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Introduction

Lung cancer is a malignant tumor with the highest 
mortality and second highest morbidity worldwide. In 
2020, there were 2.2 million new cases of lung cancer 
worldwide and 1.8 million deaths (1). Non-small cell lung 
cancer (NSCLC) treatment methods include surgical 

resection, comprehensive adjuvant treatment, neoadjuvant 
radiotherapy, and chemotherapy. Surgery and puncture 
tissue samples to detect gene mutations are still the gold 
standard for diagnosing whether NSCLC patients are 
suitable for targeted therapy (2). The sooner the patients 
receive treatment, the better the treatment effect. However, 
most NSCLC patients are at the middle or advanced stage 
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when the diagnosis is confirmed, losing the opportunity for 
surgical treatment. Traditional treatment uses platinum-
containing dual-agent chemotherapy as the first-line 
treatment. The National Comprehensive Cancer Network 
(NCCN) treatment guidelines recommend that patients 
with advanced NSCLC take comprehensive treatment 
based on systemic therapy (3). Although chemotherapy has 
made significant progress, the overall therapeutic effect of 
NSCLC is still not satisfactory, and its 5-year survival rate 
remains low.

There are two types of mutations in the tumor genome: 
“passenger mutations”, which have little effect on the 
development of tumors, gradually disappear passively 
as the disease progresses. “Driver mutation” is another 
type of mutation that is crucial to oncogenesis and tumor 
progression. Cancer cells carrying driver mutations 
aberrantly activate/inhibit key signaling pathways and have 
selective advantages in survival or proliferation (4). Since 
tumors rely on driver mutations to maintain the malignant 
phenotype, it has also become a hot spot in current tumor 
treatment research. Recent studies have shown that 
NSCLC has a significant connection with gene mutations. 
The commonly NSCLC driver genes include epidermal 
growth factor receptor (EGFR), anaplastic lymphoma 
kinase (ALK), Kirsten rat sarcoma viral oncogene (KRAS), 
phosphatidylinositol 3-kinase catalytic subunit α (PIK3CA), 
and mesenchymal to epithelial transition factor (MET), 
which mutated may directly “drive” the oncogenesis and 
tumor progression of NSCLC (5-7). Currently, EGFR-
TKIs are widely used in the treatment regimen of patients 
with EGFR-mutant NSCLC while benefiting patients (8).

The diagnosis of NSCLC mainly relies on pathological 
biopsy (9). Although this traumatic examination method 
can directly observe pathological cell changes, it has poor 
reproducibility and is not suitable for post-treatment 
monitoring. Many patients lose the opportunity for targeted 
therapy due to the inability to obtain tissue specimens or 
too few tissue specimens are obtained for molecular type 
testing. At the same time, due to the existence of tumor 
heterogeneity, mutations of different tumor sites and 
even different tumor cells at the same tumor site may be  
different (10), and the genetic testing of a single tissue 
biopsy cannot accurately reflect the overall characteristics 
of the tumor (11). With the evolution of tumors caused by 
treatment selection pressure and the emergence of drug-
resistant genes, relying only on pre-treatment specimens to 
guide subsequent treatment may lead to treatment bias (12).

ctDNA is tumor-derived fragmented DNA in the blood. 

ctDNA comes directly from the tumor or from circulating 
tumor cells and usually carries the gene mutation 
information of the tumor tissue. In recent years, ctDNA-
based liquid biopsy has provided new opportunities for 
molecular diagnosis and monitoring of tumors. ctDNA 
gene mutation detection can be used for early cancer 
screening and real-time monitoring of cancer development, 
metastasis, and prognosis (13). Circulating tumor DNA 
(ctDNA) is a tumor-specific gene carried by apoptotic 
tumor cells and is released into the blood, which can fully 
reflect the molecular composition of tumor tissue. Lebofsky 
et al. confirmed that 97% of mutation genes in metastasis 
biopsies could be found in ctDNA of tumor-matched 
samples (14). Guo et al. revealed that NGS detection results 
of tumor tissue samples and ctDNA samples are not entirely 
consistent. The concordance was 54.6% in patients with 
early-stage NSCLC and 80% in patients with advanced 
NSCLC, so indifferent patients, the intrinsic biological 
Mechanisms may affect the consistency of tumor biopsies 
and ctDNA genomic profiles (15). Therefore, this study 
intends to use NGS panel testing to detect tissue samples 
and ctDNA samples to analyze the mutation type and 
mutation frequency of differential genes and differences 
in the enrichment of biological functions of mutant genes. 
NSCLC patients with EGFR sensitive mutations respond 
well to EGFR-tyrosine kinase inhibitor (TKI) treatment, 
but most patients develop resistance 9–13 months after 
receiving treatment (16). With the emergence of new 
targeted drugs and the in-depth study of drug resistance 
mechanisms, a more comprehensive understanding of the 
composition of patients’ oncogenes is needed to guide 
treatment and evaluation.

