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Background: To establish a pyroptosis-related gene (PRG) signature that could be utilized to predict 
hepatocellular carcinoma (HCC) survival and clinical features.
Methods: The Cancer Genome Atlas (TCGA) database was utilized to identify differentially expressed 
PRGs. Univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression 
analyses were utilized to establish the prognostic signature. The signature was verified in the International 
Cancer Genome Consortium cohort (ID: LIHC-US). Based on the medium-risk score, HCC samples were 
classified into high- or low-risk subgroups. For signature accuracy prediction, we utilized receiver operating 
characteristic (ROC) analysis and the Kaplan-Meier estimate (K-M). Molecular and immunological aspects 
were also reviewed using single-sample gene set enrichment analysis (ssGSEA). Finally, quantitative real-
time PCR (qRT-PCR) was utilized to verify the expression of hub genes in vitro.
Results: On basis of the 33 PRGs, five PRGs (CASP8, GSDMC, NLRP6, NOD2, and PLCG1) were 
identified that could predict HCC prognosis. Individuals with high-risk scores had significantly lower overall 
survival (OS) compared to those with low-risk scores. To assess and confirm this signature’s prediction 
performance, the area under the curve (AUC) of ROC curves was utilized. In multivariate analysis, the risk 
score was proven to be a significant independent prognostic factor. Immunological status and tumor cell 
infiltration in high-risk groups were both significantly greater than in low-risk groups, indicating that the 
immune system was more activated. qRT-PCR analysis demonstrated that the five PRGs in HCC cell lines 
were differently expressed in the prognostic signature.
Conclusions: The signature could precisely predict survival outcomes and reveal immune 
microenvironment composition, as well as strengthen the argument for more credible clinical and functional 
research in HCC patients.
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Introduction

Primary liver cancer (PLC) is the most prevalent cause of 
cancer mortality worldwide, and the fifth most frequent 
cause in the United States, which has a 5-year relative 
survival rate of 20% (1). Hepatocellular carcinoma (HCC), 
which accounts for approximately 80% of all cases, is 
the most predominant type of PLC (2). Most HCC risk 
factors are modifiable, including obesity, excessive alcohol 
consumption, cigarette smoking, and infection with the 
hepatitis B or C virus (3). At present, surgical excision, 
orthotopic liver transplantation, thermal ablation, and 
transarterial therapy are the primary treatment modalities 
for HCC (4). However, HCC is a highly heterogeneous 
disease, both from a clinical and a molecular standpoint (5).  
It results in recurrence after ablation or excision, 
progression after effective chemoembolization, and 
inefficient radiological assessment. Therefore, HCC 
patients  are advised to arrange mult idiscipl inary 
consultations, and treatment indications should be evaluated 
individually (6). Consequently, based on the limitations of 
the aforementioned HCC treatments, it is critical to build 
a novel signature to predict HCC patients’ survival and 
improve their clinical prognosis. 

Pyroptosis is a type of apoptosis in which cells enlarge 
to the point where their membranes break, releasing 
pro-inflammatory substances that initiate an aggressive 
inflammatory response (7). Pyroptosis has been associated 
with carcinogenesis and metastasis in a variety of tumors, 
including cancers of the liver, skin, stomach, lung, and 
breast (8,9). However, the connection between pyroptosis 
and cancer is not clear. Pyroptosis not only creates an 
inflammatory microenvironment, but it also stimulates the 
transformation of normal cells into tumor cells and the 
death of tumor cells. Furthermore, due to the development 
of tumor heterogeneity and the dynamic microenvironment, 
patients often show inadequate responses to anticancer 
therapies (10). With the emergence of next-generation 
sequencing (NGS), recent studies have explored HCC 
in relation to tumor heterogeneity, the mutational gene 
landscape, and tumor immunology, thereby demonstrating 
the effectiveness and potential ability of NGS to guide 
patients in their treatment (5,11). Recent studies have 
established and validated pyroptosis-related signatures for 
ovarian and thyroid cancer in prognosis prediction based 
on RNA sequencing (RNA-seq) (12,13). Although some 
studies on pyroptosis and HCC have appeared (14,15), 
it is important to construct a novel prognostic model of 

pyroptosis gene.
Therefore, we conducted a thorough investigation to 

determine the expression levels of genes implicated in 
pyroptosis in normal liver tissues and HCC tumors. To 
investigate the prognosis of HCC and the relationship 
between pyroptosis and immunological infiltration, a 
novel signature was created and validated. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-21-2898/rc).

