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Background: Therapeutic cancer vaccines, which induce or amplify tumor-specific T cell responses, are 
a critical component of multiple combination cancer immunotherapy regimens. Innovative neoantigen 
identification continually prompts the development of vaccine platforms. However, vaccine monotherapy 
is not sufficient to eradicate tumors. Thus, therapeutic strategies combining cancer vaccines and treatment 
with other immune modulators have been expl, ored. Previously, we showed that flagellin has an excellent 
adjuvant activity to induce effective immune responses to co-administered peptide epitopes through 
TLR5 stimulation in mouse TC-1 tumor models and flagellin-expressing bacteria modulate the tumor 
microenvironment (TME) toward enhanced immunogenicity.
Methods: Given that short- and long-peptides undergo different fates of internalization, processing, and 
MHC-restricted presentation by professional antigen-presenting cells (APCs), we compared the antitumor 
activity of flagellin-adjuvanted peptide vaccines by employing the E7 CD8 epitope short peptide (E7-SP49-57) 
and E7 long peptides (E7-LP2043-62 and E7-LP3543-77). Because combinations take center stage in immune 
checkpoint inhibitor (ICI) therapy, we evaluated the best E7 peptide vaccine component for combination 
with anti-PD-1 in the mouse TC-1 model.
Results: Flagellin adjuvanted E7-LP35 vaccine (FlaB-LP35Vax) showed significantly higher antitumor 
activity than flagellin adjuvanted E7-SP vaccine (FlaB-SPVax) and flagellin adjuvanted E7-LP20 vaccine 
(FlaB-LP20Vax) in a mouse TC-1 tumor model. Coadministration of flagellin was essential for E7-mediated 
tumor suppression. PD-1 blockade enhanced the therapeutic efficacy of FlaB-LP35Vax but not FlaB-SPVax. 
Taken together, E7-LP35 is an optimal tumor antigen for flagellin-adjuvanted E7 cancer vaccines, and the 
combination of FlaB-LP35Vax with anti-PD-1 antibody treatment induced long-term antitumor immune 
responses.
Conclusions: This result suggests that cooperation between CD4+ and CD8+ cell-mediated immune 
responses is essential for the success of combination therapy with cancer vaccines and ICIs.
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Introduction

Cancer immunotherapy, a treatment that exploits the 
host immune system to fight cancer, has become the 
first-line therapeutic option for a variety of cancers (1). 
Therapeutic cancer vaccines that elicit a new immune 
response or amplify an existing tumor antigen (Ag)-
specific immune responses are continuously being 
developed (2-8). And cancer vaccine-mediated tumor 
cell killing results in epitope spreading and subsequent 
expansion of tumor-specific immune responses (6). 
Moynihan et al. reported that multiple combinations of 
immunotherapies elicit endogenous immunity to eradicate 
large established tumors, and the cancer vaccine is a critical 
component of successful therapy (9). The development 
of immune checkpoint inhibitor (ICI) therapy ushered 
in a fundamental shift in cancer treatment. Most types 
of cancer have been treated with ICIs using a variety 
of drugs from different manufacturers (1,6). Given 
that personalized neoantigen-based vaccines developed 
with efficient sequencing and bioinformatics tools have 
demonstrated potent tumor-specific immunogenicity (6,10), 
therapeutic cancer vaccines are expected to be an essential 
component of cancer immunotherapy. Current ICIs can 
be combined with other new ICIs, immunotherapies, and 
delivery strategies (11). Therefore, a successful cancer 
vaccine platform was crucially awaiting to establish a new 
combination strategy with ICI.