This study analyzed the detection results of gene 
mutations in tissue samples and blood samples of patients 
with advanced NSCLC, explored the relationship between 
ctDNA detection and prognostic judgment, and performed 
curative effect evaluation and recurrence monitoring of 
NSCLC. We present the following article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-970/rc). 

Methods

Patient enrollment

The cohort included 28 NSCLC patients from Guangzhou 
First People’s Hospital. Among them, 11 patients underwent 
complete tumor staging in accordance with the seventh 
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edition of the NSCLC tumor, lymph node, and metastasis 
(TNM) standards. Tissue samples were obtained through 
prostate puncture or radical prostate cancer surgery, then 
tissues were paraffin-embedded, sliced, and submitted 
for examination. Blood samples were collected from the 
patient’s vein and stored in an EDTA anticoagulant tube 
for cryopreservation, then submitted for inspection. All 
samples submitted for inspection met the quality control 
requirements of gene sequencing and were sequenced for 
mutation analysis. This study has been approved by the 
relevant supervision and independent ethics committee of 
Guangzhou First People’s Hospital (No. K-2020-051-01). 
Every patient provided written informed consent for use of 
their samples. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Next-generation sequencing (NGS) and annotation 

DNA was isolated from the FFPE samples and blood 
samples using the DNeasy Blood and Tissue Kit (69504, 
QIAGEN, Venlo, Netherlands). Multi-gene panel targeted 
NGS including 556 genes was performed on Ion Torrent 
(Tongshu BioTech, Shanghai, China). The targeted libraries 
were constructed using NGS Fast DNA Library Prep Set 
(Thermo Fisher, Waltham, MA, USA). BWA (Burrows-
Wheeler-Alignment) software was used to compare the 
sequencing results. GATK (The Genome Analysis Toolkit) 
was used to correct the comparison quality. Mutect2 and 
VarDict software were used to detect somatic mutation 
sites from the comparison results, and the intersection 
of mutation sites detected by the software was used as 
the candidate somatic mutation sites. For the detected 
candidate somatic mutation sites, ANNOVAR software was 
used to annotate the population frequency in the ExAC 
(Exome Aggregation Consortium) and ESP (NHLBI 
Exome Sequencing Project) databases and the functional 
information of mutation function and mutation type. In 
order to further improve the credibility of mutations, we 
removed mutants with low support for reads according 
to the sequencing depth of the loci. In addition, mutation 
sites with a population frequency greater than 0.01 were 
also removed, and the remaining mutations were used as 
mutation sites with high confidence for subsequent analysis. 

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis

Oncoplot mutations were plotted for each sample and 

different groupings using the MAfTools R package. 
Mutations in cancer-related driver genes were also analyzed. 
The clusterProfiler R package was also used for GO and 
KEGG functional enrichment analysis of mutated genes 
in each grouping sample. In order to analyze the overlap 
between samples of different groups, the Venn diagram R 
package was also used to draw Venn diagrams between each 
group of mutations. 

Statistical analysis

GraphPad Prism 8.0 software was used for statistical 
analysis. The t-test was used for continuous variables, 
while the chi-square test or Fisher’s exact test was used for 
categorical variables. Two-sided tests were used, and P<0.05 
was considered statistically significant.

Results

Patient characteristics

From May 2018 to Dec 2020, we recruited 28 patients 
diagnosed with advanced or metastatic NSCLC and 
collected 39 samples (24 tumor tissues and 15 blood 
samples) from the patients. In addition, paired tissue 
samples and blood samples were tested in 11 patients. 
The median age of  the 11 pat ients  was  64 years  
(55–77 years). Six cases were females, and 5 cases were 
males. Four patients had a history of smoking, while 
7 did not smoke. Nine patients were diagnosed with 
adenocarcinoma and 2 patients with squamous cell 
carcinoma. Three patients accepted EGFR-TKI treatment, 
and 2 patients accepted chemotherapy. There was a lack 
of treatment information for the other patients. Table 1 
summarizes the clinical characteristics of the cohort.

Comparison of the mutational profiles of tissue DNA and 
ctDNA 

We analyzed a total of 39 mutation profiles of tumor tissues 
and ctDNA samples through NGS detection. Overall, 
145 genes were found to have mutations in tumor tissues 
and ctDNA samples, including 28 deletions (DELs), 7 
insertions (INSs), and 270 single nucleotide variants (SNVs). 
The top 3 mutant genes were TP53 (59.0%, 23/39), EGFR 
(33.3%, 13/39), and LRP1B (23.1%, 9/39) (Figure 1A). A 
total of 114 genes were found to have mutations in tissue 
samples, including 9 Frame_Shift_Del, 2 Frame_Shift_Ins, 
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7 In_Frame_Del, 1 In_Frame_Ins, 157 missense mutations, 
16 nonsense mutations, and 1 Splice_Site (Table S1). The 
common mutated genes were TP53 (58.3%, 14/24), EGFR 
(33.3%, 8/24), LRP1B (25.0%, 6/24), KRAS (20.8%, 5/24), 
and ARID1A (16.7%, 4/24) (Figure 1B). A total of 78 genes 
were found to have mutations in ctDNA samples, including 
4 Frame_Shift_Del, 2 Frame_Shift_Ins, 5 In_Frame_
Del, 1 In_Frame_Ins, 85 missense mutations, 13 nonsense 
mutations, and 2 Splice_Site (Table S2). The top 3 mutant 
genes were TP53 (60%, 5/15), EGFR (33.3%, 5/15), LRP1B 
(20.0%, 3/15), ERBB4 (3/15), and ARID1A (13.3%, 2/15) 
(Figure 1C).

