total of 
1,656 OC patients for overall survival (OS) analysis. The 
genes and Affy ID are as follows: CCNB1 (214710_s_at), 
TOP2A (201291_s_at), NUSAP1 (218039_at), NCAPG 
(218662_s_at), KIF20A (218755_at), DLGAP5 (203764_at), 
CDK1 (203468_at), FOXM1 (202580_x_at), RRM2 (202580_
x_at), AURKB (209464_at). 

Median expression of hub genes of all samples was 
chosen as a cut-off to divide samples into the high 
expression group and low expression group. The Kaplan-
Meier analysis was performed to investigate the prognosis 
of patients in the two groups. 

Identification of candidate small molecules

The Connectivity Map (CMap) database (http://www.
broadinstitute.org/cmap/), which is based on the gene 
signature of OC was used to find potential drugs for 
patients. The common dysregulated probe sets were used to 
query the CMap database. 

Using the perl language, convert the up- regulated genes 
and down-regulated genes in Table 1 to GPL571 probe 
IDs and enter them into the CMap official online “rapid 
query” tool. Tag files can be found in the Supplementary 
Material. As a result, the enrichment scores that represent 
similarity were calculated (ranging from –1 to 1). A 
positive connectivity score (closer to 1) shows that a 
drug is capable to induce the input signature of OC cells, 
whereas a negative connectivity score (closer to −1) shows 
that a drug is capable to reverse the input signature. The 

Table 1 Patient characteristics at baseline

Characteristics
Malignant 

(n=69)
Borderline 

(n=15)
Benign 
(n=35)

Age, years, n (%)

≤60 48 (69.6) 12 (80.0) 27 (77.1)

>60 21 (30.4) 3 (20.0) 8 (22.9)

FIGO stage, n (%)

I 8 (11.6)

II 10 (14.5)

III 45 (65.2)

IV 6 (8.7)

Histologic grade, n (%)

Low grade 31 (44.9)

High grade 38 (55.1)

CA125, n (%)

≤500 27 (39.1)

>500 42 (60.9)

HE4, n (%)

≤500 39 (56.5)

>500 30 (43.5)

Ascites

Yes 45 (65.2)

No 24 (34.8)

Lymph node metastasis

Yes 37 (53.6)

No 29 (42.0)

Ki 67, n (%)

≤50% 19 (27.5)

>50% 50 (72.5)

FIGO, International Federation of Gynecology and Obstetrics.

https://www.oncomine.org/
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negative connectivity scores were confirmed as candidate 
molecules with potential therapeutic value. Tomographs of 
these candidate small molecular drugs were inquired in the 
Pubchem database (https://pubchem.ncbi.nlm.nih.gov/). 

Human tissue samples

Totally 69 serous ovarian cancer, 35 benign serous 
ovarian cystadenoma tissues and 15 borderline serous 
ovarian cystadenoma tissues were obtained, all of them 
underwent first surgery at the Department of Obstetrics 
and Gynecology of the First Hospital of Lanzhou 
University from January 2015 to December 2020. None 
of them had received any chemoradiation, radiation, or 
other treatments before the surgery. The diagnoses of 
the pathological sections were confirmed by pathology 
department consultation (Table 1). This study was approved 
by the Ethics Committee of the First Hospital of Lanzhou 
University. All the patients were informed and signed 
informed consent. 

