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Introduction

Diffuse large B-cell lymphoma (DLBCL) is a type of 

tumor composed of medium to large B lymphoid cells. 

The nucleus of tumor cells is equal to or exceeds that of 
normal macrophages; it is more than twice the size of 
the nucleus of normal lymphocytes and shows a diffuse 
growth pattern. DLBCL is the most common type of non-
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Hodgkin’s lymphoma (NHL) in hematological diseases, 
accounting for 30–40% of all cases of NHL. Of these, adult 
DLBCL cases in Western countries account for 25–35% of 
all NHL cases, but this can be as high as 45% in developing  
countries (1). DLBCL shows apparent heterogeneity in 
cell origin, morphology, immunohistochemical phenotype, 
molecular genetics, involved location, chemotherapy 
response, and survival rate (2). DLBCL can be a primary 
disease, or it can be transformed from other low-invasive 
lymphomas. The lesions mainly occur in the lymph nodes, 
and some can be found in the gastrointestinal tract, bones, 
and the central nervous system (3,4). In patients with 
DLBCL, the early lymph nodes enlarge rapidly, while the 
DLBCL outside the lymph nodes becomes tumor-like and 
can be accompanied by fibrosis. As DLBCL progresses, 
the lesions grow aggressively, leading to poor treatment 
effects (5,6). Although advances in medicine have promoted 
tremendous advances in the treatment of DLBCL, up 
to 40% of patients still die from relapse. At present, the 
molecular mechanism of DLBCL pathogenesis and drug 
resistance is still unclear, which seriously hinders the 
treatment of DLBCL (7,8).

Long non-coding RNA (lncRNA) is involved in many 
aspects of cell metabolism, such as cell tumorigenesis, 
proliferation, apoptosis, and drug resistance (9-13). Many 
lncRNAs, such as MALAT1, H19, BANCR, and HOTAIR 
have been intensely studied and used in clinical diagnoses, 
which verified that lncRNAs are essential participants in 
cancer progression and can be used as new biomarkers 
in the early diagnosis and treatment of some cancers  
(14-17). However, the role of lncRNA in cancer remains 
to be explored. At present, some lncRNAs are considered 
essential factors for cancer to acquire drug resistance. 
BCAR4 is highly expressed in prostate cancer. It can bind 
to the promoter region of GLI2 and activate downstream 
genes of GLI2, making prostate cancer cells less sensitive 
to androgen stimulation (18). In contrast, lnc-SNHG17 
releases CD51 by adsorbing miR-144, thereby enhancing 
the proliferation and migration of prostate cancer cells (19). 
lncRNA CCAT1 acts on miR-24-3p to up-regulate FSCN1 
and makes cancer cells resistant to paclitaxel (20).

lncRNA also plays a vital role in the occurrence, 
progression, resistance, and prognosis of DLBCL (21-23). 
LINC00857 can promote the occurrence and progression of 
DLBCL (24). SNHG14 can make DLBCL immune escape 
and promote proliferation (25). We found that CHROMR 
was differentially expressed in different rituximab-resistant 
cell lines. Furthermore, the main research direction of 

lncRNA CHROMR currently focuses on cholesterol 
diseases. However, there are no reports on the role of 
lncRNA CHROMR in cancer. Therefore, this article 
examines the mechanism by which lncRNA CHROMR 
acquires drug resistance in DLBCL. We present the 
following article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-1087/rc).

Methods

Cell culture and treatment

Human DLBCL cell l ines, including SU_DHL_4,  
SU_DHL_8 (ATCC, Virginia, USA), were cultured 
in RIMI-1640 medium (Thermo Fisher Scientific, 
Massachusetts, USA), supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin with an 
atmosphere of 5% CO2 at 37 ℃. When necessary, 17 nM 
rituximab (MCE) was added to the medium to induce cell 
death. 

Cell transfection

According to the manufacturer’s instructions, miR-1299 
mimic and its negative control (NC) (100 nM, Guangzhou 
all-perfect Biological Technology Co., Ltd., Guangzhou, 
China) ,  pcDNA3.1-CHROMR, and pcDNA-NC  
(50 nM, Guangzhou all -perfect Biological Technology Co., 
Ltd.) vectors were transfected into SU_DHL_4 cells using 
Lipofectamine™ 3000 (Thermo Fisher Scientific) according 
to the manufacturer’s instructions. Related functional tests 
were performed 48 hours after transfection. Psicheck2.0-
CHROMR-WT and psicheck2.0-CHROMR-MUT were 
co-transfected with miR-1299 mimic and mimic NC into 
293T cells, and the fluorescence intensity was detected  
48 hours after transfection.