The relationship between tissue DNA and ctDNA in 
NSCLC patients

Among the 28 patients, 11 patients underwent both tissue 
sample DNA testing and blood ctDNA testing. As shown 
in Table 2, there were 100 mutated genes detected in tissue 
and ctDNA samples, of which 39% were co-mutated genes 
(39%, 39/100). Among them, 72 mutated genes were 
detected in tissue samples, and 33 (45.8%, 33/72) mutated 
genes were ctDNA-specific. The ctDNA samples detected 

mutations in 67 genes, and 28 (41.8%, 28/67) mutated 
genes were ctDNA-specific. In addition, 39 genes were 
co-mutated in both samples, tissue samples accounted for 
54.2% (39/72), and ctDNA samples accounted for 58.2% 
(39/67). The average co-mutation frequency of paired tissue 
DNA with ctDNA was 40.1% (0–83.3%), and the median 
value was 37.5%. The average accuracy of paired tissue 
DNA with ctDNA detection was 65.26% (0–100%), and 
the median value was 90.91% (Table 3).

Next, we performed GO and KEGG analysis to assess 
the mutated genes in tissue and ctDNA samples. This study 
found that for the co-enrichment of tissue and ctDNA 
samples, the GO terms of cellular component (CC) were 
nuclear chromosome part, chromatin, nuclear chromatin, 
transcription factor complex, and chromosome/telomeric 
region (Figure 2A,2B). The GO terms of biological process 
(BP) were gland development, phosphatidylinositol 3-kinase 
signaling, inositol lipid-mediated signaling, regulation 
of protein kinase B signaling, phosphatidylinositol-
mediated signaling, and protein kinase B signaling  
(Figure 2C,2D). The GO terms of molecular function (MF) 
were protein tyrosine kinase activity, hormone receptor 
binding, transmembrane receptor protein tyrosine kinase 

Table 1 Summary of patients’ clinical information

No. Gender Age (years) Smoking Clinical stage Treatment
Therapeutic 
evaluation

Metastasis Pathology

Pt.1 Male 64 Yes IVB – – Lymph nodes, bone, 
kidney, pleura

Squamous carcinoma

Pt.2 Female 60 None IVA – – Pleura Adenocarcinoma

Pt.3 Male 58 Yes IVB – – Lymph nodes, pleura, 
pelvic cavity

Adenocarcinoma

Pt.4 Female 55 None IVB – – Lymph nodes, bone Adenocarcinoma

Pt.5 Female 77 None IVB EGFR-TKI PR Lymph nodes, bone, 
liver

Adenocarcinoma

Pt.6 Male 75 None IVB EGFR-TKI PR Lymph nodes, bone, 
kidney, brain

Adenocarcinoma

Pt.7 Female 60 None IVB Chemotherapy SD Lymph nodes, bone, 
kidney, liver

Adenocarcinoma

Pt.8 Female 72 None IVA EGFR-TKI PR Lymph nodes, pleura Adenocarcinoma

Pt.9 Female 67 None IVA Chemotherapy, 
Tislelizumab

PR Lymph nodes, pleura Squamous carcinoma

Pt.10 Male 69 Yes IVA – – Lymph nodes Adenocarcinoma

Pt.11 Male 60 Yes IVA – – Nodes, pleura Adenocarcinoma

EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; PR, partial response; SD, stable disease.
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Figure 1 Differences in mutation profiles of tissue DNA and ctDNA. (A) Oncoprint of all samples gene alterations; (B) oncoprint of tissues 
samples gene alterations; (C) oncoprint of ctDNA samples gene alterations. ctDNA, circulating tumor DNA.

Table 2 Differences in genetic mutations in tissue and blood samples from patients.

