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Study on plasma amino acids and piperonamide as potential 
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Background: The value of plasma threonine, cysteine, and piperonamide as diagnostic biomarkers for 
non-small cell lung cancer (NSCLC) has been rarely explored. The lack of a validation set containing 
confounders is common to most previous metabolomics studies. The purpose of this study was to explore 
and validate the value of plasma amino acids and piperonamide as diagnostic biomarkers for NSCLC using 
liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Methods: A total of 250 participants were included in this study, including 167 patients with pathologically 
confirmed NSCLC and 83 healthy controls (HCs). These participants were divided into training set, 
validation set 1, and validation set 2 in chronological order and in a certain proportion. The plasma levels 
of 22 amino acids and 1 piperonamide in these pre-treatment NSCLC patients and HCs were measured by 
LC-MS/MS. Metabolic biomarkers were identified after multivariate analysis, univariate analysis, receiver 
operating characteristic (ROC) analysis. Furthermore, these biomarkers and transcriptomic data were 
subjected to joint pathway analysis.
Results: The area under the ROC curve (AUC) values for threonine, piperonamide, arginine, alanine, 
cysteine, methionine, and histidine in the integrated data set were 0.911, 0.848, 0.909, 0.869, 0.786, 0.597 
and 0.637, respectively. This panel composed of these 7 metabolites showed good diagnostic capability for 
NSCLC (the AUC of this diagnostic panel in each data set was greater than 0.9). The specificity of this 
diagnostic panel in validation set 2, which included confounders, was 0.970, similar to that of the other 
datasets. The presence of confounding factors had little effect on the diagnostic accuracy of this panel. The 
ROC analysis of this diagnostic panel between all stage I NSCLC patients and HCs showed AUC, sensitivity, 
and specificity of 1.000, 1.000, and 0.988, respectively. Moreover, PSAT1, SHMT2, AOC3, and MAOB were 
found to be involved in the metabolism of threonine and cysteine.
Conclusions: Plasma amino acids and piperonamide have potential as diagnostic biomarkers in NSCLC. 
This metabolic biomarker panel appears useful for the diagnosis and screening of NSCLC. In addition, 
metabolomic and transcriptomic integration pathway analysis may help elucidate the mechanism of NSCLC 
occurrence and development and even reveal new treatment vulnerabilities.
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Introduction

Lung cancer is the leading cause of cancer death worldwide, 
with an estimated 1.79 million individuals dying of lung 
cancer each year. Among the histological subtypes of 
lung cancer, approximately 85% of patients are non-small 
cell lung cancer (NSCLC), which mainly include lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC) (1-3). The high mortality associated with lung 
cancer is attributed in no small part to patients frequently 
having reached an advanced stage by diagnosis (4).  
Thus, accurate and early lung cancer diagnosis is critical 
if we wish to improve statistics on lung cancer survival. 
However, the commonly used serum biomarkers such 
as carcinoembryonic antigen (CEA) and cytokeratin  
19 fragment (Cyfra21-1) are not ideal for early diagnosis 
or screening of cancer (5). In recent years, molecular 
biomarkers such as circulating tumor DNA (ctDNA) in 
the blood of patients with NSCLC have been extensively 
studied, but due to its low sensitivity and specificity, ctDNA 
is ineffective for cancer screening or early diagnosis (6,7). 
Therefore, the search for highly sensitive and specific 
NSCLC blood biomarkers with early diagnostic ability has 
become an urgent research requirement.

Metabolomics is a powerful tool with the potential to 
identify cancer biomarkers. It can systematically measure 
small molecule metabolites in blood to provide crucial 
information about cancer status (8). Abnormal metabolite 
accumulation is closely related to tumorigenesis (9). For 
instance, the growth of hepatocellular carcinoma depends 
on the accumulation of branched chain amino acids 
(10,11). Moreover, the growth of xenograft tumors in 
mice is affected by serine and glycine (12). This suggests 
that understanding changes in metabolites such as amino 
acids in plasma may have implications for cancer therapy 
and even diagnosis. Numerous studies have explored 
and demonstrated that amino acids detected by mass 
spectrometry, a common platform for metabolomics studies, 
can be used as biomarkers for screening and diagnosis of 
different tumors. Certain amino acids have exhibited high 
sensitivity and specificity (13-18). However, the value of 
plasma threonine, cysteine, and piperonamide (also known 
as piperine) as diagnostic biomarkers for NSCLC has been 
rarely explored (19). Moreover, Elevated blood glucose 
and weight loss in cancer patients may affect amino acid 
metabolism. Most previous metabolomics studies of cancer 
did not use samples containing these confounding factors 
as a validation set, so it was not sufficient to verify the 
diagnostic value of amino acids as biomarkers.

In addition to changes in metabolism or metabolites, 
another major requirement for cancer cell survival is 
changes in transcriptional programs. Transcription and 
metabolism are an inseparable “community”. Metabolic 
changes can affect gene expression in tumor cells, and 
the state of gene expression can also regulate metabolic 
remodeling (16,20). Thus, compared with the analysis based 
only on the level of metabolism, the combined analysis of 
metabolism and transcription may better explain the causes 
of metabolite changes. Several studies have demonstrated 
that the integration of metabolites and metabolic genes 
expands the findings of a single omics study (21-23). 
Unfortunately, the joint pathway analysis of transcriptome 
data and plasma amino acids has not been discussed in 
previous NSCLC studies.

Here, we used liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) to analyze the metabolic 
changes of 22 amino acids and 1 piperonamide in the plasma 
of patients with NSCLC. In order to validate the reliability 
of the results, an independent verification set 1, a verification 
set 2 including confounding factors, and an integrated data 
set were used for verification. Also, we performed weighted 
gene co-expression network analysis (WGCNA) on gene 
expression data downloaded from The Cancer Genome 
Atlas (TCGA) database. In addition to the above-mentioned 
independent analysis, a combined pathway analysis of 
significantly changed metabolites and differentially expressed 
genes (DEGs) was carried out to increase awareness of 
changes in these metabolites. The aims and implications of 
this study were to identify diagnostic biomarkers to improve 
diagnosis and screening of NSCLC, explore the relationship 
between candidate metabolites and transcripts to better 
understand biological processes, and provide new insights 
into potential molecular mechanisms to help discover unique 
therapeutic vulnerabilities. We present the following article 
in accordance with the STARD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-22-
865/rc).