Methods

Data collection

The Cancer Genome Atlas (TCGA) database was utilized to 
obtain RNA sequencing (RNA-seq) data for 374 HCC cases 
and 50 normal samples, as well as related clinical information 
(downloaded on 21 October 2021, https://portal.gdc.
cancer.gov/repository). The International Cancer Genome 
Collaboratory (ICGC) database was used to obtain the 
validation cohort’s RNA-seq data and clinical information 
(downloaded on 21 October 2021, https://dcc.icgc.org, ID: 
LIHC-US). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Analysis of differentially expressed pyroptosis-related genes 
(PRGs)

From the literature (8,16-18), we identified 33 genes 
associating with pyroptosis, which are listed in Table S1. In 
brief, 50 normal liver tissues and 374 HCC samples were 
obtained to identify differentially expressed genes (DEGs) 
in normal and cancerous tissues. DEGs with a P value <0.05 
were determined using R’s “limma” package. The genes 
related to pyroptosis in HCC were compared to normal 
liver tissues using a heatmap. The correlation of DEGs 
was analyzed with cutoff <0.2 and demonstrated by using 
“igraph” and “reshape2” modules within R package. Using 
the Search Tool for Recurring Instances of Neighbouring 
Genes (STRING) database (version 11.5), a protein-protein 
interaction (PPI) network was constructed for the DEGs 
(https://string-db.org).

Consensus clustering

The HCC samples were classified by consensus clustering 
using the “ConsensusClusterPlus” module within R 

https://tcr.amegroups.com/article/view/10.21037/tcr-21-2898/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-21-2898/rc
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://cdn.amegroups.cn/static/public/TCR-21-2898-supplementary.pdf
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package. Kaplan-Meier analysis of two cluster curves was 
performed using “survival” and “survminer” modules within 
R package. The relationship between clinical features 
and clusters was determined using the chi-square test and 
“pheatmap” module within R package.

Establishment and validation of the pyroptosis-related 
signature 

To further analyze the predictive utility of PRGs, we 
utilized Cox regression analysis in the TCGA cohort to 
determine the relationship between survival status and each 
gene. To obtain the prognostic signature, LASSO Cox 
regression analysis was utilized. This approach was utilized 
to reduce the potential gene list and establish the prognostic 
signature. In regression analysis using the “glmnet” module 
within R package, the status and overall survival (OS) of the 
TCGA cohort were utilized as dependent variables. After 
maintaining the five genes and their associated coefficients, 
the penalty parameter (λ) was calculated by relying on the 
minimal requirements. The risk score calculation was as 
follows: risk score = (expression level of gene 1 × coefficient) 
+ (coefficient × expression level of gene 2) + … + (expression 
level of gene n × coefficient). Based on the size of the risk 
score, patients in the cohort were divided into high- and 
low-risk groups. Kaplan-Meier curves with log-rank testing 
were utilized to assess the prognostic power in both TCGA 
and ICGC cohorts. Additionally, principal component 
analysis (PCA) was utilized to verify the specificity and 
sensitivity of the receiver operating characteristic (ROC) 
analyses, and a risk plot relying on the five-gene signature 
was built using “ggplot2” and “pheatmap” modules 
within R package. On an independent basis, univariate 
and multivariate Cox regression models were utilized to 
establish the predictive utility of the clinicopathological 
factors.

Function enrichment analysis

According to their median risk scores, individuals with HCC 
in the TCGA cohort were categorized into two groups. 
DEGs categorized as low- and high-risk were filtered in 
compliance with certain requirements [|log2FC| ≥1 and 
false discovery rate (FDR) <0.05]. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis were performed using the “ClusterProfiler” module 
within R package based on these DEGs. Single-sample 
gene set enrichment analysis (ssGSEA) was utilized for 

the infiltration score of immune cells and the activation of 
immune-related pathways using the “gsva” module within R 
package.