Samples Mutation genes Total (n=100)

Tissue ERCC4, FLT4, ATRX, HIST1H3C, MAP3K13, FOXL2, LATS1, MCL1, KMT2C, PTPRT, EP300, 
CARD11, SDHA, NRAS, PTPRS, WWTR1, ERCC3, ROS1, SHOC2, MSH3, KMT2D, SDHAF2, 
MET, PREX2, ATR, CIC, PIK3C2G, PIK3CA, FGF10, SGK1, KLF4, SNCAIP, FAT1

33

ctDNA ARID2, CYSLTR2, HOXB13, STAG2, FOXP1, LTK, SUZ12, KMT2B, PTPN11, FANCL, TNFRSF14, 
ELF3, PIK3CG, STAT5A, SPEN, RECQL4, PRKD1, SRC, SF3B1, TSHR, CDKN1A, NOTCH3, 
ABL1, ALK, RASA1, AR, ERBB2, KDM6A

28

Tissue and 
ctDNA

EPHA5, BRCA1, PRKCI, ERBB4, E2F3, KRAS, EPHA7, BRAF, IRS2, TCF3, LRP1B, TERT, KDR, 
HGF, TP53, ZFHX3, PTEN, ASXL1, RET, ARID1A, BCL6, STK11, NF1, RAF1, CTNNB1, AMER1, 
ETV6, EGFR, FGF12, MYC, MGA, AGO2, BCOR, KEAP1, NCOR1, BRCA2, POLD1, PARP1, 
ARID1B

39

ctDNA, circulating tumor DNA. 

TP53
EGFR

LRP1B
ERBB4
KRAS

ARID1A
EPHA7

RB1
KEAP1
KMT2D

PTEN
ARID1B
ASXL1
BRAF

BRCA1
BRCA2
EPHA5

FLT1
HGF
KDR
MYC
NF1

NOTCH1
PIK3CA
PTPRT

RECQL4
STK11
AGO2

AMER1
ARID2

TP53
EGFR

ERBB4
LRP1B

ARID1A
ARID1B
BRCA1
EPHA5
EPHA7
KRAS

PRKD1
PTEN

RECQL4
TSHR
ABL1
AGO2

ALK
AMER1

AR
ARID2
ASXL1
BCL6

BCOR
BRAF

BRCA2
CDKN1A
CREBBP

KDR
RB1

STAG2

TP53
EGFR

LRP1B
KRAS

ARID1A
ERBB4

RB1
EPHA7
KEAP1
KMT2D

NOTCH1
PIK3CA
PTPRT
ASXL1
BRAF

BRCA2
CARD11

EP300
ERCC4

FAT1
FLT1
HGF
KDR

KMT2C
LATS1

MYC
NF1

NTRK1
PREX2
PTEN

20

0

19

0

20

0
0	 24

0	 9

0	 14

57%
33%
21%
19%
17%
14%
12%
12%
10%
10%
10%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
5%
5%
5%

60%
33%
20%
20%
13%
13%
13%
13%
13%
13%
13%
13%
13%
13%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%
7%

Missense_Mutation

Nonsense_Mutation

Frame_Shift_Del

Frame_Shift_Ins

In_Frame_Del

Splice_Site

In_Frame_Ins

Multi_Hit

58%
33%
25%
21%
17%
17%
17%
12%
12%
12%
12%
12%
12%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%
8%

BA

C

Number of variant samples

Va
ria

nt
 p

er
 s

am
pl

e

Va
ria

nt
 p

er
 s

am
pl

e

Va
ria

nt
 p

er
 s

am
pl

e

Number of variant samples

Number of variant samples



Zhang et al. Differences in tDNA and ctDNA mutation profiles in NSCLC1250

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(5):1245-1254 | https://dx.doi.org/10.21037/tcr-22-970

Table 3 Co-mutation frequency of paired tissue DNA with ctDNA

Patients Tissue specific mutation Common mutation ctDNA specific mutation Co-mutation frequency Accuracy

Pt.1 3 10 1 71.43% 90.91%

Pt.2 2 7 0 77.78% 100.00%

Pt.3 1 5 0 83.33% 100.00%

Pt.4 0 2 4 33.33% 33.33%

Pt.5 3 6 3 50.00% 66.67%

Pt.6 1 0 1 0.00% 0.00%

Pt.7 3 2 0 40.00% 100.00%

Pt.8 6 1 17 4.17% 5.56%

Pt.9 10 6 0 37.50% 100.00%

Pt.10 16 3 11 10.00% 21.43%

Pt.11 6 3 0 33.33% 100.00%

ctDNA, circulating tumor DNA. 

activity, transmembrane receptor protein kinase activity, 
nuclear hormone receptor binding, and steroid hormone 
receptor binding (Figure 2E,2F). In addition, the KEGG 
pathway enrichment analysis showed that the mutated gene 
functions in tissue and ctDNA were mainly enriched in 
hepatocellular carcinoma, NSCLC, breast cancer, prostate 
cancer, endometrial cancer, and tumor-associated miRNA 
(Figure 2G,2H).

As showing Table 1, the follow-up treatment information 
was available for 5 of the 11 patients who had both tissue 
and ctDNA samples tested, including 3 who received EGFR-
TKI therapy (all patients evaluated as partial response) and 
2 who received chemotherapy (one evaluated as stable and 
the other as partial response). EGFR mutations were found 
in tissue samples and ctDNA samples from patients treated 
with EGFR-TKIs. In contrast, tissue samples and ctDNA 
samples from chemotherapy patients did not have EGFR 
mutations. 