Methods

Participants and study design

Plasma samples from 167 NSCLC patients and 83 gender-
matched HCs (χ2 test, P=0.273, no gender difference 
between 167 NSCLCs and 83 HCs) were retrospectively 
collected at the First Affiliated Hospital of Jinzhou Medical 
University. Dates of sample collection ranged from 2015 
to 2021. This study was conducted in accordance with the 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-865/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-865/rc
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Declaration of Helsinki (as revised in 2013). This study 
was approved by institutional ethics committee of The 
First Affiliated Hospital of Jinzhou Medical University 
(No. 202222) and informed consent was taken from all the 
patients. The inclusion criteria included the following: (I) 
pathological diagnosis of NSCLC; (II) patients aged 20 to 
85 years. The exclusion criteria included the following: (I) 
patients who had undergone malignant tumor resection 
surgery, radiotherapy, chemotherapy, targeted therapy, and 
immunotherapy within 1 year before the study; (II) patients 
with other primary malignancies; (III) patients with recent 
severe vomiting or diarrhea; (IV) drug addicts, alcoholics, 
and pregnant women. This study included a training set 
(66 NSCLCs and 30 HCs), a validation set 1 (36 NSCLCs 
and 20 HCs), a validation set 2 (65 NSCLCs and 33 HCs), 
and an integrated data set (training set + validation set 1 
+ validation set 2). Patients in the training set, validation 
set 1, and validation set 2 were NSCLCs from 2015 to 
2018, NSCLCs from 2019 to 2021, and NSCLCs with 
elevated fasting glucose and weight loss from 2015 to 
2021, respectively. Healthy controls (HCs) were randomly 
selected in a ratio of approximately 1 to 2. According to the 
tumor-node-metastasis (TNM) staging standard in the 8th 
edition of the American Joint Committee on Cancer (AJCC), 
the NSCLC staging was determined. The study design of 
this research work is shown in Figure 1. The demographic 
and clinicopathological characteristics of study participants 
are presented in Table 1.

Chemicals

High performance liquid chromatographic (HPLC) grade 
acetonitrile, pure water, and methanol were purchased 
from Thermo Fisher Scientific (Waltham, MA, USA). 
Acetyl chloride and 1-Butanol were acquired from Sigma-
Aldrich (St. Louis, MO, USA). Internal standard kits were 
obtained from Cambridge Isotope Laboratories (Tewksbury, 
MA, USA). They contained 12 amino acid isotope-labeled 
internal standards. These standards were each dissolved 
in 1 mL of pure methanol respectively. These standards 
and methanol were thoroughly mixed and stored at 4 ℃. 
Working solutions were obtained by 100-fold dilution. 
The quality control (QC) standards were purchased from 
Chromsystems (Grafelfing, Germany).

Sample preparation

Fasting peripheral blood samples were collected from all 

participants in the early morning and stored in vacuum 
tubes containing heparin. Then, these samples were stored 
at 4 ℃ and sent to the laboratory for further processing 
within half an hour. Each piece of dried blood spots (DBS) 
paper was made into a disc with a diameter of 3 mm using 
a punch. The disc was placed into a 96-well plate for amino 
acids and piperonamide extraction. Then, 100 μL of fresh 
working solution was added to each well of this plate. The 
plate was centrifuged at 1,500 r/min for 2 minutes following 
gentle shaking at room temperature for 20 minutes. 
The new filtrate was collected in a new 96-well plate. 
Subsequently, 4 empty wells on each plate were randomly 
selected and 2 low and high concentration QC solutions 
were separately added. The filtrate and QC solution were 
dried at 50 ℃ via pure nitrogen. After adding 60 μL of 
acetyl chloride and 1-butanol mixture (10:90) to each well, 
the dried sample was incubated at 65 ℃ for 20 minutes to 
derivatize the metabolites. A second drying was performed 
on each sample following derivation, as described 
previously. Finally, the dried samples were fully dissolved in 
100 μL of mobile phase solution for LC-MS/MS analysis.

LC-MS/MS analysis

For performing LC-MS/MS analysis, an AB SCIEX 4000 
QTrap system (AB SCIEX LLC; Framingham, MA, USA), 
which was equipped with an electrospray ionization source, 
and operated under positive scan mode. The detailed 
parameters were set as described in our previous work  
(24-26). For each run, 20 μL of the sample was injected and 
80% HPLC grade acetonitrile aqueous solution was used 
for the elution of gradient. The flow rate was initially set 
to 0.2 mL/min, and then dropped to 0.01 mL/min within  
0.08 minutes and remained unchanged for 1.5 minutes. 
After 1.5 minutes, the flow rate returned to 0.2 mL/min 
within 0.01 minutes, and remained constant for 0.5 minutes. 
The pressure of ion source gas 1 and gas 2 was set to 35 psi. 
The auxiliary gas temperature was maintained at 350 ℃, the 
ion spray voltage was 4.5 kV, and curtain gas pressure was 
20 psi (pounds per square inch).

Transcriptomics study

Data preparation and DEGs screening
The gene expression data were downloaded from TCGA 
database (https://cancergenome.nih.gov/). A total of 1,037 
NSCLC tissues and 108 normal tissues gene expression data 
were included in this study. The “limma” R package (The R 
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Figure 1 The workflow in the study. NSCLCs, non-small cell lung cancers; HCs, healthy controls; TCGA, The Cancer Genome Atlas; LC-
MS/MS, liquid chromatography tandem mass spectrometry; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression 
network analysis.

Foundation for Statistical Computing, Vienna, Austria) was 
applied to analyze the DEGs between NSCLC tissues and 
normal tissues. The DEGs were screened based on false 
discovery rate (FDR) <0.05 and |log2fold change (FC)| >2.

WGCNA
To explore the interactions between genes and between 
genes and clinical traits, WGCNA was performed on  
2,470 DEGs. A gene co-expression network was constructed 
using R package “WGCNA”. Firstly, we performed 
sample clustering to check for outliers. Secondly, Pearson’s 
correlation analysis was used to calculate the correlations 
between genes. After that, we used network topology 
analysis to determine the optimal soft threshold that can 

enhance the strong correlations between genes and punish 
the weak correlations between genes. The expression 
matrix was converted to obtain a topological overlap matrix 
(TOM). After the minimum module size was set to 50, 
gene hierarchical clustering was performed to generate 
co-expression modules (27). At the same time, module 
eigengenes (MEs) in each module were also calculated. 
Finally, we evaluated the associations between ME and 
clinical traits to determine NSCLC-related modules for 
subsequent joint pathway analysis (28).

Statistical analysis

Statistical analysis was executed with the software SPSS 
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25.0 (IBM Corp., Armonk, NY, USA). Mann-Whitney U 
test was applied to analyze differences in age and metabolite 
levels between NSCLC and HC groups. Pearson’s chi-
squared (χ2) test was used to analyze gender differences 
between NSCLC and HC groups. A two-tailed P value 
of <0.05 was considered statistically significant between 
the two groups. Multivariate analysis was performed on 
metabolic data by using MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca/) (29,30). According to the default on 
MetaboAnalyst 5.0, missing values will be replaced by 1/5 of 
minimum positive values of their corresponding variables. 
Moreover, to assess the predictive power of biomarkers, 
receiver operating characteristic (ROC) analyses were 
performed through R v.4.0.2 and GraphPad Prism 9 
(GraphPad Software, San Diego, CA, USA).