Cancer vaccines are administered to humans in cell-,  
viral vector-, nucleic acid- or peptide-based forms (3,12-16). 
Because of their ease of use, several forms of short (8–10 
amino acids) or long (longer than 30 amino acids) peptide-
based cancer vaccines have been tested in preclinical or 
clinical settings (2,4,9,15,17,18). However, the efficacy of 
therapeutic cancer vaccines remains disappointing. Short 
peptides (SPs) bind directly to surface MHC I molecules 
without processing in antigen-presenting cells (APCs), 
and the vast majority of administered short peptides are 
pharmacokinetically eliminated in vivo. In addition, short 
peptides administered in this way act on nonprofessional 
APCs and may mediate the induction of a tolerogenic 
response (3,14,19). In contrast to short peptides, long 
peptides (LPs) undergo internalization, processing, and 
MHC-restricted presentation by professional APCs (20). 
In addition, long peptides generally include CD4 and CD8 
epitopes to induce efficient T cell activation (12,19,21). 
It has been demonstrated that human papillomavirus 

(HPV) 16 E6/E7 long peptide vaccines induce efficacy 
superior to that of the short peptide vaccines (22-24). The 
ideal therapeutic cancer vaccine should induce long-term 
antitumor immune responses and overcome the tolerogenic 
tumor microenvironment (TME). 

We previously reported that bacterial flagellin, Vibrio 
vulnificus FlaB, exhibits excellent adjuvant activity for 
various antigens (25,26) and that coadministration of 
FlaB with HPV 16 E6/E7 short peptide induces tumor-
specific immune responses through TLR5 stimulation in 
therapeutic cancer vaccine models (27,28). Furthermore, 
we suggested that engineered Salmonella bacteria secreting 
heterogeneous bacterial flagellin have a strong suppressive 
effect on the growth of both primary and metastatic 
tumors mediated through phenotypic and functional 
maturation of intratumoral macrophages via a shift toward 
an M1 phenotype and a reduction in M2-like suppressive 
activity (29). The strategy of administering cancer vaccines 
with pharmacokinetic advantages is thought to increase 
the in vivo availability of the vaccine. 

In this study, we investigated the basic requirements of 
peptide-based antigens for the development of a flagellin-
adjuvanted cancer vaccine in an HPV16 E7 vaccine model 
using TC-1 implantation experiments. We showed that 
compared to the E7-SP, E7-LP20, and E7 proteins, the E7-
LP35 (amino acids 43-77) peptide is an optimal antigen for 
a flagellin-adjuvanted cancer vaccine (FlaB-Vax) in a mouse 
TC-1 tumor model. Flagellin was the essential component 
of this E7 peptide-based therapeutic cancer vaccine. In 
addition, PD-1 blockade enhanced the therapeutic efficacy 
of the flagellin-adjuvanted E7-LP35 vaccine (FlaB-
LP35Vax) but not FlaB-SPVax. In summary, we evaluated 
an ideal peptide antigen for flagellin-adjuvanted HPV E7 
cancer vaccines to potentiate anti-PD-1-mediated tumor 
suppression. We present the following article in accordance 
with the ARRIVE reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-21-2798/rc). 

Methods

Peptides and recombinant proteins

The E7-SP (amino acids 49-57: RAHYNIVTF), E7-LP20 
(amino acids 43-62: GQAEPDRAHYNIVTFCCKCD), 
and E7-LP35 (amino acids 43-77: GQAEPDRAHYNIV
TFCCKCDSTLRLCVQSTHV) peptides from HPV16 
(Figure 1A) were synthesized by AnyGen (Gwangju, Korea) 

https://tcr.amegroups.com/article/view/10.21037/tcr-21-2798/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-21-2798/rc
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with a purity of >95%. 

Tumor implantation and treatments

Seven- to eight-week-old female SPF C57BL/6 mice 
were  purchased  f rom the  ORIENT (Seongnam-
si, Gyeonggi-do, Korea). TC-1 cells were cultured in 
RPMI 1640 medium supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 100 units/mL  
penicillin, and 100 µg/mL streptomycin (Gibco, NY, USA) 
at 37 ℃ and 5% CO2. Tumors were established in mice by 
subcutaneous injection of 5×104 TC-1 cells in 100 μL of 
phosphate-buffered saline (PBS) into the right mid flank 
of each mouse (n=5). When the tumor diameter reached 
approximately 3–5 mm, the tumor-bearing mice were 
randomly assigned to different treatment groups (PBS, E7-
SP, E7-SP+F, E7-LP20, E7-LP20+F, E7-LP35, and E7-
LP35+F) (Figure 1B). The tumor-bearing mice were then 