Cell culture

Cells (L02: human normal liver cells, Hep3B: liver cancer 
cells) from Chongqing Medical University’s Laboratory 
of Stem Cells and Tissue Engineering were used in this 
research. Cells were cultured in DMEM supplemented with 
1% penicillin-streptomycin and 10% fetal bovine serum 
(FBS) (Gibco, USA). Cells were incubated at 37 ℃ and  
5% CO2. 

Quantitative real-time PCR (qRT-PCR)

According to the manufacturer’s instructions, total RNA was 
extracted from cells using TRIzol (Takara, Japan), followed 
by reverse transcription using the PrimeScript RT Reagent 
Kit (Takara, Japan). For qRT-PCR, the SYBR Premix Ex 
Taq II Kit was utilized (Takara). The 2−ΔΔCt approach was 
utilized to assess relative expression levels, with GAPDH 
serving as an internal control. Each experiment was 
repeated at least three independent times. Table S2 contains 
a list of the primers used.

Statistical analysis

To compare continuous variables among low- and high-
risk groups, an independent t-test was employed. To test 
categorical data, the chi-square test was utilized. The log-
rank test in univariate Kaplan-Meier analysis was utilized to 
evaluate survival, whereas multivariate survival analysis was 
accomplished using the Cox regression model. To examine 
differences in immune infiltration between two groups, the 
Mann-Whitney test was employed. Statistical significance 
in qRT-PCR was indicated by Student’s t-test P<0.05. R 
language (version 4.1.0) was used to perform statistical 
analyses.

Results

Identification of DEGs in the TCGA cohort

The analysis of the expression levels of 33 PRGs was 
performed using TCGA database (50 normal and 374 tumor 
tissues), and 25 PRGs (P<0.05) were identified. Among 
them, 15 genes (IL6, IL1B, NLRP3, ELANE, NLRP6, 

https://cdn.amegroups.cn/static/public/TCR-21-2898-supplementary.pdf
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CASP4, SCAF11, PRKACA, CASP6, CASP9, AIM2, NLRP7, 
GPX4, NOD2, and PJVK) were downregulated, while ten 
genes (CASP3, NOD1, CASP8, GSDMD, NLRP1, GSDME, 
GSDMB, PYCARD, PLCG1, and GSDMC) were more 
prevalent within the cancer group. Figure 1A illustrates 
the heatmap of the RNA expression levels of these genes. 
PPI analysis was employed to understand the relationship 
between these pyroptosis-related genes, and the results were 
presented in Figure 1B. High confidence (0.7) was identified 
as the minimum required interaction score in the PPI 
study. We determined that CASP3, CASP8, NOD1, IL1B, 
NLRP3, AIM2, PYCARD, NLRP1, GSDMD, and CASP4 
were the hub proteins. Figure 1C depicts the correlation 

network of these PRGs.

Tumor classification based on the PRGs

This classification determined the association between 
the expression of the 25 PRGs and the subtypes of HCC. 
All 374 HCC samples (TCGA cohort) were subjected to 
consensus clustering analysis. When the clustering variable 
k=2, the minimal intragroup linkage suggested that the  
374 patients with HCC could be separated into two clusters 
(Figure 2A). The overall survival times of the two clusters 
were also examined, and significant differences were 
observed (P<0.001, Figure 2B). In the heatmap (Figure 2C),  

Figure 1 The 33 PRGs expression and interaction with one another. (A) Pyroptosis-related genes heatmap in normal (Normal, bright 
blue) and tumor tissues (Tumor, red). (B) The PPI network illustrates how the genes involved in pyroptosis interact (interaction score =0.7). 
(C) The linkage of pyroptosis-related gene network (red: positive correlation; blue: negative correlation). The intensity of the colours 
demonstrates the subject’s significance. *, P<0.05; **, P<0.01; ***, P<0.001. PRGs, pyroptosis-related genes; PPI, protein-protein interaction.
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the gene expression profile and clinicopathological 
information are shown (online table available at: https://
cdn.amegroups.cn/static/public/tcr-21-2898-1.pdf), and 
we found that tumor stage, tumor grade, and patient age 
between the two clusters were significantly different. 