Discussion

We performed NGS testing on 28 patients with lung 
cancer, including 24 tissue samples and 15 blood samples. In 
addition, 11 of the 28 patients received tissue sample testing 
and ctDNA sample testing. The analysis of the sequencing 
results revealed some crucial questions. For example, 
ctDNA testing found that patients with lung cancer carry 
tumor-related gene mutations, such as TP53, KRAS, and 
EGFR mutations. This detection has important clinical 

significance, suggesting that ctDNA mutation detection 
can be used as a non-invasive early detection method 
and can be applied to screening high-risk populations. 
In the process of cancer screening and early diagnosis, 
the combination of the quantitative level of ctDNA in 
circulation and the identification of ctDNA gene mutations 
can provide valuable information for cancer diagnosis. 
Existing studies indicate that gene mutations are tumor-
specific and detection of mutations in local tumor tissues is 
often insufficient (17,18). Assessing these changes in ctDNA 
can provide greater diagnostic accuracy than standard 
protein biomarkers such as carcinoembryonic antigen  
(CEA) (19,20).

ctDNA from tumors can represent the entire genome 
pattern of tumors to a certain extent and can be used 
as a liquid biopsy to analyze tumor-specific genetic and 
epigenetic changes, including oncogene or tumor suppressor 
gene mutations, methylation, and gene amplification, 
among others. As an effective and reliable biomarker in the 
past few years, ctDNA has played a vital role in classifying 
specific patients, guiding early clinical diagnosis and 
treatment, and for prognostic evaluation. In addition, using 
ctDNA biomarkers to detect epigenetic abnormalities in 
specific types of cancers early, such as hypomethylation of 
promoters in oncogenes or tumor suppressor genes, can 
provide critical information for tumor biology research 
and clinical treatment. Several studies have shown that 
TP53, ITH, HCK, and TNNB1 are common in peripheral 
blood ctDNA in patients with liver cancer (21-24). Specific 
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Figure 2 Functional enrichment analysis of mutation genes in tissue samples and ctDNA samples. (A) Cellular component enrichment 
results of tissue samples; (B) cellular component enrichment results of ctDNA samples; (C) biological process enrichment results of 
tissue samples; (D) biological process enrichment results of ctDNA samples; (E) molecular function enrichment results of tissue samples; 
(F) molecular function enrichment results of ctDNA samples; (G) KEGG pathway enrichment results of tissue samples; (H) KEGG 
pathway enrichment results of ctDNA samples. The x-axis shows the ratio number of genes, and the y-axis shows the pathway terms.  
The −log10 value of each term is colored according to the legend. ctDNA, circulating tumor DNA; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.
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mutations suggest that peripheral blood ctDNA can be 
detected for the early diagnosis of cancerous hepatocytes. 
Gormally et al. reported that plasma ctDNA could detect 
KRAS gene mutations in healthy subjects as early as 2 years 
in advance and could detect the mutation of TP53 in healthy 
patients 20.8 months before cancer diagnosis (25). Although 
the plasma of advanced patients with early tumors or tumor 
micrometastasis contains only a relatively low abundance 
of ctDNA fragments, quantitative and qualitative analysis 
of trace amounts of DNA has become possible with the 
continuous advancement of DNA detection technology (26). 

The prognosis of cancer patients is usually evaluated by 
combining clinical observation, tumor progression stage, 
histopathological changes, and biomolecular features. 
When tissue sections are challenging to obtain, such as non-
solid tumors, or it is difficult to use preserved tissue sections 
for genetic analysis, the importance of using patient blood 
to detect ctDNA is revealed. In addition, due to tumor 
heterogeneity, ctDNA detection can reflect the mutation 
information of patients more comprehensively, while tissue 
DNA detection often reflects the mutation information of a 
single nodule. ctDNA detection can dynamically detect the 
prognosis of patients during treatment and support timely 
adjustment of patient treatment regimens. Due to the 
advantage of ctDNA detection. Due to the potential benefits 
of ctDNA detection, many studies reveal the feasibility of 
ctDNA detection as a tumor liquid biopsy. The study of 
Bettegowda et al. showed that ctDNA could be detected in 
more than 75% of NSCLC, breast cancer, ovarian cancer, 
pancreatic cancer, colorectal cancer, liver cancer, and head 
and neck cancer (27). Studies have shown that ctDNA can 
reveal a series of molecular biological characteristics related 
to tumors, such as RAS gene and TP53 gene mutations, 
APC gene hypermethylation, loss of allelic heterozygosity 
(LOH), and mtDNA changes (28-30). About one-third 
of NSCLC patients have KRAS gene mutations. Gautschi  
et al. studied 180 cases of lung cancer patients with ctDNA 
and found that KRAS mutations are associated with poor 
prognosis (31). Parkinson et al. analyzed the mutations 
of TP53 gene ctDNA in 40 patients with malignant, 
recurrent, high-grade serous ovarian cancer (32). They 
showed that after 1 course of chemotherapy, patients whose 
TP53 mutation allele scores decreased >60% had a more 
prolonged disease-relapse survival time. Morikawa et al. 
tested plasma PIK3CA and KRAS gene ctDNA in patients 
with ovarian clear cell carcinoma and showed that patients 
with high PIK3CA-H1047R or KRAS-G12D ctDNA had 
a shorter survival time (33). A series of studies have shown 