Psicheck2.0-CNNM1-WT and psicheck2.0-CNNM1-
MUT were co-transfected with miR-1299 mimic and mimic 
NC into 293T cells, and the fluorescence intensity was 
detected 48 hours after transfection.

Flow cytometry analysis for apoptosis

Cell apoptosis was assessed by flow cytometry using the 
Annexin V-FITC Apoptosis Detection Kit (Beyotime, 
Shanghai, China). Cells were collected, washed with 
phosphate buffered saline (PBS), and then stained with 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1087/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1087/rc
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FITC-conjugated anti-Annexin V antibody and propidium 
iodide (PI) according to the manufacturer’s protocol. The 
percentage of Annexin V+ PI+ cells was determined with a 
flow cytometer (Becton Dickinson, New Jersey, USA).

Flow cytometry analysis for cell cycle

Cell cycle was assessed with flow cytometry using the Cell 
Cycle and Apoptosis Analysis Kit (Beyotime, Shanghai, 
China). Cells containing only the medium were used for the 
control. The cells were collected and then fixed in 70% ice-
cold ethanol at 4 ℃ overnight. Cells were rewashed with 
cold PBS and suspended in PBS containing 0.1 mg/mL 
RNase A and 50 μg/mL PI for 30 min at room temperature. 
DNA contents of cells were determined with flow cytometry 
within an hour. Cell cycles were resolved by NovoExpress 
software (Agilent Technologies, Inc., CA, USA). 

Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR)

The RNAiso plus kit (Takara, Dalian, China) was used 
to extract total RNA from SU_DHL_4, SU_DHL_8. 
The total RNA was reverse transcribed into cDNA using 
the PrimeScript RT reagent kit (Takara). RT-qPCR was 
performed on a LightCyclerR 96 PCR machine (Roche 
Diagnostics, Basel, Switzerland) using the SYBR-Green 
PCR kit (Takara Bio, Kusatsu, Japan). The reaction 
conditions were pre-denaturation at 95 ℃ for 10 min, 
denaturation at 95 ℃ for 10 sec, annealing at 60 ℃ for 

20 sec, and extension at 72 ℃ for 34 sec, a total of 40 
cycles. U6 small nuclear RNA (U6) or glyceraldehyde-3-
phosphatedehydrogenase (GAPDH) served as the internal 
reference. Quantitative expression was calculated using the 
2−ΔΔCT method (16). The primers used are shown in Table 1.

Western blot analysis

The cells were lysed in Radioimmunoprecipitation assay 
(RIPA) buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM 
NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 
5 mM EDTA, 0.1 mM PMSF, and 2 mg/mL aprotinin. 
Protein concentration was measured using the BCA kit 
(Beijing Solarbio Science & Technology Co., Ltd., Beijing, 
China). Then, the proteins (50 µg/lane) were separated 
with 10% sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (Beyotime Biotech, Shanghai, China) and 
transferred onto nitrocellulose membranes. The membranes 
were blocked with 3% blocking buffer (Beyotime) for  
1 hour at room temperature and cultured with the primary 
antibodies CNNM1 (1:1,000, ab122648, Abcam), BAX 
(1:1,000, ab32503, Abcam), bate-actin (1:1,000, ab6276, 
Abcam), and BCL2 (1:1,000, ab32124, Abcam) overnight 
at 4 ℃. Subsequently, the membranes were cultured with 
the secondary antibody horseradish peroxidase-conjugated 
goat anti-rabbit IgG (1:5,000, ab205718, Abcam) for  
2 hours. Next, the membranes were visualized using an 
enhanced chemiluminescence reagent (Millipore). Protein 
blotting was analyzed using the Image Pro Plus 6.0 software 
(National Institutes of Health), with bate-actin as the 

Table 1 Primer sequences for RT-qPCR 

Primer Sequences (5'-3') Accession

CHROMR F: TTCCCTGCACTCCAAACACAGA NR_110204.1

R: AAGTCTTCCATCTGTCAGCGCC

Hsa-miR-1299 F: TTCTGGAATTCTGTGTGAGGGA MIMAT0005887

R: TTTTTTTTTTTTTTTTTTTTTTTT

GAPDH F: ATGGTTTACATGTTCCAATATGA NM_001256799

R: TTACTCCTTGGAGGCCATGTGG

U6 F: CGCTTCGGCAGCACATATAC NR_004394

R: AATATGGAACGCTTCACGA

CNNM1 F: CTGCGCCAGGAGATAAGCA NM_020348.3

R: CCAGGTCACTGTAGGGGTCT

RT-qPCR, reverse transcription-quantitative polymerase chain reaction.
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internal reference. The experiment was repeated three 
times.