Immunohistochemical analysis

Each tissue was embedded in paraffin blocks and continues 
processed into 4-μm thick paraffin sections. Specimens were 
deparaffinized and hydrated, 3% H2O2 were used for 15 
min to eliminate endogenous peroxidase and then citrate 
buffer solution (pH=6) were used to repair antigens. The 
sections were then blocked with 10% serum for 60 min 
and incubated with rabbit anti-NCAPG antibody (1:100; 
Abcam, ab251864, Cambridge, UK) at 4 ℃ overnight 
followed by incubation with secondary antibody goat anti-
rabbit IgG (Zhongshan Golden bridge Biotechnology, 
SAP-9100, Beijing, China) for 30 mins at 37 ℃. Then 
diaminobenzidine and hematoxylin were employed to stain 
these sections, and they were sealed with neutral resins. 
The results were evaluated by two pathologists blindly and 
randomly. The positive staining of NCAPG was located in 
the cytoplasm and membrane. The intensity of NCAPG 
expression was scored as follows: 0, negative staining; 1, 
mild staining; 2, moderate staining; 3, strong staining. The 
percentage of NCAPG expression was scored as follows: 0, 
<10% positive cancer cells; 1, 11–25% positive cancer cells; 
2, 26–50% positive cancer cells; 3, 51–75% positive cancer 
cells; 4, >75% positive cancer cells. The final scores of each 
staining were calculated by multiplying the two scores. The 
section with a score of 0–4 was defined as a low expression, 

whereas the section with a score of 5–12 was defined as high 
expression. 

Statistical analysis 

Statistical analysis was performed using SPSS software 
(version 26.0). In our tissue samples, Chi-square test was 
used to analyze the difference between three groups. The 
P<0.05 was considered to indicate a statistically significant 
difference. 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the First Hospital 
of Lanzhou University (No. LDYYLL2019-275) and 
individual consent for this retrospective analysis was waived.

Results 

Identification of DEGs in OC

A total of 433 overlapping genes (Table 2) were extracted 
to be differentially expressed. 159 up-regulated genes  
(Figure 1A) and 274 down-regulated genes (Figure 1B) as 
shown respectively in the Venn diagrams.

Enrichment analyses

The bubble map was revealed via the ggplot2.R package for 
the top 10 significant GO and pathway based on P value. 
For BP of GO enrichment, GO analysis results showed 
that DEGs were markedly enriched in negative regulation 
of transcription (Figure 2A). As for CC of GO enrichment, 
DEGs were particularly involved in extracellular region 
(Figure 2B). In addition to MF, the overlapping DEGs were 
particularly enriched in calcium ion binding (Figure 2C).  
Furthermore, KEGG pathway enrichment analysis 
demonstrated that these DEGs were mainly enriched in 
pathways in cancer and proteoglycans in cancer (Figure 2D).

PPI network construction and module analysis

There were 344 nodes and 1,596 edges found in the network 
(Figure 3A). The module genes CDK1, FOXM1, CCNB1, 
RRM2, AURKB, TOP2A, NUSAP1, NCAPG, KIF20A and 
DLGAP5 were the most significant 10 node degree genes 
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Table 2 Screening DEGs in ovarian cancer by integrated microarray

DEGs Genes name

Upregulated (159) HMGA1 LZTS3 MECOM SUSD2 CLUH CD24 KLHL14 DUXAP10 SOX17 MCM10 LOC101060391 C1orf186 CLDN3 
GRHL2 ELF3 LYPD6B WFDC2 NEK2 DLX6-AS1 CP E2F1 MPZL2 FOXM1 NES SMIM22 ESM1 ARHGAP11B SLC52A2 
KLF12 KIF14 CLDN4 C1orf106 TIMELESS CYYR1 FOLR1 SUSD4 PSAT1 DLGAP5 EHF NRXN1 PAX8 KIF20A 
SCGB2A1 FILIP1 BUB1 GPM6B LPAR3 FAM83D TTK AIF1L TRIP13 CENPF CEP55 NCAPG SLC4A11 RNF157-AS1 
DTL IGF2BP3 CATIP-AS1 CDCA5 KIF4A S100A1 SLC2A1 EPCAM KIF11 EPHX4 STON2 BUB1B MELK UBE2C LIMS3 
CRABP2 MUC1 SULT1C2 CENPA SOX9 PROM2 CBS SORT1 ESRP1 MXD3 CKS2 CDK1 PRC1 FZD10 CDC20 CXXC5 
TOP2A CENPK CDH6 MMP7 LOC101928554 FOXQ1 ECT2 LINC00511 ESCO2 C8orf4 CCNB2 NUSAP1 S100A2 
KLK6 LYNX1 PRR11 KIAA0101 C12orf56 LYPD1 EPB41L5 RGS1 PRSS2 LRP8 CENPU NR2F6 SLC26A7 HMMR 
CCNB1 RAD51AP1 S100A13 RRM2 PRAME ST6GALNAC1 MTHFD2 MTFR2 MAL TTC39A INHBB KLK8 AURKB 
KIAA1217 LOC150051 DCDC2 DIS3L2 HEY2 GLDC TMTC1 LCN2 DUXAP10 DEPDC1 RAPGEF3 DIRAS2 MAGEA11 
HIST1H1C PTX3 KCCAT333 PCDH7 NRTN TFAP2A SCGB1D2 HMGA2 MEOX1 FAM107A DEFB1 PTH2R LOC613266 
COL12A1 WDR72 LIX1 SST PDCL2 