Gene signature established from the TCGA cohort

HCC patients with survival time and status were extracted 
from the TCGA database. The PRGs with survival times 
were initially screened using univariate Cox regression 
analysis. Six genes (CASP8, GSDMC, NLRP6, NOD1, 
NOD2, and PLCG1) that met the P<0.05 criterion were 
used for further analysis. Among these, five genes (CASP8, 
GSDMC, NLRP6, NOD2, and PLCG1) were linked to HRs 
>1, whereas NLRP6 was the protective gene with HRs <1 
(Figure 3A). Using LASSO Cox regression analysis and 
relying on the optimum value λ, a five-gene signature was 
established (Figure 3B,3C). The formula was as follows: 
risk score = (0.225 * CASP8 exp.) + (0.305 * GSDMC 
exp.) + (−0.479 * NLRP6 exp.) + (0.561 * NOD2 exp.) + 
(0.180 * PLCG1 exp.) (exp. = expression). The median 

score was computed using the risk score formula that 
was utilized to classify HCC samples into low- and high-
risk subgroups (Figure 3D). According to the findings, 
there was a significant variation in OS time among the 
low- and high-risk groups (P<0.001, Figure 3E). High-
risk group patients died at a higher rate and survived for a 
shorter time than those in the low-risk group (Figure 3F).  
ROC analysis was utilized to assess the sensitivity and 
specificity of the prognostic model. The area under the 
receiver operating characteristic curve (AUC) for 1-year 
survival was 0.730, while the 3-year survival was 0.609, and 
the 5-year survival was 0.639 (Figure 3G). It was found that 
individuals with variable risk degrees could be categorized 
into two different groups using PCA (Figure 3H).

External validation of the risk signature

After removing patients with missing survival times and 
states, 294 HCC primary samples were included in the 
validation set from the ICGC cohort (ID: LIHC-US). 
Kaplan-Meier analysis relying on the median risk score in the 
TCGA cohort implied a statistically significant difference in 

Figure 2 Subgroups of HCC defined by PRGs. (A) Consensus score matrix for all samples in the TCGA cohort when k=2. (B) For the two 
clusters, a Kaplan-Meier OS analysis was performed. (C) The heatmap depicts the two clusters and their clinicopathologic characteristics 
based on DEGs in the TCGA cohort. *, P<0.05; ***, P<0.001. DEGs, differentially expressed genes; HCC, hepatocellular carcinoma; OS, 
overall survival; PRGs, pyroptosis-related genes; TCGA, The Cancer Genome Atlas.
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the survival rate among low- and high-risk groups (P=0.005, 
Figure 4A). Our model had a high predictive efficacy when 
applied to the ICGC cohort, as determined by ROC curve 
analysis (AUC =0.682 for 1-year, 0.573 for 3-year, and 0.624 
for 5-year survival) (Figure 4B). Additionally, in the ICGC 
cohort, 134 individuals were classed as low-risk, whereas the 
remaining 160 were classified as high-risk (Figure 4C). The 
low-risk group had a lower rate of mortality and a longer 
median survival time compared to the high-risk group 
(Figure 4D). According to PCA, the two subgroups were 
significantly distinct (Figure 4E).

Independent prognostic predicting factor of the risk 
signature

Univariate and multivariate Cox regression analyses were 
performed to assess whether the risk score acquired from 
the gene signature model could be utilized independently in 
HCC treatment. In TCGA and ICGC cohorts, the risk score 
was an independent predictor of poor survival, as revealed 
by univariate Cox regression analysis (Figure 5A,5B).  
Following adjustment of additional confounding factors, 
patients with HCC could be accurately predicted by the risk 

Figure 3 TCGA cohort risk signature development. (A) OS analysis utilizing univariate Cox regression with P<0.05 for each PRG and six 
genes. (B) Analysis of the six genes related with OS using LASSO regression. (C) Cross-validation is utilised to fine-tune the parameter 
selection for the LASSO regression. (D) Patients are distributed according to their risk score. (E) Each patient’s survival status. The abscissa 
represents survival risk, and the ordinate represents survival time. (F) Kaplan-Meier graphs depicting patients OS in high- and low-risk 
categories. (G) The AUCs for the risk score in the TCGA cohort. (H) Principal component analysis plot. AUCs, areas under the receiver 
operating characteristic curves; LASSO, least absolute shrinkage and selection operator; OS, overall survival; PC1, principal component 1; 
PC2, principal component 2; PRG, pyroptosis-related gene; TCGA, The Cancer Genome Atlas.