peritumorally vaccinated with 200 μL of PBS (PBS group; 
n=5), PBS containing 100 μg of E7-SP (E7-SP group; n=10), 
100 μg of E7-SP plus 4 μg of FlaB (E7-SP+F group; n=10), 
100 μg of E7-LP20 (E7-LP20 group; n=5), 100 μg of E7-
LP20 plus 4 μg of FlaB (E7-LP20+F group; n=5), 150 μg 
of E7-LP35 (E7-LP35 group; n=10), or 150 μg E7-LP35 
plus 4 μg of FlaB (E7-LP+F group; n=10) under anesthesia 
intraperitoneal (i.p.) infection of diluted Zoletil®; tiletamine, 
zolazepam and Rompun®) at five-day intervals (Figure 1A). 
Tumor growth was monitored every 3 days. The tumor 
volume was calculated with the formula V = (tumor length) 
× (tumor width) × (tumor height) /2 as previously described 
(11,27,29). 

For experiments exploring combinations with anti-PD1 
therapy, when the tumor diameter reached approximately 
2–3 mm, the vaccinated tumor-bearing mice were 
administered an anti-PD1 mAb following the experimental 
schedule (n=5/group). The anti-PD1 antibody was 

Figure 1 Compared to the E7-SP, E7-LP20, and E7-LP35 peptide is an optimal antigen for a flagellin-adjuvanted cancer vaccine (FlaB-Vax) 
in a mouse TC-1 tumor model. (A) E7 antigens used for therapeutic cancer vaccines. (B) Schematic of the FlaB-Vax treatment protocol. 
(C) Determination of the tumor volume. Tumors were established in mice by subcutaneous injection of 5×104 TC-1 cells into the right mid 
flank. When the tumor diameter reached approximately 3–5 mm, the tumor-bearing mice were peritumorally vaccinated with PBS, E7-
SP, E7-SP + FlaB, E7-LP20, E7-LP20 + FlaB, E7-LP35, and E7-LP35 + FlaB. Tumor growth was monitored every 3 days. The statistical 
significance of differences in the tumor volume was determined by two-way ANOVA. **, P<0.01; ***, P<0.001; ns, nonsignificant.
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administered by i.p. injection in 200 μL of PBS containing 
100 µg of anti-PD1 antibody (clone RMP1-14, BioXCell, 
Lebanon, USA) one day after each vaccination. 

Statistical analyses

Results are expressed as mean ± standard error of mean 
(SEM) values, unless otherwise specified. Statistical 
significance between two groups were determined by the 
Mann-Whitney test. Log-rank (Mantel-Cox) tests and two-
way ANOVA were used to compare survival and tumor 
volume, respectively. Statistical data analysis was carried 
out using the Prism 8.00 software for Windows (GraphPad 
Software, San Diego, CA, USA). P values of <0.05 were 
considered statistically significant.

Ethical statement

All animal experimental procedures were performed 
with approval from the Chonnam National University 
Institutional Animal Care and Use Committee under 
protocol CNU IACUC-H-2020-31. Animal research 
facility maintenance and experimental procedures were 
carried out in strict accordance with the guidelines of the 
Animal Welfare Act legislated by the Korean Ministry of 
Agriculture, Food and Rural Affairs.

Results

The E7-LP35 peptide is an optimal antigen for a  
flagellin-adjuvanted cancer vaccine (FlaB-Vax) in a mouse 
TC-1 tumor model

To evaluate the best peptide antigen for a flagellin-
adjuvanted therapeutic cancer vaccine for clinical use, we 
synthesized the HPV16 E7 short peptide (E7-SP; E749-57)  
(27,28), the HPV16 E7 long peptide with a length of 20 
amino acids (E7-LP20; E743-62) (30), and the HPV16 E7 
35 mer long peptide (E7-LP35; E743-77) (31) (Figure 1A). 
Based on the predictions of MHC I and MHC II binding 
to HPV16 E7 generated by the  immune epitope database 
(IEDB) analysis resource (http://tools.iedb.org/mhci/ 
and https://tools.iedb.org/mhcii/), E7-SP49-57 exhibits the 
strongest binding to MHC I molecules (data not shown). 
E7-LP20 and E7-LP35 share MHC I (E749-57, E750-58, and 
E744-52) and MHC II (E743-57, E744-58, and E745-59) epitopes. 
Compared to E7-LP20, E7-LP35 has additional but weaker 
MHC II binder epitopes (E761-75, E762-76, and E763-77), with 