Dual-luciferase reporter gene assay

After 48 hours of transfection, the cell culture medium was 
discarded, the cell culture was washed with PBS once, then 
200 μL of reporter gene cell lysate was added, the cells were 
fully lysed, centrifuged at 10,000–15,000 g for 3–5 minutes, 
and the supernatant was saved. The detection method 
is to add 65 μL of supernatant to a 96-well plate, add  
100 μL of firefly luciferase detection reagent to each well for 
luminescence detection, and add 100 μL of renin luciferase 
detection reagent again for detection. The fluorescence 
detection value of Renilla was used as the benchmark to 
calibrate the detection value of firefly. The differences in 
luminous values of each group were compared.

Statistical analysis

All data were processed using the IBM SPSS Statistics 
version 21.0 software (IBM Corp., NY, USA). Data were 
first verified to show normal distribution and homogeneity 
of variance. Data were expressed as means ± standard 
deviation or counts. An independent samples t-test was 
used to compare two groups. P<0.05 indicated a statistically 
significant difference. 

Results

CHROMR is highly expressed in rituximab resistant 
DLBCL cell lines

Through bio-information analysis,  we found that 
CHROMR was significantly highly expressed in rituximab-
resistant cell lines. We predicted the targets of CHROMR 
and miR-1299 and CNNM1 and miR-1299 in Starbase 
and speculated a CHROMR/miR-1299/CNNM1 pathway 
related to the acquisition of drug resistance in DLBCL 
cell lines (Figure 1A). We selected rituximab sensitive 
DLBCL cell lines (SU_DHL_4) and rituximab resistant 
DLBCL cell lines (SU_DHL_8) for RT-qPCR detection. 
CHROMR and CNNM1 were found to be significantly 
high in SU_DHL_8, and miR-1299 was low in SU_DHL_8 
(all P<0.001; Figure 1B-1D). Furthermore, we constructed 
a vector for the dual-luciferase target verification 
experiment. The results showed that miR-1299 reduced 
the firefly expression of psicheck2.0-CHROMR-WT and 

psicheck2.0-CNNM1-WT, while psicheck2.0-CHROMR-
MUT and psicheck2.0-CNNM1-MUT were not affected 
(Figure 1E,1F). This shows that CHROMR and CNNM1 
had targets for miR-1299. We found that CHROMR, miR-
1299, and CNNM1 had significant differences in expression 
in cells with different sensitivity to rituximab, and there was 
a correlation between these three. 

Overexpression of CHROMR increases the resistance of 
DLBCL cells to rituximab

To test our hypothesis, the pcDNA3.1-CHROMR vector 
was transfected into SU_DHL_4 cells and treated with 
17nM rituximab. We used RT-qPCR and WB to detect 
the expression of CHROMR, miR-1299, and CNNM1 
before and after transfection. The expression of CHROMR 
and CNNM1 increased significantly (P<0.05), and the 
expression of miR-1299 decreased significantly (P<0.001; 
Figure 2A,2B). Subsequently, we tested with flow cytometry 
and found that, under the condition of 17 nM rituximab 
treatment, after the cells overexpressed CHROMR, the 
proportion of cells in the G2 phase increased by about 
three times that before overexpression, while apoptosis 
decreased by 6% (P<0.001; Figure 2C,2D). We also detected 
the expression of apoptosis-related proteins BAX, BCL2, 
and caspase-3 with WB and found that the expression of 
BAX and caspase-3 was significantly reduced (P<0.05) and 
the expression of BCL2 was significantly increased (P<0.01; 
Figure 2B). In addition, we also transfected SU_DHL_4 
cells with pcDNA3.1-CHROMR vector and cultured them 
as usual. Through the cck8 experiment, we found that, after 
cells overexpress CHROMR, the level of cell proliferation 
increased (P<0.01; Figure 2E). These results show that 
CHROMR can increase the resistance of DLBCL cells 
to rituximab by regulating the cell cycle to promote cell 
proliferation and reduce the level of apoptosis. 