−6         −5         −4         −3

Log (λ)0       1        2       3       4        5

Hazard ratio

0        1       2       3       4        5       6        7       8        9      10

Time, years

0        1       2       3       4        5       6        7       8        9      10

Time, years

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y 10

8

6

4

2

0

S
ur

vi
va

l t
im

e,
 y

ea
rs

12.0

11.9

11.8

11.7

11.6

11.5

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

0.6

0.4

0.2

0.0

−0.2

−0.4

C
oe

ffi
ci

en
ts

1.0

0.5

0.0

−0.5

R
is

k 
sc

or
e

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

4

2

0

−2

−4

P
C

2

185 114 63 36 25 12 9 2 1 1 1
185 147 77 54 38 28 17 7 5 3 0

−6            −5            −4            −3

Log (λ)

−2           0           2           4           6

PC1

0.0       0.2      0.4       0.6      0.8       1.0

1−Specificity

0                100               200              300

Patients (increasing risk socre)

0               100              200             300

Patients (increasing risk socre)

CASP8

GSDMC

NLRP6

NOD1

NOD2

PLCG1

High risk
Low risk

Dead
Alive

High risk
Low risk

High
Low

AUC at 1 year: 0.730

AUC at 3 years: 0.609

AUC at 5 years: 0.639

Risk

R
is

k

0.005

0.009

0.002

0.029

0.007

0.037

1.902 (1.211–2.985)

1.812 (1.161–2.830)

0.582 (0.412–0.820)

2.213 (1.085–4.514)

2.673 (1.309–5.459)

1.466 (1.023–2.099)

Risk       High risk        Low risk

P value        Hazard ratio
6           5           5           4 6  6  6  6  6  5  5  5  5  5  5  5  5  5  5  5  5 5  5  4  4 3  1  0

P<0.001

A B C

D E F

G H



He et al. A PRG signature in HCC1516

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(6):1510-1522 | https://dx.doi.org/10.21037/tcr-21-2898 

Figure 4 Risk signature validation in ICGC cohort. (A) Comparison of low- and high-risk groups by using Kaplan-Meier analysis. (B) The 
AUCs for the risk score in the ICGC cohort. (C) Patient distribution in the ICGC cohort on basis of the TCGA cohort’s median risk score. (D) 
The patient’s survival status. (E) Principal component analysis plot. AUCs, areas under the receiver operating characteristic curves; ICGC, 
International Cancer Genome Collaboratory; PC1, principal component 1; PC2, principal component 2; PRG, pyroptosis-related gene; 
TCGA, The Cancer Genome Atlas.

score in both cohorts (Figure 5C,5D). A clinical parameter 
heatmap for the TCGA cohort (Figure 5E) demonstrated 
that the low- and high-risk groups were differently 
distributed in terms of tumor stage, tumor grade, and 
patient’s age (P<0.05).

Signal pathway enrichment analysis

To further evaluate the variations in gene functions and 
pathways within the risk model subgroups, we extracted 
DEGs using the FDR <0.05 and |log2 FC| ≥1 criteria from 
the “limma” module of R package. Among the two groups 
in the TCGA cohort, 43 DEGs were detected (Table S3). 
On the basis of these DEGs, KEGG pathway analysis and 
GO enrichment were employed (details in online table 
available at: https://cdn.amegroups.cn/static/public/tcr-
21-2898-2.pdf). The DEGs were mostly associated with 
metabolic signaling pathways, P450 cytochrome, and the 
peroxisome proliferator-activated receptor (PPAR) signaling 
pathway (Figure 6A,6B).

Comparison of the immune microenvironment between 
subgroups

ssGSEA utilized both TCGA and ICGC cohorts to assess 
the enrichment scores of 16 different types of immune cells 
among low and high-risk groups and 13 immune-related 
pathways. Except for natural killer (NK) cells, other immune 
cells were reduced in a low-risk group in the TCGA cohort 
(Figure 7A). With the exception of the interferon (IFN) 
response pathway, the others demonstrated decreased 
activity in the TCGA low-risk group (Figure 7B). In the 
ICGC cohort, a similar finding was achieved (Figure 7C,7D).  
In summary, our findings indicate that patients in the high-
risk group had a higher active immunological state than 
those in the low-risk group.