a lower binding prediction rank (data not shown). The E7 
oncoprotein has been reported to contain multiple sites 
for interaction with known transcriptional regulators, and 
the N-terminal conserved region-1 (CR-1) and CR-2 of 
E7 (E71-37) are involved in the nuclear localization of the 
E7 protein (32,33). Thus, to avoid unexpected cellular 
responses induced by the N-terminal sequence, we did 
not select peptide antigen in E71-37. To establish the mouse 
tumor model, groups of C57BL/6 mice were implanted with 
TC-1 cells in the right mid flank as previously described 
(27). When the tumor size reached approximately 3–5 mm 
in diameter, the tumor-bearing mice were subcutaneously 
vaccinated with 200 μL of PBS only (n=5), 100 μg of E7-SP 
(n=10), 100 μg of E7-SP plus 4 μg of FlaB (E7-SP+F; n=10), 
100 μg of E7-LP20 (n=5), 100 μg of E7-LP20 plus 4 μg of 
FlaB (E7-LP20+F; n=5), 150 μg of E7-LP35 (n=10), and 
150 μg of E7-LP35 plus 4 μg of FlaB (E7-LP35+F; n=10) 
in the peritumoral region three times at five-day intervals 
(Figure 1B), and the tumor volume was measured. 

As shown in Figure 1C, the E7-SP-vaccinated groups 
showed a significant level of tumor suppression (***, 
P<0.001 for PBS vs. SP). However, the groups vaccinated 
with E7-LP alone (E7-LP20 and E7-LP35) did not show 
significant tumor suppression, with larger error values 
across the samples compared to the errors in the E7-SP-
vaccinated group (P>0.05 for PBS vs. E7-LP20; P>0.05 for 
PBS vs. E7-LP35). Coadministration of flagellin potentiated 
E7-SP- and E7-LP35-mediated tumor suppression (***, 
P<0.001 for E7-SP vs. E7-SP+F; ***, P<0.001 for E7-LP35 
vs. E7-LP35+F). However, the adjuvant effect of flagellin 
was not observed in the group vaccinated with E7-LP20 
(P>0.05 for E7-LP20 vs. E7-LP20 + FlaB). Notably, the E7-
LP35+F group (n=10) showed more prominent antitumor 
activity than the E7-SP+F (**, P<0.01 for E7-LP35+F vs. 
E7-SP+F) group. These results indicate that flagellin is 
an essential component in the cancer vaccine formulation 
and that E7-LP35 is an optimal antigen for the flagellin-
adjuvanted cancer vaccine. 

PD-1 blockade enhances the therapeutic efficacy of  
E7-LP35 + FlaB (FlaB-LP35Vax) but not FlaB-SPVax

T cell activation has been reported to be related to PD-1 
expression and that IFNγ production is a potent signal for 
the induction of PD-L1 in tumor cells (34). Given that 
FlaB-Vax modulates immune cell activation and cytokine 
production (27,28), we further evaluated whether PD-1 
blockade can enhance the therapeutic effect of FlaB-
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LP35Vax. Groups of C57BL/6 mice were implanted with 
TC-1 cells by subcutaneous injection into the right mid 
flank. When the tumor size reached approximately 2–3 mm 
in diameter, the tumor-bearing mice were then vaccinated 
with PBS, FlaB-SPVax (E7-SP+F), or FlaB-LP35Vax (E7-
LP35+F) and treated with the anti-PD-1 antibody following 
the experimental schedule (Figure 2A). The survival of 
FlaB-LP35Vax-immunized mice was significantly improved 
by the anti-PD-1 antibody treatment (**, P<0.01; FlaB-
LP35Vax+isotype vs. FlaB-LP35Vax+anti-PD-1). Notably, 
PD-1 blockade did not enhance the therapeutic efficacy of 
FlaB-SPVax (P>0.05; FlaB-SPVax + isotype vs. FlaB-SPVax 
+anti-PD-1) (Figure 2B). Consistent with the survival data, 
FlaB-LP35Vax+anti-PD-1 antibody-treated mice showed 
60% tumor regression 55 days after tumor cell implantation 
(Figure 2B). This result suggests that FlaB-LP35Vax is the 
optimal vaccine formulation for combination with ICI 
therapy in clinical application.