that the plasma ctDNA of patients with pancreatic cancer 
contains mutations in the KRAS gene. Mutations in the 
KRAS gene can monitor the development of pancreatic 
cancer (34,35). Dabritz et al. detected 56 cases of pancreatic 
ductal adenocarcinoma and 13 cases of pancreatitis with 
plasma ctDNA mutations in the KRAS gene (36). Among 
them, found KRAS mutation in 20 patients with pancreatic 
duct adenocarcinoma, but no KRAS mutation in patients 
with pancreatitis. In a study of colorectal cancer, Trojan 
et al. compared KRAS gene mutation and CDKN2A 
promoter hypermethylation in the blood ctDNA of 37 
patients with colorectal cancer. They found that the KRAS 
gene had mutations or CDKN2A promoters. Patients 
with hypermethylation had a 2-year survival rate of 48%, 
while those without changes had a 2-year survival rate of  
100% (37). 

However, one limitation of ctDNA detection is 
that the low abundance of ctDNA fragments in blood 
makes its detection sensitivity challenging. Another, the 
results of ctDNA assays may be interfered with by clonal 
hematopoietic and germline mutations. Despite this, 
ctDNA detection has a good application prospect in the 
clinical diagnosis and treatment of tumors. For liquid 
biopsy to detect whether patients contain ctDNA and gene 
mutations is conducive to an early screening of patients and 
timely early intervention. For localized cancers, ctDNA 
testing can help doctors improve patient treatment plans. 
At the same time, during the treatment process, ctDNA 
detection can dynamically monitor tumor burden and 
curative effect. After treatment, blood ctDNA content and 
gene mutation can still be detected in real-time to monitor 
cancer recurrence and metastasis.

Conclusions

This study sequenced tissue and ctDNA samples from 28 
patients with advanced NSCLC by targeted NGS. ctDNA 
detection was consistent with tumor tissue detection to a 
certain extent. In addition, patients with EGFR mutations 
detected in both tissue samples and ctDNA samples 
achieved partial remission after EGFR-TKI treatment. 
ctDNA detection in patients as a method of disease 
diagnosis and evaluation of tumor molecular status is 
advantageous in clinical diagnosis and treatment. 
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Supplementary