Expression levels of five prognostic genes

The expression of five prognostic genes (CASP8, GSDMC, 
NLRP6, NOD2, and PLCG1) in L02 and Hep3B cell lines 
was further validated. The mRNA expression of CASP8, 
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Figure 5 Risk factors identification relying on univariate and multivariate Cox regression analysis. (A,B) TCGA and ICGC cohort analysis 
using univariate techniques. (C,D) TCGA and ICGC cohort analysis using multivariate techniques. (E) A heatmap depicting the relations 
between clinicopathologic characteristics and risk categories. *, P<0.05; **, P<0.01; ***, P<0.001. ICGC, International Cancer Genome 
Collaboratory; TCGA, The Cancer Genome Atlas. 
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Figure 6 GO (A) and KEGG (B) analysis for DEGs between two TCGA cohorts risk groups. BP, biological progress; CC, cellular 
component; MF, molecular function; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; TCGA, The Cancer Genome Atlas.

GSDMC, NOD2, and PLCG1 was considerably greater in 
Hep3B, according to the results of qRT-PCR (P<0.05). 
However, in Hep3B, NLRP6 expression was reduced 
(P<0.05) (Figure 8). Notably, the expression patterns of the 
prognostic genes were compatible with the bioinformatic 
analysis results.

Discussion
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hepatoblastoma (HB), intrahepatic cholangiocarcinoma 

(ICC), and HCC combined with ICC (cHCC-ICC) are 
the four primary subtypes of PLC (19). HCC accounts for 
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phenotypic and molecular heterogeneity (20). Patients with 
HCC at different stages of progression often require different 
treatments, but only half receive systematic treatment (21). 
Indeed, HCC is a highly drug-resistant cancer that associates 
with inefficient treatment. With advancements in genomic, 
transcriptomic, and epigenomic studies, important insights 
into the biology of the disease have been obtained. Thus, 
precise diagnosis and therapy for HCC is an important 
medical requirement, and the construction of novel 
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Figure 7 Immunological status between two risk categories in the TCGA and ICGC cohorts. (A,C) Sixteen immune cells score were 
visualized using Boxplots. (B,D) thirteen immune-related functions. *, P<0.05; **, P<0.01; ***, P<0.001. aDCs, activated dendritic cells; APC, 
antigen presenting cell; CCR, C-C chemokine receptor; DCs, dendritic cells; HLA, human leukocyte antigen; ICGC, International Cancer 
Genome Collaboratory; iDCs, immature dendritic cells; IFN, interferon; MHC, major histocompatibility complex; NK, natural killer; 
pDCs, plasmacytoid dendritic cells; TCGA, The Cancer Genome Atlas; Tfh, T follicular-helper; Th, T-helper; TIL, tumor-infiltrating 
lymphocyte; Treg, T-regulatory. 

Figure 8 qRT-PCR analysis had been utilized for the levels of 
expression of signature genes assessment in L02 and Hep3B cells. *, 
P<0.05; **, P<0.01. qRT-PCR, quantitative real-time PCR.
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prognostic signatures is urgently needed.
Pyroptosis is a type of apoptosis that arises when 

pathogens invade cells, triggering the body’s inflammatory 
response (7,8). In 2001, Cookson and Brennan first 
proposed the term “pyroptosis” to describe pro-
inflammatory programmed cell death (PCD) (22). 
Subsequent  s tudies  have  shown the  d i f ferences , 
characteristics, and mechanisms of pyroptosis and apoptosis 
(23,24). Both types of PCDs are activated in the same 
way in the early stages of PCD. GSDMD was identified as 
having a crucial role in the activation of pyroptosis (25),  
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and the gasdermins (GSDM) family is increasingly 
being explored in pyroptosis and cancer (26). The recent 
explosion in knowledge has demonstrated the importance 
of pyroptosis in pro- or anti-tumor functions, as well as in 
sensitization or resistance to oncological treatments (27). 
As a result, accumulating evidence indicates that the tumor 
immune microenvironment (TME) plays a multifaceted 
role in cancer progression. In addition to the expression 
of pyroptosis genes in HCC patients, which we used to 
establish the predictive signature, we evaluated both high- 
and low-risk groups, immune cells, and immune-related 
pathways. Additionally, our study indicates that pyroptosis 
in combination with immunotherapy may be an option for 
patients with a poor prognosis.

