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Background: The high case-fatality rate of patients with lung adenocarcinoma (LUAD) emphasizes 
the importance of identifying a robust and reliable prognostic signature for LUAD patients. Endoplasmic 
reticulum (ER) stress results from protein misfolding imbalance and has been shown to participate in 
the development of cancer. We aimed to develop and validation a reliable and robust ER stress-related 
prognostic signature to accurately predict prognosis for patients with LUAD. 
Methods: The mRNA expressions data and the clinical information were downloaded from The Cancer 
Genome Atlas (TCGA) as training set. The data of external validation sets were downloaded from GEO 
database with the accession number GSE 30219, GSE 31210, GSE 50081 and GSE 37745. Univariate Cox 
regression analyses was performed to identify mRNAs associated with overall survival (OS) in LUAD. ER-
associated genes were retrieved using GeneCards database. Next, we construct the best risk score model 
by the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation. 
Subsequently, predictive models and risk scores were developed in the TCGA training dataset. Cox 
proportional hazards regression models were used for univariate and multivariate analysis of risk score and 
clinicopathologic characteristics. As a validation set GSE30219, GSE31210 and (GSE50081+GSE37745) 
were used to validate the predictive performance of the model in TCGA. Finally, functional enrichment 
analysis, including the gene ontology (GO) enrichment analysis, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) signaling pathways and gene set enrichment analysis (GSEA) were performed to further 
explore function and mechanisms.
Results: A prognostic prediction model based on eight genes was developed in the TCGA training dataset. 
As expected, in validation sets, patients with higher risk scores were found to have worse prognosis. Time-
dependent ROC curve analyses demonstrated that the risk score model was reliable. The nomograms 
showed excellent predictive ability. Multivariate Cox regression analyses indicated that the risk score was 
an independent prognostic factor for LUAD. Additionally, functional enrichment analysis showed that the 
relevant biomarkers were enriched in cell cycle and glycolysis related signaling pathways.
Conclusions: The 8-gene signature may enable improved the prediction of clinical events and decisions 
about management of LUAD.
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Introduction 

As one of the most serious malignant tumors, lung cancer 
had a high mortality rate of 13.5% (1). Among them, the 
most common type of lung cancer is lung adenocarcinoma 
(LUAD), accounting for approximately 40% of all lung 
cancers (2). Etiologically lung cancer is strongly associated 
with tobacco smoking, air pollution and inherited genetic 
susceptibility (3). In recent years, despite the dramatic 
improvements in lung cancer therapies, the 5‐year survival 
rate is far from being satisfactory (4). Accurate prognostic 
assessment to allow optimal clinical decision-making is 
vital to improving patient outcomes. At present, tumor-
nodal-metastasis stage (TNM-stage) is widely used to 
predict the prognosis of LUAD patients (5). However, the 
outcomes for patients with a similar TNM-stage are highly 
variable because of tumor heterogeneity, suggesting that 
additional molecular markers in combination with TNM-
staging system are urgently needed to improve prognosis 
prediction of patients with lung cancer. In recent years, 
tremendous efforts have been undertaken to integrate 
biomarkers and clinicopathologic information into a single 
multivariate model to predict outcomes. Gao et al. found 
that the ferroptosis-related gene signature has been used to 
predict survival in LUAD patients (6). A previous study has 
demonstrated that the 15 DNA damage repair-related gene 
signature have predictive and prognostic value in LUAD (7). 
Nevertheless, the lack of a larger sample size limits our ability 
to determine the prognostic value of biomarker with more 
precision. 

Accumulation of unfolded proteins in the ER lumen 
results in ER stress. Hostile microenvironmental within 
tumor disturb the protein folding capacity of the ER, 
thereby provoking a cellular state of “ER stress”. Sustained 
activation of ER stress sensors endows cells with greater 
tumorigenic conditions (8). Findings from a recent study 
suggest that endoplasmic reticulum (ER) stress confers 
5-fluorouracil resistance in breast cancer cell via the GRP78/
OCT4/lncRNA MIAT/AKT pathway (9). There is also a 
study suggests that GRP78 mediates the sensitivity of human 
colon cancer cells to 5-FU via ER stress induction (10). 
There are also studies suggesting that ER stress is associated 
with apoptosis of colon cancer cells (11,12). ER stress is 
associated with many pathologic processes and has been 
shown to participate in the development of cancer. 