Downregulated 
(274)

LINC01105 BNC1 ITLN1 LHX9 MAF PDE8B GADL1 PEX5L SVEP1 ABCA8 REEP1 NKX3-1 METTL7A HAND2-AS1 
HBB SNX29P2 SNCAIP OGN GFPT2 SYT4 SNX13 ANTXR2 SLC4A4 MNDA AADACL2 DIRAS3 CHGB WNT2B 
CLDN15 HBA1 NPY1R AOX1 GPRASP1 BCHE PRG4 PPM1K TBX3 LGALS2 CLEC4M DOCK5 HELQ TCEAL2 
AGTR1 SMPD3 TCEAL7 S100A10 SFRP1 PCOLCE2 SNCA PKD2 ADH1B SHISA3 DDR2 PTPRZ1 DFNA5 B3GALT2 
MTUS1 LGALS8 ADH1C PRSS35 EIF1 ALDH1A2 DSC3 AKAP12 TCF21 PCDH9 PROCR NBR1 CMAHP CALB2 
CPB1 CSGALNACT1 ARHGAP18 GATA4 FLRT2 SEMA5A THBD OGFOD1 DST BTD FAM153B MGARP COL8A1 
LHX2 WNT16 LSAMP HBG1 ABHD12B ANKRD29 CHRDL1 SORBS2 HLF DAB2 ADGRD1 PTGDR OMD GAS1RR 
RYR2 SERTM1 KLF2 RTN1 MGC24103 LOC100996760 MCTP2 KCNT2 TMEM37 PDGFD SPOCK1 PLEKHH2 VGLL3 
TMEM255A ILDR2 ARX ANXA8 LINC01133 ANXA1 NELL2 DMD PTGIS NR2F1-AS1 HHIP LOC286191 CXorf57 
SLC30A4 PAPSS2 FGF1 PLCE1 BDH2 TFPI BCAR3 RBMS3 NEFH PEG3 PMP22 IL18 FAM153B C7 RERG MEOX2 
HSD17B2 MARCO PRDM5 RAB27B GHR IRAK3 AKT3 FGF13 ABI3BP CALCRL MEDAG CPED1 NT5E HPSE EZR 
OLFML1 SLC41A2 ALDH1A1 NEGR1 PTGER3 BAMBI PCDH17 CFI GIPC2 DOCK11 CELF2 MUM1L1 SBSPON 
NLGN4X CFC1 DPP10 RNASE4 AQP9 CYP39A1 LY75 DTNA RGS4 SCD5 EFEMP1 MMP28 LIMA1 GPM6A SDPR 
PRRX1 NAP1L2 CLMP GABRB2 RUNX1T1 RNF128 NXPH2 AKR1C2 CYP2U1 CNTN1 PTHLH NAP1L3 SIGLEC11 
FABP4 PITPNC1 CAV1 DSE CNTN4 KLF4 PDPN FLRT3 C1orf168 FAM134B ARHGAP44 CBLN4 GATM HSD17B6 
ECM2 PGR PKHD1L1 CFH SFRP2 HPGD ADAMTS3 TMEM150C DPYD MGP MCOLN3 LAMA4 CYS1 NKAIN2 
COL14A1 S100A8 TRPC1 FAM13C MCC RARRES1 TBX18 COL3A1 BNC2 LRP2 DCN LINC01279 NBEA SLITRK5 
ITM2A FRY GNG11 FGF9 FAM155A CCDC80 LINC01116 ZFPM2 GAS1 FRAS1 TMEM98 WDR17 TSPAN8 RASSF3 
SLIT2 PRKAR2B NDN TFPI2 DPP6 MDFIC TLE4 PROS1 PHLDB2 CFH NRXN3 MSRB3 BEX1 MEIS2 ARRDC4 GATA6 
STK26 MAOA CRNDE WNT5A RSPO1 MICU3 PCDH20