Conclusions

For successful cancer immunotherapy, selective and 
efficient engagement of T cells with cancer cells is required. 
Therapeutic cancer vaccines directed against tumor-specific 
antigens (TSAs) or tumor-associated antigens (TAAs) are 
active immunotherapy approaches to induce antitumor 
immune responses. The development of improved 
approaches focused on previous unsuccessful experiences 
should be continued. And more understanding about what 
is critical for the successful cancer vaccine is needed. In 
the present study, we clearly showed that E7-LP35 is an 
optimal peptide antigen for HPV E7. MHC-I binding short 
peptides (9-10 amino acids) have intrinsic limitations for 
use in clinical settings (19). Administered short peptides 
directly bind to surface MHC I molecules without antigen 
processing by APCs. Some short peptides that interact with 
nonprofessional APCs, including T cells and B cells, may 

Figure 2 PD-1 blockade enhances the therapeutic efficacy of E7-LP35 + FlaB (FlaB-LP35Vax) but not FlaB-SPVax. (A) Schematic of 
the FlaB-Vax + anti-PD-1 combination therapy protocol. (B) Analysis of survival and tumor volume. Tumors were established in mice by 
subcutaneous injection of 5×104 TC-1 cells into the right mid flank. When the tumor diameter reached approximately 2–3 mm, the tumor-
bearing mice were treated with different types of FlaB-Vax and anti-PD-1 antibodies. Tumor growth was monitored every 3 days. The 
statistical significance of differences in survival was determined by the log-rank (Mantel-Cox) test. *, P<0. 05; **, P<0.01; ***, P<0.001; ns, 
nonsignificant.
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induce tolerogenic responses. Therefore, improved peptide-
based cancer vaccines should be formulated with optimally 
immunogenic antigens to induce long-term anticancer 
activity. It has been reported that MHC class II-restricted 
neoantigens have a key function to orchestrate antitumor 
responses in a therapeutic cancer vaccine (7). The MHC I 
and MHC II binding predictions generated by the IEDB 
analysis resource showed that E7-SP (E749-57) binds strongly 
to MHC I and that E7-LP35 (E743-77) contains several CD8+ 
and CD4+ epitopes. E7-LP35 and E7-LP20 may undergo 
normal internalization, processing, and MHC-restricted 
presentation by professional APCs. In contrast to E7-LP35, 
the E7-LP20 antigen did not show significant tumor-
suppressive effects, suggesting that the E7-LP20 antigen is 
not properly presented by APCs, unlike E7-LP35.

Adjuvant and or delivery strategies of neoantigen-
based cancer vaccines are critical for successful anti-cancer 
immune responses (6,35). In our previous studies, we showed 
that the TLR5 agonist flagellin is an excellent adjuvant 
that induces effective cell-mediated immunity (CMI) 
against coadministered tumor antigens (27,28) and that 
flagellin-expressing bacteria can modify the TME from an 
immunosuppressive to an immunostimulatory state (29). As 
shown in Figure 1, flagellin is essential to induce therapeutic 
efficacy. Combinations take center stage in ICIs clinical trials 
in cancer treatments (36). HPV infection is related to most 
anogenital and oropharyngeal cancers (37). HPV 16 is the 
primary oncogenic virus, and HPV E7, which plays a central 
role in the HPV life cycle, is a representative TSA. The 
HPV E7 protein, a transcriptional regulator modulating the 
retinoblastoma protein (pRb)/E2F system, is constitutively 
expressed in most HPV-induced neoplasias (32,38). The 
combination of ICIs with a tumor-specific vaccine showed 
promising clinical outcomes in patients with HPV-16-related 
cancers (39). Efficacious combinations of immunotherapies 
should potentiate immune responses in the TME (40). The 
selection of optimal peptide-based tumor antigens in a variety 
of cancer vaccine platforms may enhance antigen-specific 
antitumor immune responses.
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