Results

Participant characteristics

The participant characteristics of the training set, validation 

set 1, and validation set 2 are displayed in Table 1. Among 
them, validation set 2 included participants with elevated 
fasting blood glucose (6.18≤ blood glucose ≤12.89) at the 
time of mass spectrometry analysis and participants with 
weight loss (0< weight loss ≤10 kg) during the 6 months 
prior to pathological diagnosis. There was no difference 
in gender between the NSCLC and HC groups (χ2 test, 
P=0.774, 0.394 and 0.426 in the training set, validation set 1, 
and validation set 2, respectively).

The median age of the 167 NSCLC patients (61 years) 
was higher than that of the 83 HCs (38 years) (Mann-
Whitney U test, P<0.05). To understand the effect of age on 
amino acid and piperonamide metabolism, NSCLC patients 
were grouped according to age (group 1 with median age 
51, group 2 with median age 64), and the grouped data 
were analyzed by multivariate analysis using SIMCA 14.1 
(Umetrics, Umeá, Sweden). No significant separation 
was detected between group 1 and group 2 (Figure S1). 
Therefore, in terms of our data, age had a low impact on 
metabolism of these metabolites.

Table 1 Demographic and clinicopathologic profiles of the study participants

Parameters
Training set Validation set 1 Validation set 2

NSCLC (n=66) HC (n=30) NSCLC (n=36) HC (n=20) NSCLC (n=65) HC (n=33)

Gender

Male 42 20 23 15 40 23

Female 24 10 13 5 25 10

Age (years)

Median 60 39.5 60 40.5 61 34

Range 37–82 25–58 41–77 23–56 33–77 25–59

TNM stage

I 20 8 8

II 6 3 4

III 22 10 18

IV 18 15 35

Histological type

LUAD 44 23 43

LUSC 21 13 21

Since there is 1 lung adenosquamous carcinoma patient and 1 patient with unclear subtype in NSCLC patients, samples from these  
2 patients were excluded from the subtype analysis. TNM, tumor-node-metastasis; LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; NSCLC, non-small cell lung carcinoma; HC, healthy control.

https://cdn.amegroups.cn/static/public/TCR-22-865-supplementary.pdf


Zhang et al. Amino acids and piperonamide may serve as markers for NSCLC1274

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(5):1269-1284 | https://dx.doi.org/10.21037/tcr-22-865

Metabolomics data analysis

Discovery of differential metabolites in training set
The data in the training set were analyzed by MetaboAnalyst 
5.0 for multivariate analysis. Sum normalization, cube 
root transformation, and auto scaling were applied for 
data normalization. To explore the disparities between the 
NSCLC and HC groups, principal component analysis 
(PCA) was first used to describe the clustering behavior 
of plasma amino acids and piperonamide between the 
two groups. As depicted in Figure 2A, the clear trend of 
separation manifested the existence of significant metabolic 
alterations. Then partial least squares-discriminant analysis 
(PLS-DA) further supported the different changes in plasma 

metabolites in the two groups (Figure 2B). Since PLS-DA 
is a supervised model, a 10-fold cross-validation (CV) was 
performed to assess whether the model overfitted. The Q2 
value of 0.808 indicated that the PLS-DA model has good 
predictive performance on the training set (Figure 2C).  
The prediction reliability of the model was verified again 
by 1,000-times permutation test (P<0.001; Figure S2). After 
PLS-DA, variance in projection (VIP) analysis was applied 
to identify 15 important metabolites that contribute to 
classification (Figure 2D). Subsequently, a univariate analysis 
was used to determine whether these 15 metabolites  
changed significantly between the two groups (Table 2). 
Finally, 8 out of 15 metabolites were deemed differential 

Figure 2 Multivariate analysis of NSCLC and HC plasma samples in the training set. (A) PCA of plasma samples for NSCLC and HC; 
(B) PLS-DA; (C) 10-fold CV of the PLS-DA model. Red * corresponds to the highest Q2, Q2=0.808; (D) the 15 important metabolites that 
help distinguish NSCLC from HC revealed by VIP analysis. PC, principal component; HC, healthy control; NSCLC, non-small cell lung 
cancer; VIP, variance in projection; PCA, principal component analysis; PLS-DA, partial least squares-discriminant analysis; CV, cross-
validation.

4

2

0

−2

−4

P
C

 2
 (1

8.
7%

)

4

2

0

−2

−4

C
om

po
ne

nt
 2

 (9
.2

%
)

1.0

0.8

0.6

0.4

0.2

0.0

P
er

fo
rm

an
ce

1             2              3             4             5
Number of components

−6       −4        −2         0          2          4          6
PC 1 (20.8%)

−4            −2              0              2              4
Component 1 (18.8%)

0.6     0.8      1.0     1.2     1.4     1.6      1.8
VIP scores

Accuracy
R2

Q2

HC
NSCLC

Thr
Pip
Arg
Ala

Met
Cys
Leu
His
Pro
Tyr

Hcy
Ser
Val
Cit

Asp

HC
NSCLC

NSCLC

HC

High

Low

Scores plot Scores plotA B

C D

*

https://cdn.amegroups.cn/static/public/TCR-22-865-supplementary.pdf


Translational Cancer Research, Vol 11, No 5 May 2022 1275

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(5):1269-1284 | https://dx.doi.org/10.21037/tcr-22-865

metabolites based on the selection criteria of VIP >1, 
P<0.05, and FDR <0.05 (21). Compared with the HC 
group, the contents of threonine, piperonamide, arginine, 
alanine, and cysteine were significantly lowered in the 
NSCLC group. The other 3 metabolites including 
methionine, leucine, and histidine were significantly 
elevated in the NSCLC group.

Screening of potential diagnostic biomarkers for 
NSCLC
To screen for potential biomarkers, Boruta algorithm was 
used to select and shrink differential metabolites. The 
results showed that threonine, piperonamide, arginine, 
alanine, cysteine, methionine, and histidine were selected as 
potential diagnostic biomarkers for NSCLC in the training 
set (Figure S3). Then, ROC analyses were applied to 
evaluate the classification performance of these 7 metabolites 
for NSCLC patients and HCs. As shown in Figure 3, both 
boxplots and ROC curves analyzed by GraphPad prism 9 
supported that each metabolite had a good diagnostic ability 
in the training set. Among these potential biomarkers, 
threonine displayed the highest accuracy in diagnosing 
NSCLC [area under the ROC curve (AUC) =0.958]. The 
results suggested that these 7 plasma differential metabolites 

had the potential to diagnose NSCLC.