The expression of 33 PRGs in HCC and normal tissues 
were examined in this research. Patients were classified 
into two categories based on consensus clustering analysis. 
Interestingly, based on the PRGs, the two clusters could 
distinguish differences in clinical characteristics. By 
considering the relationship between patient heterogeneity 
and expression of pyroptosis genes that affected prognosis, 
we built a reliable signature. To further investigate the 
predictive values of these pyroptosis-related regulators, 
we designed a five-gene risk signature utilizing univariate 
Cox and LASSO Cox regression analysis, which was 
subsequently confirmed in a suitable external dataset.

Five genes were constructed for our signature (CASP8, 
GSDMC ,  NLRP6 ,  NOD2 ,  and PLCG1 ) .  CASP8, a 
cysteine-aspartate protease, is the initiator caspase of 
extrinsic apoptosis. The CASP8 level is associated with 
poor prognosis and metastatic development of HCC (28). 
Furthermore, CASP8 activation occurs in response to 
death receptor stimulation, which activates downstream 
components of another caspase family effector, amplifying 
the apoptotic signal potency (29). In a murine model study, 
it was reported that silencing of CASP8 can inhibit the 
development of early HCC development (30), indicating 
that it may become a promising diagnostic marker for 
HCC. GSDMC belongs to the GSDM family. It plays roles 
in a variety of biological processes, most notably pyroptosis, 
as well as the development and progression of various types 
of tumors. GSDMC mRNA expression was significantly 
increased in HCC tumor tissue compared with normal 
tissue, which was found to be linked with tumor grade (31). 
GSDMC silencing significantly diminishes colorectal cancer 
cell proliferation, which suggested its role as a carcinogenic 
gene (32). On the other hand, NLRP6 is a member of the 
NLR family, which detects pathogens in the cytoplasm as 

well as cell damage-associated factors (33). According to 
Chen et al., NLRP6 prevents aberrant inflammation and 
colon tumor development (34). Subsequently, a study found 
NLRP6 is a negative regulatory factor in the development 
of intestinal tumors (35). Moreover, several studies have 
reported that NLRP6 negatively correlates with tumor 
development, which is consistent with the coefficients in 
our model (36,37). In HCC samples, NOD2, a pattern 
recognition receptor, was upregulated and activated, and 
high expression of NOD2 has been linked with a poor 
prognosis in patients with HCC (38). Furthermore, a 
previous study has shown that NOD2 inhibitors have 
anticancer activity in vivo (39). PLCG1 is widely expressed 
in various tissues in humans. According to Tang et al., 
overexpression of PLCG1 in liver cancer cells and clinical 
HCC tissues was associated with poor clinical characteristics 
in HCC patients (40). As a result, we verified the reliability 
of the risk scores using the relative expression of signature 
genes in HCC cells and normal liver cells.

The results of immune cell infiltrations and pathways 
activation revealed that the risk scores might be an effective 
tool for immunotherapy. All of them were significantly 
different between the low- and high-risk groups. 
Additionally, we discovered that there were significantly 
higher quantities of immune cells entering the body and 
immunological-related pathways in the high-risk group, 
suggesting that robust active immune cell infiltration 
leads to a poor response to immunotherapy in individuals 
with higher scores. However, we only considered the 
whole microenvironment. In the future, we will explore 
the prognostic risks associated with a certain gene and 
TME changes in the model. Consequently, our model has 
advantages in promoting treatment from a new immune 
perspective that involves pyroptosis.

In summary, our research established a strong correlation 
between pyroptosis and the clinical risk of HCC patients. 
We identified differentially expressed pyroptosis genes 
between normal and HCC tissues, constructed a predictive 
model, and explored differences in immune infiltration. In 
addition, in vitro experiments, we verified the correlation 
of five hub genes in the model. However, the absence of  
in vivo experiments led to limitations in our study. This will 
prompt us to dig deeper into the clinical significance of the 
pyroptosis genes.
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Supplementary