DEGs, differentially expressed genes.

Figure 1 Venn diagram of overlapping 433 DEGs in the two datasets. Different color represents different datasets. (A) 159 Up-regulated 
DEGs (logFC >0). (B) 274 Down-regulated DEGs (logFC <0). DEGs, differentially expressed genes. 
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358                  159                  827  366                  274                  413  

A B



Translational Cancer Research, Vol 11, No 6 June 2022 1635

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(6):1630-1643 | https://dx.doi.org/10.21037/tcr-21-2890

Figure 2 Functional and signaling pathway analysis of the overlapped DEGs in OC. (A) Biological processes. (B) Cellular components. (C) 
Molecular function. (D) KEGG pathway. DEGs, differentially expressed genes; OC, ovarian cancer; KEGG, Kyoto Encyclopedia of Genes 
and Genome.
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and identified as the hub genes (Figure 3B). Additionally, 
the most important PPI network module was detected using 
MCODE (Figure 3C). Pathway enrichment analysis showed 
that the most top module genes were primarily enriched in 
cell cycle, p53 signaling pathway, progesterone-mediated 
oocyte maturation and oocyte meiosis (Table 3). 

Validation of hub genes

GEPIA and Oncomine tool verified that the expressions 
of CDK1, FOXM1, CCNB1, RRM2, AURKB, TOP2A, 
NUSAP1, NCAPG, KIF20A and DLGAP5 were significant 
elevated in OC compared with normal ovarian tissues 
(Figure 4A,4B). It was found that higher expressions of 
CCNB1, TOP2A, NUSAP1, NCAPG, KIF20A and DLGAP5 
were significantly correlated with worse overall survival 
for OC patients (Figure 5). Via the Human Protein Atlas 
database, these six genes’ expression were higher in OC 
compared than in normal tissues (Figure 6). 

Validation of NCAPG expression in patient tissues

As shown in Table 4 and Figure 7, NCAPG was mainly 
located in the cell cytoplasm and membrane. The scoring 

system results demonstrated that NCAPG high expression 
rate was 58/69 (84.1%) in serous ovarian cancer (SOC) 
samples, which was significantly higher than that in benign 
serous ovarian cystadenoma (5/35, 14.3%) and borderline 
serous ovarian cystadenoma tissues (2/15, 13.3%) (P<0.05).

Identification of related small molecule drugs

According to the P value, the top 10 related small molecules 
which matched to the OC gene expression changes are 
listed in (Table 5). Six of these small molecules indicated 
a negative correlation and showed that latent capacity 
of tumor inhibition in clinical applications, four of them 
indicated a positively correlation. Among them, trichostatin 
A, vorinostat, phenoxybenzamine, 8-azaguanine showed 
a significantly negative correlation (P<0.05) and the 
tomography of them shown in (Figure 8). 