CHROMR/miR-1299/NCAM1 signaling pathway reduces 
the sensitivity of DLBCL cells to rituximab

We determined that CHROMR can enhance the resistance 
of DLBCL cells to rituximab, and we have also confirmed 
that there are interaction targets among CHROMR, 
miR-1299, and CNNM1. Therefore, does CHROMR 
regulate the cell cycle and apoptosis level of DLBCL cells 
through the CHROMR/miR-1299/CNNM1 pathway? We 
transfected pCDNA-CHROMR, pCDNA-CHROMR and 
miR-1299 mimic mixture, pCDNA-CHROMR, and mimic 
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NC mixture into SU_DHL_4 cells, respectively, gave them 
17 nM rituximab stimulation, and tested them 48 hours 
later. We confirmed that pCDNA-CHROMR and miR-
1299 played a role in the cell through qPCR and WB and 
confirmed that there was a CHROMR/miR-1299/CNNM1 
pathway (Figure 3A,3B). We then used flow cytometry to 
detect changes in the cell cycle and the level of apoptosis. 
When using the simple CHROMR overexpression cell 
group as the control group, we found that miR-1299 mimic 
increased the apoptosis level of CHROMR overexpression 
SU_DHL_4 cells (P<0.01) and reduced the proportion 
of cells in the G2 phase (P<0.01), which prevented cells 
from undergoing the proliferation cycle, but mimic NC 
had no such effect (Figure 3C,3D). The above results show 
that increasing the expression of miR-1299 can eliminate 
the rituximab resistance caused by the high expression 

of CHROMR. Results also suggest that the CHROMR/
miR-1299/CNNM1 pathway can regulate the rituximab 
resistance of cells.

Discussion

In cancer, cholesterol levels were confirmed to be related to 
cancer progression. Studies showed that cholesterol levels in 
cancer cells are often higher than normal cells. There have 
been many studies in this area. In terms of epidemiological 
studies, studies showed that, for every 10 mg/dL increase 
in cholesterol levels, the recurrence rate of prostate cancer 
increased by 9%, and the use of lipid-lowering drugs (statins) 
is related to colorectal cancer mortality. In addition, there is 
a link between a slight reduction in cancer-related mortality 
of different cancer types. Still, some studies indicate that 

Figure 1 CHROMR, miR-1299, and CNNM1 expression in different resistant cell lines and verification of their targets. (A) Predictive 
targets of CHROMR and miR-1299, miR-1299, and CNNM1. (B) The expression of miR-1299 in different cell lines of DLBCL was 
detected by RT-qPCR. (C) The expression of CNNM1 in different cell lines of DLBCL was detected by RT-qPCR. (D) The expression 
of CHROMR in different cell lines of DLBCL was detected by RT-qPCR. (E) Verification of the target of CHROMR and miR-1299 by 
dual luciferase experiment. (F) Verification of the target of CNNM1 and miR-1299 by dual luciferase experiment. *, P<0.05; ***, P<0.001. 
DLBCL, diffuse large B-cell lymphoma; WT, wild type; NC, negative control; MUT, mutant type; RT-qPCR, real time quantitative 
polymerase chain reaction. 
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there is no link between cholesterol and cancer (26-29). 
In terms of the molecular mechanism, a study showed 
that, as cholesterol levels increased, the ability of anti-
tumor cells TC9 cells polarized by CD8+ T cells to secrete 
IL-9 was impaired because cholesterol binds to LXRs and 
reduces the binding of LXRs Sumoylation to P65 and IL-9 
promoter sequences (30). Therefore, in addition to acting 
on immune cells and weakening the lethality of tumor 
cells, does cholesterol affect tumor cells themselves? In this 
paper, through GEO analysis, we obtained the lncRNA 
difference data between rituximab-resistant DLBCL cells 
and rituximab-sensitive DLBCL cells. We found that the 
cholesterol-related lncRNA CHROMR was significantly 
high in expression. CHROMR is cholesterol-induced 
and related to metabolic regulation. The current research 
on lncRNA is mainly focuses on atherosclerosis-related 
diseases. CHROMR has been confirmed to be elevated 