Table S1 Thirty-three pyroptosis-related genes

Gene ID

AIM2 9447

CASP1 834

CASP3 836

CASP4 837

CASP6 839

CASP8 841

CASP9 842

GSDMA 284110

GSDMC 56169

GSDMD 79792

IL18 3606

IL6 3569

NLRC4 58484

NLRP1 22861

NLRP2 55655

NLRP3 114548

NLRP6 171389

NLRP7 199713

NOD1 10392

NOD2 64127

PJVK 494513

PLCG1 5335

PRKACA 5566

PYCARD 29108

SCAF11 9169

TIRAP 114609

TNF 7124

CASP5 838

ELANE 1991

GPX4 2879

GSDMB 55876

GSDME 1687

IL1B 3553

Table S2 The primers of qRT-PCR

Gene Forward Reverse

GAPDH 5'-CAGGAGGCATTGCTGATGAT-3' 5'-GAAGGCTGGGGCTCATTT-3'

CASP8 5'-CAAACTTCACAGCATTAGGGAC-3' 5'-ATGTTACTGTGGTCCATGAGTT-3'

GSDMC 5'-CATAATGGTGCTGAGTGACTTC-3' 5'-GTTATCCAGCTCCATCCTAAGG-3'

NLRP6 5'-CCGAGAAGGAACTGGAGCAACTG-3' 5'-CTGGAAGCTCTGGTCGATGAACTG-3'

NOD2 5'-GTCTGGAATAAGGGTACTTGGG-3' 5'-GGCAACCTGATTTCATCACATT-3'

PLCG1 5'-ACCGTCATGACTTTGTTCTACT-3' 5'-AATTTCACGAATGTCAATGGCC-3'

qRT-PCR, quantitative real-time PCR.
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Table S3 DEGs between the low- and high-risk groups in the TCGA cohort

Gene LogFC P value FDR

AFP 1.09044 0.000342 0.000548

F9 −1.02753 1.52E−10 6.28E−10

ASPDH −1.01379 1.93E−15 2.15E−14

CFHR3 −1.02585 1.35E−11 6.71E−11

SPP1 1.929189 6.32E−16 7.89E−15

ANG −1.06635 3.77E−20 1.60E−18

CYP2A6 −1.65173 1.09E−11 5.47E−11

APOA1 −1.11224 3.54E−11 1.63E−10

CD24 1.087973 1.14E−10 4.84E−10

CYP3A4 −1.47793 5.55E−09 1.77E−08

GLYAT −1.04015 1.22E−12 7.41E−12

CYP2C8 −1.31019 2.62E−16 3.58E−15

HPD −1.27606 1.51E−09 5.32E−09

APOA5 −1.2028 1.07E−16 1.64E−15

ALDOB −1.14992 1.54E−10 6.37E−10

MYBL2 1.087569 9.04E−21 4.69E−19

HSD17B6 −1.149 1.79E−17 3.36E−16

SLC27A5 −1.25115 1.93E−19 6.49E−18

AFM −1.19978 1.28E−19 4.55E−18

TTR −1.01994 8.87E−10 3.24E−09

CYP4F2 −1.06124 1.53E−16 2.22E−15

SLC10A1 −1.53609 9.13E−18 1.86E−16

AKR7A3 −1.05685 1.48E−14 1.36E−13

CYP8B1 −1.29992 1.00E−12 6.20E−12

HRG −1.29935 3.47E−12 1.92E−11

C6 −1.10432 5.64E−18 1.22E−16

HPX −1.09698 3.73E−19 1.14E−17

TAT −1.39328 1.45E−11 7.17E−11

AQP9 −1.25752 4.89E−11 2.20E−10

HSD17B13 −1.22015 3.07E−09 1.02E−08

SLC22A1 −1.48603 8.27E−14 6.40E−13

HP −1.19783 1.69E−12 9.86E−12

HPR −1.28784 4.09E−17 7.03E−16

CYP2C9 −1.03819 3.54E−10 1.38E−09

CFHR4 −1.04032 9.91E−17 1.54E−15

ADH4 −1.03096 5.56E−07 1.29E−06

CYP4A11 −1.11204 4.27E−15 4.44E−14

SERPINC1 −1.41085 1.54E−19 5.32E−18

ADH1C −1.40467 7.46E−13 4.73E−12

ADH1B −1.24505 1.60E−12 9.39E−12

TTC36 −1.08952 5.06E−15 5.19E−14

G6PD 1.069211 4.61E−25 1.80E−22

APOC3 −1.30412 1.29E−18 3.31E−17

DEGs, differentially expressed genes; FC, fold change; FDR, false discovery rate; TCGA, The Cancer Genome Atlas.