Discussion 

Ovarian cancer remains the most lethal gynecologic 
cancer due to delayed diagnosis, which could explain the 
dismal prognosis of OC patients. Early diagnosis of OC 
will improve the overall survival. Therefore, to discover 
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Figure 3 The PPI network analysis of DEGs and module analysis. (A) The PPI network consisted of 344 nodes and 1596 edges were 
constructed by overlapping DEGs. Bigger nodes and dark colors represent genes with higher degree values. (B) Top 10 hub genes in the 
PPI network. (C) The most top module of PPI network identified in MOCDE. DEGs, differentially expressed genes; PPI, protein-protein 
interaction; MCODE, Molecular Complex Detection.
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Table 3 KEGG pathway analysis of module genes

Pathway ID Pathway description Gene counts P value

4110 Cell cycle 7 1.39E-08

4115 p53 signaling pathway 4 1.33E-04

4914 Progesterone-mediated oocyte maturation 4 3.06E-04

4114 Oocyte meiosis 4 5.99E-04

KEGG, Kyoto Encyclopedia of Genes and Genome.

reliable biomarkers and to reveal the possible molecular 
mechanisms of OC is especially important for diagnosis and 
prognosis. In the present study, we utilized bioinformatics 
methods to identify novel biomarkers and potential small 
molecule drugs in OC by integrating two expression profile 
datasets GSE18520 and GSE14407. 433 common DEGs 
were identified, among which 159 genes were upregulated 
and 274 genes were downregulated. Applied GO function 
and KEGG pathway enrichment analysis, we found that the 
biological processes involved in DEGs were mainly acted in 
negative regulation of transcription and DNA-templated. 
The DEGs were mainly enriched in Pathways in cancer 
and Proteoglycans in cancer. These DEGs might involve in 
the carcinogenesis of OC by means of affect the biological 
behavior of OC cells via these pathways.

Based on the identified DEGs, we constructed a PPI 
network with 344 nodes and 1596 interactions. We 
extracted the most important module with the most 
significant degree from the PPI network. The top ten 
module genes CDK1, FOXM1, CCNB1, RRM2, AURKB, 
TOP2A, NUSAP1, NCAPG, KIF20A, and DLGAP5 were 
chosen as hub genes based on their degree rankings. 
Survival analysis for 1,656 OC patients from Kaplan 
Meier plotter database showed that patients with higher 
expression of CCNB1, TOP2A, NUSAP1, NCAPG, KIF20A 
and DLGAP5 experienced worse survival outcomes than 
those with low expression. These results provide signs for 
us to create an ovarian cancer prognosis model, allow us 
to more correctly identify high-risk patients. The GEPIA, 
Oncomine and the Human Protein Atlas database showed 
that they were all overexpressed in OC tissue.

NCAPG (non-structural maintenance of chromosomes 
condensin I complex subunit G), a crucial component of the 
chromosomes condensin complex, which plays an important 
role in the condensation and stabilization of chromosomes 
during meiosis and mitosis (8). In hepatocellular carcinoma 
(HCC), Wang et  al .  found that elevated NCAPG 

expression was remarkably associated with worse disease-
free survival and overall survival in patients suffering from 
HCC. NCAPG could be regard as a novel prognostic 
biomarker to predict HCC early recurrence after surgical  
resection (9). Arai et al. reported that high NCAPG 
expression was closely related to prognosis and clinical 
stage in patients with prostate cancer. Knockdown of 
NCAPG significantly inhibited the ability of proliferation, 
migrationand invasion in prostate cancer cells (10). In 
our studies, we verified the expression of NCAPG by the 
immunohistochemistry analysis in ovarian cancer tissues. 
The results showed that the expression rate of NCAPG 
in OC tissues was significantly higher than that in benign 
serous ovarian cystadenoma and borderline serous ovarian 
cystadenoma tissues that obtained from clinical patients, 
and the tendency was consistent with the results discussed 
above. Taken all these studies together, we assumed that 
NCAPG may be a valuable biomarker for the diagnosis and 
prognosis of various cancer patients.