Table S1 Mutations in tissue samples

Hugo_Symbol
Frame_

Shift_Del
Frame_
Shift_Ins

In_Frame_Del In_Frame_Ins
Missense_
Mutation

Nonsense_
Mutation

Splice_Site Total
Mutated 
Samples

TP53 1 0 0 0 12 2 0 15 14

EGFR 0 0 5 1 4 0 0 10 8

LRP1B 0 0 0 0 7 2 0 9 6

KRAS 0 0 0 0 6 0 0 6 5

ARID1A 1 0 0 0 2 1 0 4 4

ERBB4 0 0 0 0 4 0 0 4 4

RB1 1 1 0 0 0 2 0 4 4

EPHA7 0 0 0 0 2 1 0 3 3

KEAP1 0 0 0 0 3 0 0 3 3

KMT2D 1 0 0 0 2 0 0 3 3

NOTCH1 0 0 0 0 3 0 0 3 3

PIK3CA 0 0 0 0 3 0 0 3 3

PTPRT 0 0 0 0 3 0 0 3 3

KDR 0 0 0 0 2 1 0 3 2

ASXL1 0 0 0 0 2 0 0 2 2

BRAF 1 0 0 0 1 0 0 2 2

BRCA2 0 0 0 0 2 0 0 2 2

CARD11 0 0 0 0 2 0 0 2 2

EP300 0 0 0 0 2 0 0 2 2

ERCC4 0 0 0 0 2 0 0 2 2

FAT1 0 0 0 0 2 0 0 2 2

FLT1 0 0 0 0 2 0 0 2 2

HGF 0 0 0 0 2 0 0 2 2

KMT2C 0 0 0 0 1 1 0 2 2

LATS1 0 0 0 0 2 0 0 2 2

MYC 0 0 0 0 2 0 0 2 2

NF1 0 0 0 0 1 1 0 2 2

NTRK1 0 0 0 0 1 1 0 2 2

PREX2 0 0 0 0 2 0 0 2 2

PTEN 0 0 0 0 1 1 0 2 2

PTPRS 0 0 0 0 2 0 0 2 2

STK11 1 0 0 0 1 0 0 2 2

BRCA1 0 0 0 0 2 0 0 2 1

ROS1 0 0 0 0 2 0 0 2 1

AGO2 0 0 0 0 1 0 0 1 1

AMER1 0 0 0 0 1 0 0 1 1

ARID1B 0 0 0 0 1 0 0 1 1

ARID2 0 0 0 0 1 0 0 1 1

ASXL2 0 0 0 0 1 0 0 1 1

ATR 0 0 0 0 1 0 0 1 1

ATRX 0 0 0 0 1 0 0 1 1

BCL6 0 0 0 0 1 0 0 1 1

BCOR 0 0 0 0 1 0 0 1 1

BRD4 0 0 0 0 1 0 0 1 1

BRIP1 0 0 0 0 1 0 0 1 1

CARM1 0 0 0 0 1 0 0 1 1

CDKN2A 1 0 0 0 0 0 0 1 1

CIC 0 0 0 0 1 0 0 1 1

CTNNB1 0 0 0 0 1 0 0 1 1

CUL3 0 0 0 0 1 0 0 1 1

DOT1L 0 1 0 0 0 0 0 1 1

E2F3 0 0 0 0 1 0 0 1 1

EPHA3 0 0 0 0 1 0 0 1 1

EPHA5 0 0 0 0 1 0 0 1 1

ERBB3 0 0 0 0 1 0 0 1 1

ERCC3 0 0 0 0 0 1 0 1 1

ERCC5 0 0 0 0 1 0 0 1 1

ETV6 0 0 0 0 1 0 0 1 1

FGF10 0 0 0 0 1 0 0 1 1

FGF12 0 0 0 0 1 0 0 1 1

FGF23 0 0 0 0 1 0 0 1 1

FGFR3 0 0 0 0 1 0 0 1 1

FLT4 0 0 0 0 1 0 0 1 1

FOXL2 1 0 0 0 0 0 0 1 1

GATA4 0 0 0 0 1 0 0 1 1

GLI1 0 0 0 0 1 0 0 1 1

HIST1H3C 0 0 0 0 1 0 0 1 1

IGF2 0 0 0 0 1 0 0 1 1

IRS2 0 0 0 0 1 0 0 1 1

JUN 0 0 0 0 1 0 0 1 1

KEL 0 0 0 0 1 0 0 1 1

KLF4 0 0 0 0 1 0 0 1 1

MAP3K13 0 0 0 0 1 0 0 1 1

MCL1 0 0 0 0 1 0 0 1 1

MET 0 0 0 0 1 0 0 1 1

MGA 0 0 0 0 1 0 0 1 1

MSH2 0 0 0 0 1 0 0 1 1

MSH3 0 0 0 0 1 0 0 1 1

MSI2 0 0 0 0 1 0 0 1 1

MST1 0 0 0 0 1 0 0 1 1

MTOR 0 0 0 0 1 0 0 1 1

NCOR1 1 0 0 0 0 0 0 1 1

NRAS 0 0 0 0 1 0 0 1 1

NSD1 0 0 0 0 1 0 0 1 1

NUP93 0 0 0 0 1 0 0 1 1

PARP1 0 0 0 0 0 0 1 1 1

PGR 0 0 0 0 1 0 0 1 1

PHOX2B 0 0 1 0 0 0 0 1 1

PIK3C2G 0 0 0 0 1 0 0 1 1

POLD1 0 0 0 0 1 0 0 1 1

PRKAR1A 0 0 0 0 0 1 0 1 1

PRKCI 0 0 0 0 0 1 0 1 1

RAD51D 0 0 0 0 1 0 0 1 1

RAF1 0 0 0 0 1 0 0 1 1

RASA1 0 0 0 0 1 0 0 1 1

RECQL4 0 0 0 0 1 0 0 1 1

RET 0 0 0 0 1 0 0 1 1

RPTOR 0 0 0 0 1 0 0 1 1

SDHA 0 0 0 0 1 0 0 1 1

SDHAF2 0 0 0 0 1 0 0 1 1

SESN1 0 0 0 0 1 0 0 1 1

SESN3 0 0 0 0 1 0 0 1 1

SGK1 0 0 1 0 0 0 0 1 1

SHOC2 0 0 0 0 1 0 0 1 1

SNCAIP 0 0 0 0 1 0 0 1 1

SOS1 0 0 0 0 1 0 0 1 1

SOX2 0 0 0 0 1 0 0 1 1

TCF3 0 0 0 0 1 0 0 1 1

TERT 0 0 0 0 1 0 0 1 1

TGFBR2 0 0 0 0 1 0 0 1 1

VTCN1 0 0 0 0 1 0 0 1 1

WWTR1 0 0 0 0 1 0 0 1 1

ZFHX3 0 0 0 0 1 0 0 1 1

ZNF217 0 0 0 0 1 0 0 1 1
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Table S2 Mutations in ctDNA samples