Identification of biomarkers for the diagnosis of 
NSCLC
To evaluate the accuracy of the above results, validation 
set 1, validation set 2, and integrated data set (training set 
+ validation set 1 + validation set 2) were applied to verify 
the performance of these 7 potential biomarkers in the 
diagnosis of NSCLC. The results of Mann-Whitney U 
test and ROC analysis showed that the variation trend of 
threonine, piperonamide, arginine, alanine, and cysteine 
in the 3 validation sets was consistent with that in the 
training set, with statistical differences (Table 3). Although 
the AUC values of these 5 markers decreased compared 
with the training set, the overall diagnostic performance 
was still optimistic. Notably, methionine and histidine 
were not statistically significant in validation set 1 and 
validation set 2. The AUC values of these 2 potential 
biomarkers also declined in the 3 validation sets, but their 
P values and FDR values in the integrated data set were 
both lower than 0.05. We speculated that it might have 
been caused by the small sample size of validation set 1 and 
validation set 2. In a study by Klupczynska et al., the AUC 
values of methionine and histidine were 0.685 and 0.687, 

Table 2 Univariate analysis of 15 important metabolites using SPSS 25.0 and R v.4.0.2

Metabolite (μmol/L) NSCLC, mean ± SD HC, mean ± SD P value FDR

Threonine (Thr) 26.30±7.64 49.10±10.42 7.98E-13 5.99E-12

Piperonamide (Pip) 262.17±129.67 452.46±71.83 1.38E-10 5.16E-10

Arginine (Arg) 12.92±8.60 30.05±9.53 4.10E-11 2.05E-10

Alanine (Ala) 165.47±76.54 264.58±52.91 1.13E-09 3.38E-09

Methionine (Met) 19.59±6.82 15.71±2.12 9.00E-05 1.93E-04

Cysteine (Cys) 1.36±0.76 2.71±1.05 2.68E-08 6.71E-08

Leucine (Leu) 127.02±41.60 108.86±26.58 0.024 0.03

Histidine (His) 84.15±50.27 53.72±6.94 0.014 0.021

Proline (Pro) 450.36±229.70 328.46±80.03 0.002 0.003

Tyrosine (Tyr) 49.32±14.56 46.06±8.32 0.385 0.431

Homocysteine (Hcy) 8.45±0.84 11.43±0.95 1.46E-14 2.19E-13

Serine (Ser) 59.42±26.93 52.43±7.22 0.532 0.532

Valine (Val) 138.66±36.87 141.07±28.10 0.402 0.431

Citrulline (Cit) 15.24±13.44 20.56±3.77 0.018 0.025

Aspartic acid (Asp) 38.16±15.07 51.16±19.79 4.23E-04 7.93E-04

NSCLC, non-small cell lung cancer; HC, healthy control; SD, standard deviation; FDR, false discovery rate.

https://cdn.amegroups.cn/static/public/TCR-22-865-supplementary.pdf
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respectively, which were slightly higher than the calculation 
results in each of our validation sets (18). When these  
2 biomarkers were incorporated into a diagnostic model 
containing 12 metabolites by Klupczynska et al., the AUC 
of this diagnostic model was 0.836, which was higher than 
the diagnostic performance of a single metabolite. Their 
research indicated that these 2 metabolites contributed to 
improving the model’s classification ability. Finally, these  
2 metabolites were not excluded from the construction of 
our panel, and these 7 potential biomarkers were confirmed 
as NSCLC biomarkers.

Establishment and verification of NSCLC diagnostic 
panel
Due to the complexity of  NSCLC metabolism, a  
diagnostic panel containing multiple biomarkers could more 
comprehensively reflect the pathological state of the disease. 
Therefore, a panel composed of threonine, piperonamide, 
arginine, alanine, cysteine, methionine, and histidine was 
established. Next, validations were performed using multiple 
validation sets including validation set 1, validation set 2, 
and integrated data set (training set + validation set 1 + 
validation set 2). Although the diagnostic ability of this 

panel in the training set was slightly higher than the other 
3 validation sets, its overall diagnostic performance was 
worthy of recognition (Figure 4). The AUCs of the training 
set, validation set 1, validation set 2, and integrated data 
set reached 0.999, 0.965, 0.963, and 0.967, respectively 
(Table S1). Especially for validation set 2, which contained 
interference factors, the presence of interference factors 
had little effect on the detection of these 7 biomarkers, 
and the specificity was 0.970, similar to that in other data 
sets. In addition, the linear support vector machine (SVM) 
algorithm and the random forest algorithm were used on 
MetaboAnalyst 5.0 to prove the reliability of the above results 
again (Table S2). Thus, this diagnostic panel was regarded as 
reliable and would be used for subsequent exploration.

The diagnostic ability of this panel for early NSCLC 
and NSCLC subtypes
We use PLS-DA and ROC analysis to determine whether 
this panel had diagnostic value for early NSCLC. In the 
integrated data set, although this panel could not distinguish 
each stage well, it could distinguish NSCLC at each stage 
well from HCs (Figure 5A). Then, we conducted a separate 
ROC analysis on stage I NSCLC patients and HCs, and 

Figure 3 Box plot and ROC curve of each potential biomarker in the training set. The ROC curve was plotted using GraphPad Prism 9. 
HC, healthy control; NSCLC, non-small cell lung cancer; AUC, area under the ROC curve; ROC, receiver operating characteristic.
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the results showed that the AUC, sensitivity, and specificity 
were 1.000, 1.000, and 0.988, respectively (Figure 5B). 
Thus, this panel showed promise for identifying patients 
with early NSCLC.

The panel’s diagnostic capabilities for NSCLC subtypes 
were also explored. As depicted in Figure S4, this panel 
had similar diagnostic performance for LUAD and LUSC 
with almost the same AUCs. Relative to the HC group, the 

AUCs of LUAD and LUSC groups were 0.972 and 0.971, 
respectively, within the integrated data set.

Correlation analysis of biomarkers in this panel with 
CEA and Cyfra21-1
The R package “correlation” was applied to explore the 
association of CEA and Cyfra21-1 with the 7 metabolic 
biomarkers we identified. As shown in Figure S5, the 
biomarkers in our panel were not significantly associated 
with clinically commonly used lung cancer markers CEA 
and Cyfra21-1.

Transcriptomics data analysis

DEGs screening
The gene expression profiles from TCGA data were imported 
into R v.4.0.2 to screen DEGs. A total of 17,938 genes  
were detected in the NSCLC group and the normal group. 
Then, a volcano map was drawn to show how each gene 
is distributed (Figure 6A). According to FDR <0.05 and 
|log2FC| >2, 2,470 of these genes were screened as DEGs, 
of which 1,810 genes were up-regulated and 660 were 
downregulated in NSCLC samples.

Module formation and its correlations with clinical 
traits
We performed WGCNA analysis  on the selected  

Figure 4 Diagnostic capabilities of this panel in different data sets. 
The figure was drawn by the “pROC” R package. ROC, receiver 
operating characteristic.