CCNB1 (Cyclin B1), one member of the cyclin family, 
an important regulator in normal cell cycle progresses at 
the G2/M transitions by binding to CDK1 (11), plays a 
key role in various human malignancies. Han et al. found 
that knockdown long non-coding RNA SOX2OT could 
inhibit ovarian cancer cell migration and cell invasion by 
downregulated CCNB1 (12). 

TOP2A (topoisomerase II alpha), is a key enzyme in 
DNA transcription and replication, repair, chromosome 
condensation and separation (13), which has been identified 
overexpression in several cancer types. Researchers found 
that TOP2A is the prime therapeutic target of many 
anticancer therapy regimens. It was proved that inhibitors 
targeting human topoisomerase II alpha were useful 
chemotherapy option for the treatment of many patients 
suffering from all kinds of cancers (14).

NUSAP1 (nucleolar and spindle associated protein 1) 
played a role in mitotic progression, spindle formation, and 
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Figure 4 Validation the expression of hub genes on transcription level by (A) GEPIA database and (B) Oncomine database. GEPIA, Gene 
Expression Profiling Interactive Analysis.
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Figure 6 Validation the expression of 6 hub genes on translational level by The Human Protein Atlas database (immunohistochemistry).

Figure 5 The prognostic value of the 6 hub genes in ovarian cancer patients. Prognostic value of CCNB1. (B) Prognostic value of TOP2A. 
(C) Prognostic value of NUSAP1. (D) Prognostic value of NCAPG. (E) Prognostic value of KIF20A. (F) Prognostic value of DLGAP5. HR, 
hazard ratio.
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Figure 7 The immunohistochemical analysis of NCAPG in serous ovarian cancer. (A) A benign ovarian tissue showing low NCAPG 
expression. (B) A borderline ovarian tissue showing low NCAPG expression. (C) A serous ovarian cancer showing high NCAPG expression. 
NCAPG, non-structural maintenance of chromosomes condensin I complex subunit G.

×200

×400

Benign ovarian tissue Borderline ovarian tissue Serous ovarian cancerA B C

Table 4 Expression of NCAPG in different ovarian tissues

Group Cases
NCAPG expression

High expression cases Low expression cases χ2 P value

Malignant 69 58 (84.1%) 11 (15.9%) 57.412 0.000

Benign 35 5 (14.3%) 30 (85.7%)

Borderline 15 2 (13.3%) 13 (86.7%)

NCAPG, non-structural maintenance of chromosomes condensin I complex subunit G.

stability overexpression of NUSAP1 has been found in a 
variety of human malignancies, and it is commonly linked to 
tumor invasiveness. Zhang et al. reported that the expression 
of NUSAP1 in OC tissues and cells was upregulated, which 
could promote the proliferation and invasiveness of OC 
cells (15). 

KIF20A (Kinesin family member 20A), as a mitotic 
kinesin-like protein, belongs to the kinesin perfamily-6. 
Depending on microtubule-dependent plus-end motility, 
KIF20A is contributed to different cellular processes 
including formation of the mitotic spindle and chromosome 
partitioning. In the field of oncology, increasing studies 
illustrated its carcinogenic properties in various types of 
cancers. 

DLGAP5 (Discs large-associated protein 5), also known 
as HURP, is a mitotic spindle protein that plays a crucial 
role in the formation of novel tubulin sheet, the formation 
of facilitating spindle, and forming a connection between 
the centrosome and kinetochore (16). A large number 
of studies has shown DLGAP5 serve as oncogenic role 
in many types of human cancers. Chen et al. reported 
that DLGAP5 silencing could suppress tumorigenicity 
and cellular proliferation by arresting the cell cycle at 
the G2/M phase in ovarian cancer cells (17). All results 
above suggested that these 6 hub genes may relate to the 
occurrence and development of OC.

In this study, we also identified several small molecules 
with potential therapeutic efficacy against OC. Trichostatin 
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Figure 8 The tomographs of the four candidate small molecule drugs for OC. OC, ovarian cancer.