Hugo_Symbol
Frame_

Shift_Del
Frame_
Shift_Ins

In_Frame_Del In_Frame_Ins
Missense_
Mutation

Nonsense_
Mutation

Splice_Site Total
Mutated 
Samples

TP53 1 0 0 0 7 1 1 10 9

EGFR 0 0 2 0 3 0 0 5 5

LRP1B 0 0 0 1 4 0 0 5 3

ERBB4 0 0 0 0 3 0 0 3 3

ARID1A 0 0 1 0 1 0 0 2 2

ARID1B 0 0 0 0 2 0 0 2 2

BRCA1 0 0 0 0 1 1 0 2 2

EPHA5 0 0 0 0 2 0 0 2 2

EPHA7 0 0 0 0 2 0 0 2 2

KRAS 0 0 0 0 2 0 0 2 2

PRKD1 0 0 0 0 2 0 0 2 2

PTEN 0 0 0 0 2 0 0 2 2

RECQL4 0 0 0 0 2 0 0 2 2

TSHR 0 0 1 0 1 0 0 2 2

STAG2 0 0 0 0 1 2 0 3 1

ALK 0 0 0 0 2 0 0 2 1

KDR 0 0 0 0 1 1 0 2 1

RB1 0 1 0 0 0 1 0 2 1

ABL1 0 0 0 0 1 0 0 1 1

AGO2 0 0 0 0 1 0 0 1 1

AMER1 0 0 0 0 1 0 0 1 1

AR 0 0 0 0 1 0 0 1 1

ARID2 0 0 0 0 0 1 0 1 1

ASXL1 0 0 0 0 1 0 0 1 1

BCL6 1 0 0 0 0 0 0 1 1

BCOR 1 0 0 0 0 0 0 1 1

BRAF 0 0 0 0 1 0 0 1 1

BRCA2 0 0 0 0 1 0 0 1 1

CDKN1A 0 0 0 0 1 0 0 1 1

CREBBP 0 0 0 0 0 1 0 1 1

CTNNB1 0 0 0 0 1 0 0 1 1

CYSLTR2 0 0 0 0 1 0 0 1 1

E2F3 0 0 0 0 1 0 0 1 1

ELF3 0 0 0 0 1 0 0 1 1

ERBB2 0 0 0 0 1 0 0 1 1

ETV6 0 0 0 0 1 0 0 1 1

FANCL 0 0 0 0 1 0 0 1 1

FGF12 0 0 0 0 1 0 0 1 1

FLT1 0 0 0 0 1 0 0 1 1

FOXP1 0 0 0 0 1 0 0 1 1

HGF 0 0 0 0 1 0 0 1 1

HOXB13 0 0 0 0 1 0 0 1 1

IRS2 0 0 0 0 1 0 0 1 1

KDM6A 0 0 0 0 0 1 0 1 1

KEAP1 0 0 0 0 1 0 0 1 1

KMT2B 0 0 0 0 1 0 0 1 1

KMT2D 0 0 0 0 1 0 0 1 1

LTK 0 0 0 0 1 0 0 1 1

MET 0 0 0 0 1 0 0 1 1

MGA 0 0 0 0 1 0 0 1 1

MYC 0 0 0 0 1 0 0 1 1

MYCN 0 0 0 0 0 1 0 1 1

NCOR1 1 0 0 0 0 0 0 1 1

NF1 0 0 0 0 0 1 0 1 1

NOTCH3 0 0 0 0 1 0 0 1 1

PARP1 0 0 0 0 0 0 1 1 1

PHOX2B 0 0 1 0 0 0 0 1 1

PIK3CG 0 0 0 0 1 0 0 1 1

POLD1 0 0 0 0 1 0 0 1 1

PRKCI 0 0 0 0 0 1 0 1 1

PTPN11 0 0 0 0 1 0 0 1 1

RAF1 0 0 0 0 1 0 0 1 1

RASA1 0 0 0 0 1 0 0 1 1

RET 0 0 0 0 1 0 0 1 1

SF3B1 0 0 0 0 1 0 0 1 1

SOS1 0 0 0 0 1 0 0 1 1

SOX17 0 1 0 0 0 0 0 1 1

SPEN 0 0 0 0 1 0 0 1 1

SRC 0 0 0 0 0 1 0 1 1

STAT5A 0 0 0 0 1 0 0 1 1

STK11 0 0 0 0 1 0 0 1 1

SUZ12 0 0 0 0 1 0 0 1 1

TCF3 0 0 0 0 1 0 0 1 1

TERT 0 0 0 0 1 0 0 1 1

TNFRSF14 0 0 0 0 1 0 0 1 1

TP53BP1 0 0 0 0 1 0 0 1 1

XPO1 0 0 0 0 1 0 0 1 1

ZFHX3 0 0 0 0 1 0 0 1 1

© Translational Cancer Research. All rights reserved. https://dx.doi.org/10.21037/tcr-22-970