Figure 5 Predictive power of this panel for early NSCLC. (A) PLS-DA analysis between NSCLC stages and HC; (B) ROC analysis between 
stage I NSCLC patients and HCs using the “pROC” R package. HC, healthy control; AUC, area under the ROC curve; ROC, receiver 
operating characteristic; NSCLC, non-small cell lung cancer; PLS-DA, partial least squares-discriminant analysis.
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2,470 DEGs. As shown in Figure 6B, no outliers were found 
after clustering the samples. The soft threshold was chosen 
to be 6, which complied with the scale-free network rules 
(Figure S6A). After converting to TOM, we got 7 modules 
through gene clustering (Figure 6C). Next, to determine the 
genes related to the occurrence of NSCLC, we calculated 
the ME. It was found that the module most relevant to 

the occurrence of NSCLC was the turquoise module, 
which covered a total of 893 dysregulated genes (Table S3,  
Figure 6D). Figure S6B shows the correlation between each 
gene in the module and clinical features (the correlation 
coefficient =0.82; P<1e-200). Therefore, the turquoise 
module was thought to be the NSCLC-related module and 
would be used in the next analysis.

Figure 6 The identification of 2,470 DEGs and WGCNA of DEGs. (A) Volcano plot. The red dots on the right represent up-regulated 
genes, and the green dots on the left represent down-regulated genes; (B) specimens clustering and clinical features (tumor and normal 
correspondence to NSCLC tissues and normal tissues); (C) cluster dendrogram utilized to detect co-expression clusters with corresponding 
color assignments. Gene clusters in different colors represent different co-expression modules; (D) the relationships between modules 
and clinical traits. Each row stands for a ME, and each column represents a clinical feature. Each long square contains the P value and 
correlation. FDR, false discovery rate; ME, module eigengene; DEGs, differentially expressed genes; WGCNA, weighted gene co-
expression network analysis; NSCLC, non-small cell lung cancer.
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Joint pathway enrichment analysis and critical pathway 
extraction

In order to explore how metabolic biomarkers and genes 
interact, a joint pathway enrichment analysis was performed 
through MetaboAnalyst 5.0. The 893 DEGs in the 
turquoise module and the 7 biomarkers in the diagnostic 
panel were input to this network analysis platform. As 
depicted in Figure S7, a total of 5 metabolism pathways 
related to metabolic genes were significantly altered in 
the NSCLC samples (P<0.05). These strikingly disturbed 
metabolic pathways included glycine, serine and threonine 
metabolism, aminoacyl-tRNA biosynthesis, nitrogen 
metabolism, cysteine and methionine metabolism, and 
thiamine metabolism. When we explored these disordered 
metabolic processes through Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis, several important 
metabolic pathways were found to be regulated by 4 DEGs 
(PSAT1, SHMT2, AOC3, and MAOB). Then, the pathways 
were extracted and displayed in Figure 7. Figure S8 shows 
the significant differences in expression of these 4 genes 
between NSCLC and HCs (all P<0.0001).

Discussion

In this study, LC-MS/MS technology was used to determine 
the potential of amino acids and piperonamide as diagnostic 
biomarkers for NSCLC. The transcriptional data were mined 
to increase our knowledge of these metabolite changes. Our 
findings indicated that NSCLC patients exhibited different 
plasma levels of threonine, piperonamide, arginine, alanine, 
cysteine, methionine, and histidine as compared with HCs 
(Figure 3 and Table 3). As can be seen from Figures 4,5, the 

panel composed of these 7 metabolites showed a promising 
diagnostic ability for NSCLC patients at various stages, 
including the early stage. The results of Tables S1,S2 showed 
that elevated fasting blood glucose (6.18≤ blood glucose 
≤12.89) and weight loss (0< weight loss ≤10 kg) in NSCLC 
patients will not cause much interference in the detection 
of 7 biomarkers. We also revealed that these biomarkers 
do not differ much between subtypes, since the panel 
composed of these biomarkers had similar ability to diagnose 
NSCLC subtypes (Figure S4). The combined pathway 
enrichment analysis of 7 biomarkers and 893 DEGs revealed 
disruptions in glycine, serine, and threonine metabolism, 
aminoacyl-tRNA biosynthesis, nitrogen metabolism, cysteine 
and methionine metabolism, and thiamine metabolism  
(Figure S7). Finally, we found that 4 DEGs (PSAT1, SHMT2, 
AOC3, and MAOB) were involved in the metabolism of 
threonine and cysteine (Figure 7).

Threonine, as an essential amino acid, is an important 
biologically active molecule that has a significant impact 
on regulation of immune function (31-34). In vitro, 
lymphocytes can use threonine for their own proliferation 
and antibody secretion (32). In addition to the proliferation 
of lymphocytes and the secretion of antibodies, threonine 
is also related to the regulation of the expression of 
inflammatory cytokines. When fish are infected with 
bacteria, threonine deficiency will promote the expression 
of pro-inflammatory cytokine genes and inhibit the 
expression of anti-inflammatory cytokine genes to aggravate 
the inflammatory response (33,34). In NSCLC patients, we 
observed the decrease in plasma threonine concentration 
(Figure 3 and Table 3). A study of plasma amino acids in 
lung cancer patients also revealed significant changes in 
threonine (35). In this plasma metabolome study involving 
142 Korean participants, threonine was decreased in cancer 
patients when compared to the control group, similar to our 
findings. Therefore, NSCLC cells may heavily consume 
threonine to establish an “immune comfort zone”. Since 
metabolism and transcription were inextricably linked 
(16,20), genes changed when threonine was lowered. As 
shown in Figure 7 and Figure S8, the accumulation of 
threonine may be caused by the up-regulation of SHMT2 
and down-regulation of AOC3 and MAOB. However, 
the accumulation of threonine may be insignificant and 
does not significantly increase plasma threonine levels in 
NSCLC patients. Immune function will not be significantly 
improved.

Cysteine, a sulfur-containing amino acid, is produced by 
another sulfur-containing amino acid, methionine. Cysteine 

Figure 7 Mapping of important pathways based on the results of 
metabolome and transcriptome integrated pathway analysis. The 
orange ellipse and the purple-red rounded rectangle contain the 
amino acid name and gene name, respectively.
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plays an important role in the process of cancer metabolism 
remodeling. It serves as a substrate for the production of 
hydrogen sulfide (H2S), which provides energy for the 
mitochondrial electron transport chain to stimulate the 
bioenergetics of cancer cells (36). In our study, reduced level 
of cysteine was indicated as a plasma metabolic signature of 
NSCLC patients (Figure 3 and Table 3). This abnormality of 
cysteine was also found in the serum of non-smoking female 
NSCLC patients (37). High concentrations of cysteine 
in the blood have been associated with a reduced risk of 
gastrointestinal cancers, as reported by Miller et al. and 
Murphy et al. (38,39). Thus, it can be assumed that the drop 
in blood cysteine levels is a common feature of many types 
of cancer, not just NSCLC. The downregulation of cysteine 
in plasma may be related to the production of H2S. In order 
to continuously utilize H2S, PSAT1 may be upregulated by 
cancer cells to partially replenish cysteine depletion (Figure 7  
and Figure S8).