in the plasma and atherosclerotic plaques of patients with 
coronary artery disease and is positively correlated with 
cholesterol levels (31). What role does CHROMR play in 
tumors, especially in the production of rituximab resistance 
in tumor cells? We overexpressed lncRNA CHROMR in 
rituximab-sensitive DLBCL cells SU_DHL_4 and then 
stimulated it with rituximab. We found that, under the 
killing effect of rituximab, compared with SU_DHL_4 cells 
that generally express CHROMR, SU_DHL_4, cells with 
high CHROMR expression have more cells to enter the 
cell proliferation cycle, the proliferation ability is enhanced, 
and the level of apoptosis is reduced. The results indicate 
that lncRNA CHROMR may reduce the killing effect of 
rituximab on tumor tissues by promoting cell proliferation. 

We found the differential miRNA data of DLBCL 
through the HMDD v3.2 database, used the RegRNA 
database to predict the potential relationship between them 
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and CHROMR, and found that miR-1299 and CHROMR 
have potential targets. Hsa-miR-1299 is a tumor suppressor, 
which has been confirmed in many cancers (32). miR-1299 
can act on the EGFR/PI3K/AKT signaling pathway to 
inhibit non-small cell lung cancer development (33). miR-
1299 can also act on NOTCH3 to make the ovarian cancer 
cell cycle stay in the G0G1 phase (34). In hepatocellular 
carcinoma, miR-1299 targets CDK6 to inhibit cell 
proliferation (35). But miR-1299 is not only a tumor 
suppressor; it is also associated with tumor drug resistance, 
reducing miR-1299 to promote paclitaxel resistance in 
ovarian cancer cells and breast cancer cells (36,37). In this 
study, we tested the expression of miR-1299 in different 
rituximab-resistant cell lines. miR-1299 was highly 

expressed in the rituximab-sensitive cell line SU_DHL_4. 
After CHROMR was overexpressed, the expression of miR-
1299 decreased. Through the dual-luciferase experiment, 
we also verified that there was an interaction target between 
miR-1299 and CHROMR, and we confirmed that miR-
1299 was the downstream target of CHROMR through 
the recovery experiment. We found that CHROMR makes 
DLBCL cells resistant to rituximab by adsorbing miR-1299.

CNNM1 is a cell cycle-related protein related to tumor 
development in prostate cancer and hepatocellular carcinoma 
and can regulate cell cycle and proliferation (38). In this 
study, we showed through experiments that CHROMR 
is overexpressed and CNNM1 is also overexpressed, but 
if the expression of miR-1299 is restored, the expression 
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of CNNM1 will also be restored. Therefore, the result of 
this experiment is likely to constitute a ceRNA mechanism 
pathway with CHROMR and miR-1299. CHROMR 
increases the expression of CNNM1 by adsorbing miR-
1299, thereby promoting the cycle progress of DLBCL 
cells and making DLBCL cells resistant to rituximab. 

Currently, clinical samples suitable for detecting non-
coding RNAs are patient blood, including serum, plasma, 
and blood leukocytes. Extracellular RNA is present in 
blood and can be rapidly quantified in a clinical setting. 
This property enables the clinical use of non-coding 
RNAs as biomarkers for diagnosing prognosis in diffuse 
large B lymphoma. However, the stability of lncRNA is 
poorer than that of miRNA, and its expression level is low, 
so it is challenging to develop it as a detection indicator, 
and it is mainly concentrated in experimental research at 
present. In addition, lncRNAs have tissue heterogeneity, 
and their expression varies significantly in different 
organs. Therefore, how to effectively target lncRNAs 
in specific organs is a problem that cannot be effectively 
solved. However, to explore the mechanism of action of 
lncRNA, we can intervene in lncRNA by interfering with 
the downstream of lncRNA, such as the CHROMR/miR-
1299/CNNM1 pathway found in this experiment. We can 
try to judge by detecting the expression of miR-1299, The 
prognosis of patients, or increase the therapeutic effect of 
patients by inhibiting the expression of CNNM1.

Conclusions

Our study showed that there is a lncRNA CHROMR/miR-
1299/CNNM1 pathway that makes DLBCL cells resistant 
to rituximab. This provides a new idea to solve rituximab 
resistance and better treat DLBCL.
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