Trichostatin A Vorinostat

8-azaguaninePhenoxybenzamine

Table 5 List of the top ten OC-related small molecules with highly significant correlations in results of CMap analysis

Rank CMap name Mean N Enrichment P value

1 Trichostatin A –0.469 182 –0.428 0.00000 

2 Vorinostat –0.598 12 –0.621 0.00000 

3 Phenoxybenzamine –0.835 4 –0.937 0.00000 

4 8-azaguanine –0.768 4 –0.917 0.00010 

5 Resveratrol –0.694 9 –0.669 0.00016 

6 Podophyllotoxin 0.672 4 0.849 0.00074 

7 Chenodeoxycholic acid 0.595 4 0.846 0.00080 

8 Thioperamide 0.563 5 0.798 0.00082 

9 Vinburnine 0.576 4 0.83 0.00127 

10 Luteolin –0.734 4 –0.835 0.00131 

Cmap, Connectivity Map; OC, ovarian cancer.

A (TSA), as a potent inhibitor of histone deacetylase 
(HDAC), was considered to be the most significant small 
molecule with strong dose-dependent antitumor activity. 
Drug resistance is the main cause of the high mortality 
in patients with OC. Combination therapy is a possible 
method of overcoming drug resistance. More and more 
studies confirmed that TSA could enhance the antitumor 
effects when combinated with other anticancer drugs in 
multifarious cancer cells (18-20). Lambert (21) found 
that TSA could reduce cell viability instigates apoptosis, 
autophagy, inhibition of cell cycle progression in human 
ovarian cancer cells. Zhang (22) confirmed that TSA caused 
significant cytotoxicity and induced apoptosis in SKOV3 
cells. Vorinostat is a small molecule inhibitor of both class 

I and class II HDAC enzymes. It can directly activate 
p21WAF1/CIP1 gene transcription, which is one of the most 
important cyclin-dependent kinase (CDK) inhibitors in 
ovarian cancer cells (23). Vorinostat has been reported to 
produce specific modifications in the pattern of acetylation 
and methylation of lysines in H3 and H4 histones that are 
associated with the p21WAF1/CIP1 gene promoter (24). It played 
an important role in antiproliferative and proapoptotic 
effects by inducing the expression of IL-8/CXCL8 in OC 
cells (25). In ovarian cancer cell lines, the combination 
of vorinostat and paclitaxel was superior to either drug 
individually (26). Phenoxybenzamine, is approved for the 
treatment of hypertensive emergencies associated with the 
adrenal medulla tumors and pheochromocytomas by the US 
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Food and Drug Administration. At present, more and more 
studies have reported that phenoxybenzamine can inhibit 
the growth, invasion, and migration of human tumor cells 
as a histone deacetylase inhibitor. Inchiosa (27) reported 
that Phenoxybenzamine could inhibitory the activity of 
OVCAR-8 cells. 8-Azaguanin (8-AG), originally developed 
as an antineoplastic agent, but recent study has found it 
to be a novel immunomodulatory drug (28). 8-AG as an 
immunomodulatory drug, increased the functionality of NK 
cells via NK-target cell conjugate formation and cytolytic 
granule polarization. But it has not yet been demonstrated 
to have effectiveness against OC, and therefore further 
research is required.

In summary, by means of bioinformatics analysis, we 
identified six real hub genes of OC, including CCNB1, 
TOP2A, NUSAP1, NCAPG, KIF20A and DLGAP5. Survival 
analysis showed these genes were significantly associated 
with negative survival of patients with OC. They might 
play crucial roles and as novel biomarkers in OC diagnosis, 
prognosis and treatment. In this study, we also indicated 
several important signaling pathways associated with 
the OC onset and progression, and identified a group of 
candidate small molecule drugs as adjunctive agents for 
OC. However, further studies are needed to determine the 
relationship between OC and these pathways and these 
small molecule drugs.
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