Arginine is an amino acid with anti-tumor potential that 
deserves special attention; arginine was down-regulated in 
the plasma samples of our NSCLC patients. Inconsistent 
with our results, serum arginine was elevated in patients 
with early NSCLC in the study by Klupczynska et al. (40). 
Although we performed a univariate analysis of early-stage 
NSCLC patients, arginine levels remained inconsistent. 
This difference may be due to different research methods. 
However, Kim et al. observed consistent results with 
reduced plasma arginine levels in lung cancer patients (35). 
This phenomenon of blood arginine drop in patients with 
lung cancer may be mainly attributed to increased uptake 
and utilization of circulating arginine by cancer cells and 
enhanced decomposition of intracellular arginine by cancer 
cells. This seems contradictory, but it may be because cancer 
cells want to meet both energy requirements and escape 
immune attack. Autophagy helps feed the nutrients needed 
for the survival of cancer cells (41). Blood is the source of 
nutrients for tumor cells. Poillet-Perez et al. reported that 
autophagy maintains the growth of tumor through arginine 
in the blood (42). Increasing intracellular arginine levels not 
only improved T cells survival capacity but also enhanced 
their anti-tumor activity in vivo (43). However, tumor cells 
suppress anti-tumor immunity by catabolizing intracellular 
arginine (44). The metabolism of arginine in NSCLC is 
complicated, and it is still necessary to study its value as a 
biomarker and anti-tumor medicine.

Another amino acid that was significantly reduced in 
the plasma of NSCLC patients was alanine, as previously 
reported by different authors (35,40,45). The decrease 

of serum alanine concentration in breast cancer patients 
was reported by Eniu et al. (46). A study of pancreatic 
duct adenocarcinoma (PDAC) found that PDAC cells 
use the SLC38A2 transporter to supplement the nutrient  
alanine (47). The low availability of alanine in different 
tumor types can be explained by the consumption of alanine 
for cancer cell proliferation. The other 2 controversial 
amino acids are histidine and methionine, both of which 
were increased in our NSCLC samples. However, these 2 
amino acids were decreased in the cancer group in other 
studies (18,35,46,48). The reason for this difference may 
be the small sample size of the cancer group in our study or 
the different research methods.

Piperonamide, also known as piperine, has been shown 
to inhibit the proliferation and migration of cancer cells 
(19,49). In our study, piperonamide level was significantly 
lower in patients with NSCLC compared to HCs. This 
may be due to excessive degradation or reduced synthesis 
of piperonamide. Therefore, abnormal piperonamide 
metabolism can be involved in the pathogenesis of NSCLC.

After validation on multiple validation sets, we finally 
confirmed that these 7 metabolites have value as biomarkers 
for diagnosing NSCLC. The diagnostic panel composed 
of these 7 metabolic biomarkers had a good ability to 
classify NSCLC and HC, and also had the ability of 
screening or early diagnosis. Also, elevated fasting blood 
glucose and weight loss interfered little with its predictions. 
Finally, the integrated pathway analysis of metabolomics 
and transcriptomics provided more information for our 
understanding of changes in certain metabolic biomarkers. 
However, several limitations existed in the current research. 
First, the sample size in this study was small, especially 
for patients with stage I NSCLC. Second, there was no 
information on blood glucose and weight changes in 
HCs, but the design of comparisons between multiple 
groups of NSCLCs and HCs could compensate for the 
lack of information. There was also no information on 
collection time for HC samples. Third, the metabolism and 
transcription data were from different populations. Fourth, 
the sample types of metabolomics and transcriptomics 
analysis were different: the former was plasma and the latter 
was tissue. These may have biased the analysis, so solving 
the above limitations is the goal of our future research.

Conclusions

In summary, plasma threonine, piperonamide, arginine, 
alanine, cysteine, methionine, and histidine have the 
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potential to serve as diagnostic biomarkers for NSCLC. 
The panel constructed from them performed satisfactorily 
in differentiating NSCLC patients from HCs. These 
findings may help improve NSCLC diagnosis and 
screening. Furthermore, the supplement of transcriptomic 
data improved our understanding of the changes in several 
of these metabolites. This has implications for studying 
carcinogenesis mechanisms and discovering possible 
therapeutic opportunities.
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Supplementary

Table S1 The diagnostic performance of this panel in four data sets

Data sets AUC 95% CI Sensitivity Specificity

Training set 0.999 0.997–1.000 0.985 1.000

Validation set 1 0.965 0.920–1.000 0.917 1.000

Validation set 2 0.963 0.924–1.000 0.922 0.970

Integrated data set 0.967 0.945–0.989 0.934 0.964

The above results were obtained using the linear regression algorithm and the “pROC” R package. AUC, area under the ROC curve; ROC, 
receiver operating characteristic; CI, confidence interval.

Table S2 The NSCLC diagnostic ability of this panel under different algorithms

Algorithm Training set Validation set 1 Validation set 2 Integrated data set

Linear SVM

AUC 0.999 0.925 0.944 0.969

Sensitivity 0.985 0.861 0.877 0.916

Specificity 1.000 1.000 0.970 0.976

Random forest

AUC 0.999 0.957 0.958 0.981

Sensitivity 0.970 0.917 0.923 0.934

Specificity 1.000 1.000 0.909 0.952

Linear SVM algorithm and random forest algorithm were performed on MetaboAnalyst 5.0. NSCLC, non-small cell lung cancer; SVM, 
support vector machine; AUC, area under the ROC curve; ROC, receiver operating characteristic.

Table S3 A total of 893 DEGs in the turquoise module

PARPBP SLC5A9 C7 IL6 AC144831.1

AC096921.2 HJURP ITLN1 COL6A6 WISP2

CIP2A CDCA3 PBK CDC45 PTGDS

AC093278.2 HMMR NPNT PPP1R15A GUCY1A2

HRCT1 FPR2 HSPC324 BMP2 TBX2

ADCY4 SPI1 ADAMTSL3 GINS4 EMCN

CPB2 CDK1 NDC80 WDHD1 MAOB

PPIAP39 NEK2 FGD5 GRASP FIBIN

DENND2A CCDC69 CLIC3 LYVE1 PCDH12

KANK2 AC011899.2 GATA6-AS1 NKAIN1 SCN4B

ODF3L1 WIF1 NPM3 BCL6B CLSPN

AC013457.1 KLB DCSTAMP ZC3HAV1L ECEL1P2

EFNA4 RBP4 MIR3677 GLIPR2 ADAMTS7P3

TDRD5 AC093787.1 SLC39A8 NDNF SCN1A

SFTA1P VWF SGCA SLC12A9-AS1 SPC24

FAM13C KCNT2 AC009093.3 FLRT3 AC020907.1

PLPP2 HSPB6 EPAS1 NCAPH DEPP1

IQCN FHL1 HBA1 GAREM2 AC079630.1

SIGLEC11 ACP5 IGSF10 FBLN5 PLEK2

KIF2C HMGA1 POLE2 PDE1B AL445524.1

TGFBR3 AC012213.4 FFAR4 AGTR2 DUOX1

YBX2 ADAMTSL4 CDCA5 METTL7A CCNB1

AURKB GPD1 TESMIN AC018755.4 CENPH

ABCA3 CYYR1 AOX1 PRKCE BRIP1

SVEP1 SMIM25 VEPH1 CLDN18 GPRIN1

RTKN2 PLAC1 CTHRC1 TICRR TNNC1

PCAT6 ZP3 KANK3 DIO2 KIF20A

SLC19A3 AQP1 MKI67 GNG4 GATA6

LRRC36 MAP1LC3C PPP1R14A AL035409.1 EFCC1

ARHGEF39 AL355388.1 TFAP2A-AS1 HMGB3 RASGRP4

Table S3 (continued)
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Table S3 (continued)

CHEK1 ABI3BP RRM2 SNHG4 DNA2

GPR146 CDO1 NMUR1 PEAR1 VSIG4

ASNS NME1 CDCA8 COBL RNU6-529P

AGTR1 STIL TMEM150B RASIP1 PCOLCE2

A2M C3orf86 FGFR4 IL3RA CA3

AP001972.5 LGI3 ORC1 ART4 AL133215.2

ADRB1 CD300LF ETV4 CLEC1A AQP9

LINC01290 EZH2 JPH2 OGDHL ANOS1

MAGI2-AS3 CACNA2D2 PARAL1 CD36 SUSD2

NEIL3 FENDRR PCLAF ANGPT1 LAMP3

ST8SIA6 KIF14 CXCR1 OR7E47P MMP9

AC027288.3 PTPRM RAMP2 AP003469.2 KIF18B

AURKA ZFP36 COL6A5 CCL2 APOBR

PPBP LINC02555 BDNF CLDN5 GPER1

AC016205.1 MYOC S100A3 MIR3945HG WDR62

SPOCK2 FRMD3 RECQL4 PLXNB3 DPEP2

CALCRL FOXD3-AS1 GRK5 C5AR1 MYRF

CDCA2 MDK ANKRD1 AC008268.1 FABP4

TEDC2 MCM10 RAI2 FEN1 RGCC

PLPP4 STEAP1 C1QTNF2 GPA33 SLC18A2

CCL23 KNL1 LINC02154 CLEC12A CDKN2A

EDNRB FANCI GKN2 C1QA TRIP13

GDF10 HELLS ITGA8 GPBAR1 ABCA8

ADAMTS8 AC027288.2 AC025166.1 CXorf36 ADGRE5

SPTBN2 CFP LINC01936 MYADM FAM107A

AC112777.1 FAM110D FCN3 IGF2BP3 COX7A1

IQSEC3 SGCG COL10A1 TRAIP CMTM2

CLEC3B MSR1 GPR19 RASAL1 AC006329.1

BUB1 BARX1 LINC01996 ANKRD29 OIP5

SULF1 AC024560.2 ATOH8 AATK DTL

FAM124B AC099850.3 UBE2S MIR27A NECTIN4

AL136452.1 AC236972.3 PEBP4 FOXF1 MYCT1

COX4I2 ATP2A1-AS1 PHACTR1 CCNB2 PECAM1

TYMSOS TPSAB1 PIF1 E2F2 STXBP6

SULT1C4 AP000769.1 LHFPL6 CENPA PLAC9

ACADL ZNF695 GATA2 COL11A1 MT1M

APOLD1 AC011511.5 ADM2 MMRN2 AC010976.2

SLC44A5 NCKAP5 AL136369.1 GAPDH FAM83A

MT1A RETN CST1 FMO2 ANGPTL1

FGR F12 MASP1 CNTN6 BUB1B

LINC00968 MEX3A CHIAP2 DNASE2B DLC1

MS4A2 GLDN SGO1 AC131649.2 E2F8

CXCL2 SLC46A2 ZNF385B ARHGEF15 LINC00511

AP000251.1 SLCO2A1 CD52 ADGRE1 EPN3

EFNA3 FXYD1 HSD17B6 VEGFD PLOD2

CASS4 MMP11 ATP6V0D2 ESCO2 CDIPTOSP

KNTC1 FAM167A AUNIP ADGRE3 UHRF1

AC027277.2 SASH1 ASF1B AC080037.1 FBP1

SFTPD AC093110.1 TYMS CDH5 AC084880.1

RAD51 CENPW TMEM100 RAD54L PCAT19

RAC3 FOSB DES LGI4 FBXO32

Table S3 (continued)
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Table S3 (continued)

AL132712.2 LANCL1-AS1 LMOD1 SPARCL1 CAV1

RPL13AP17 ARHGAP6 CENPI FAM72B LDB2

SH3GL2 SIGLEC17P AL606469.1 DPYSL2 KLF2

LRRN3 KIFC1 LRRK2 PYCR1 DUXAP8

PI16 LHFPL3 CCL14 CSF3 EMP2

CEP55 LILRA5 AOC3 GPM6A ROBO4

ADRB2 XRCC2 CKAP2L MGAT3 MCEMP1

TCF21 KL SKA3 DEPDC1 PRC1

CDT1 CD300LG SIX1 ROR1 HIST3H2A

C1QTNF6 ATAD2 NLRC4 DNASE1L3 CAVIN2

NUSAP1 TCEAL2 CD300C ABCA9 SLC6A4

AP000866.2 JAM2 MRC1 C8orf34-AS1 FAM189A2

FSD1 LTBP4 OLFML1 RASL12 AC005856.1

MS4A15 NXPH3 CHRNA5 C1orf162 AP001453.2

MMP12 TFR2 ERCC6L CCM2L CASQ2

MYZAP TK1 MYOZ1 PGM5P4 ITIH5

AC026369.3 TEK EME1 FOXM1 SFTPC

ADAMTS1 HIGD1B NCAPG AQP4 GALNT14

DOK2 TRGJP2 CYP27A1 SFTPA1 CGNL1

CD93 DKK2 C5orf34 NECAB1 CASP17P

GIMAP1 PRSS35 EGR1 TIMP3 AC112722.1

CGREF1 COL1A1 AC104984.4 AC116407.1 FPR1

SMAD6 ADGRD1 GIMAP5 SFRP5 CARD14

GPIHBP1 MYO16-AS1 ACSS3 OLR1 CKS1B

CAV2 CAMP KCNK3 CDCA4 MCM4

PROM2 ITM2A CCDC85A TROAP GIMAP6

STX11 ADAM12 LEFTY2 USHBP1 PRR19

AP001528.3 TRPV2 GPR4 GIMAP8 JCAD

CRABP2 ECT2 PODXL2 RMI2 F11

ACOXL AC091057.1 RBBP8NL LPL CCNE1

TTK HSPA12B ATP5MC1P4 GINS2 LHFPL3-AS2

GPX3 MARCO HHIP CRTAC1 CORO2B

ASPM B3GNT4 SCN7A GYPC C14orf132

SEC14L6 AGMAT BLM CTGF HYAL1

CPAMD8 CEACAM21 AL162511.1 AC011944.1 CENPM

SIRPB1 SERTM1 LRRC32 ITLN2 AL109741.1

MYBL2 TNXB NUF2 ESAM AP001189.3

ARHGEF26 CENPK SEMA3G FAM111B SLIT3

ECSCR RND1 FAM180A B3GNT3 BOP1

PDK4 GADD45B RPL39L PFKP HOXC9

HOXC-AS1 COL4A3 EXO1 SH3GL3 CA4

HBA2 TONSL CAMK2N2 CCNF SSTR1

ACVRL1 STRA6 IGF2BP1 PTCRA STARD8

PLK4 ARC TACC3 AP001189.1 TLR4

ABCB1 KIF23 NOVA2 IQANK1 SPAAR

CHAF1B CHRDL1 GYPE MELK PPP1R14BP3

CCL24 STX1A PRR11 C11orf96 TAL1

SLC25A10 CPED1 AC091133.4 SYNDIG1L VIPR1

CDCA7 CHI3L2 HOXB7 MCM2 RSPO4

GPT2 GTSE1 SPP1 MIR30C2 AK4

AC007743.1 SHMT2 CENPU C17orf53 LMNB1

Table S3 (continued)
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Table S3 (continued)

EGLN3 PRG4 TBX4 DLGAP5 NXF3

ARHGAP11A ZNF366 LINC02016 LIMCH1 KIF15

GPRC5A WWC2 TIE1 SPC25 AC004816.1

ALOX5AP SKA1 TNNT1 UPK3B CENPF

AL136162.1 NR4A1 HAS1 KIF11 BIRC5

RAD54B HPDL MAD2L1 SEMA3B TBX5-AS1

FHL5 ZYG11A PLK1 SFTPA2 SCARA5

EEF1E1P1 PPFIA4 AFF3 PVT1 ACKR4

RBP2 RDM1 HEG1 RACGAP1 INMT

STAC AGER CDC6 RCOR2 ST6GALNAC5

SPAG5 WFDC1 PKMYT1 NTM SH2D3C

AC078778.1 PIMREG POLQ PTPN21 CDC25A

ESPL1 RFC4 TNS1 NR4A3 AL355338.1

SRSF12 NOTCH4 SLC1A1 DDX12P LINC01836

KIAA1324L HBB AC008669.1 ESPN CCNE2

SELP TSACC TPX2 EEF1A1P6 PALMD

LIMS2 SHC3 ERG AC079467.1 LIN7A

BIK CSRNP1 PRAM1 PGM5 NPR1

STYK1 ANKRD22 PDZD2 TENT5B GPC2

RHOJ PKNOX2 FAM83A-AS1 MAMDC2 LRP2BP

ADH1B PF4 TMEM88 PREX2 DACH1

PLA2G4F CLEC14A OSCAR LINC02321 LINC02471

TMEM139 AGRP GRIA1 IGFBP3 GINS1

WNT3A MS4A7 EIF4EBP1 HASPIN FOLR3

VPS9D1-AS1 FCN1 PTH1R RSPO1 ZFPM2-AS1

CYP4B1 AC093890.1 RASGRF1 CCNA2 ST6GALNAC3

AC141557.2 PRX AC084864.1 NOSTRIN TOP2A

ATP1A2 IL1RL1 CCBE1 CXCR2 SCUBE1

ZWINT PTPRB AC073585.1 RXFP1 MIR23A

GNG11 S1PR1 CLIC5 KCNAB1 CDC25C

AC004921.1 IQGAP3 LINC02185 IL23A GAL

BTNL9 FAM162B DEPDC1B COLEC12 FANCB

C8B SOX17 CX3CR1 LARGE2 CDC20

OR52K3P MMRN1 STARD9 LEPR DUSP5P1

DNMT3B SPN KPNA2 CFD PSAT1

NMU PTX3 RNU5B-4P CXCL3 DENND3

PTTG1 UBE2C PLA2G1B ACE AC083837.1

KIF4A PCMTD1P3 AC147067.2 CDKN3 ANLN

TNFRSF18 CTSG PIP5K1B S1PR4 SELE

CENPE ZNF423 CCL18 ZBTB16 AC007128.1

RAMP3 AL357054.4 VSIG2 SHCBP1 RSPO2

LINC01703 UBE2T PID1 ORC6 CD101

CBLC MIR4653 CCRL2 ACKR1 ALOX5

RXRG RGS9 IHH CST5 F8

SLIT2 MTFR2 GSTM5 OGN DSCC1

PPARG RAD51AP1 ALKAL2 ARHGAP31

MFAP4 MND1 C1QTNF7 SAPCD2

DEGs, differentially expressed genes.
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Figure S1 PCA of the grouped data. PCA, principal component analysis.

Figure S2 One thousand permutations test of the PLS-DA model. 
PLS-DA, partial least squares-discriminant analysis.

Figure S3 Screening of potential biomarkers in NSCLC. The differential metabolites corresponding to the 7 green box plots were selected 
as potential biomarkers for NSCLC. The yellow box plot corresponds to the excluded differential metabolite; the blue box plot represents 
the indicator. NSCLC, non-small cell lung cancer.
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Figure S4 The diagnostic performance of this panel for NSCLC 
subtypes. This figure was made using the “pROC” R package. 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; AUC, area under the ROC curve; ROC, receiver 
operating characteristic; NSCLC, non-small cell lung cancer.

Figure S5 Correlation of 7 metabolic biomarkers with CEA and Cyfra21-1. P<0.05 was considered statistically significant. * represents 
P<0.05, ** represents P<0.01, and *** represents P<0.001. Cyfra21-1, cytokeratin 19 fragment; CEA, carcinoembryonic antigen.

Figure S6 WGCNA of DEGs. (A) Determination of soft threshold in scale-free topology network. As shown in the left and right figures, 
when the soft threshold is 6, the network connectivity of the scale-free topology model is better. Thus, the soft threshold was set to 6; (B) 
scatter plot of significant genes related to NSCLC in the turquoise module. WGCNA, weighted gene co-expression network analysis; 
DEGs, differentially expressed genes; NSCLC, non-small cell lung cancer.
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Figure S7 Enrichment analysis of integration pathways of 7 
metabolic biomarkers and 893 DEGs. DEGs, differentially 
expressed genes.

Figure S8 Four significantly changed metabolic genes in the extracted pathways.