In the present study, we identified 8-gene prognostic 
signature associated with ER stress and risk scores from 
The Cancer Genome Atlas (TCGA) dataset. Then we 

created a prognostic nomogram based on characteristics of 
8-gene signature and TNM-stage to assess reliability and 
clinical applicability of our model. Finally, in order to reveal 
the complex mechanisms of carcinogenesis, Gene Ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and gene set enrichment analysis (GSEA) were carried 
out. We further validate our models in four independent 
datasets. Importantly, the sample size for both training and 
test sets is relatively large. Our results show that 8-gene 
signature can be used as a novel prognostic tool for LUAD 
and provide more insights into the molecular mechanisms. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-106/rc).

Methods 

Data source 

Level 3 RNA-seq expression data and clinical data were 
obtained from TCGA project. The tumor expression 
datasets used in validation were downloaded from GEO 
database (http://www.ncbi.nlm.nih.gov/geo/) with the 
accession number GSE30219 (13), GSE31210 (14), 
GSE50081 (15) and GSE37745 (16), corresponding clinical 
information was also obtained from these databases. The 
known ER stress -associated genes were searched from the 
GeneCards database. We excluded patients without any 
available follow-up information and removed the data with 
incomplete survival time and survival status information. 
Finally, RNA sequencing (RNA-Seq) data consisting of 
535 LUAD and 59 normal lung samples were acquired 
from TCGA-LUAD. Among them, the TCGA-LUAD 
dataset included 294 stage I, 123 stage II, 84 stage III, 
and 26 stage IV tumours. GSE30219 consisting of 293 
lung tumor samples and 14 non-tumoral lung samples. 
GSE31210 consisting of 226 LUADs samples with stage I–
II. GSE50081 consisting of 127 LUADs samples. GSE37745 
consisting of 106 LUADs samples. Expression profiling was 
performed using an Affymetrix Human Genome U133 Plus 
2.0 Array. 

Construction overall survival (OS)‐related gene signature 
in TCGA-LUAD 

The “glmnet” and “survival” package from R software 
(version 3.6.3) was used to perform the LASSO Cox 
regression model analysis. The “lambda.1se” value, which 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-106/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-106/rc
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was determined by tenfold cross-validation, was set as 
the lambda for model fitting. Subsequently, we calculated 
a risk score for each sample, which was calculated as 
a linear combination of expression levels of genes in 
one signature set weighted by their respective LASSO 
regression coefficients according to a previous report by the 
following formula: “risk score” = Σ (regression coefficient) × 
(expression value of each prognostic mRNA). A median risk 
score was used to divide patients into high- and low-risk 
groups and then subjected to Kaplan-Meier survival analysis. 
Kaplan-Meier analysis was performed using R survminer 
and survival packages, with P<0.05 taken as significant. The 
package “timeROC” and “ggplot2” were used to evaluate 
the sensitivity and specificity of the prediction model 
through the area under the ROC curve (AUC). Differential 
expression analysis of gene signature between the high-risk 
and low-risk groups were analysed with the Mann-Whitney 
U-test, differences were considered statistically significant 
when P<0.05.

The nomogram establishing

A nomogram based on the TNM staging system and 
risk score was created by R software, using the “rms” 
and “survival” package. Calibration curves were assessed 
graphically by plotting the actual observed survival rates and 
the nomogram-predicted survival rates. The discrimination 
performance of nomograms was measured quantitatively by 
concordance indices (C-index).

External dataset verifies the robustness of the eight -gene 
signature model

GSE50081 and GSE37745 were obtained from the same 
microarray platform (Affymetrix Human Genome U133 
Plus 2.0 Array). We performed an integrative analysis by 
combining the two datasets to increase the sample size and 
detection power, because the sample size was relatively 
small for GSE50081 and GSE37745. Next, GSE30219, 
GSE31210 and (GSE50081+GSE37745) were used for 
validation of the models. The same formula and regression 
coefficients were applied for the validation set for risk score 
calculation. Similarly, KM survival curves and histogram 
between high‐risk score group and low‐risk score group 
and the distribution of risk scores, the survival status and 
gene expression heat maps were plotted for each of the 
validation sets. 

GO, KEGG and GSEA enrichment analyses

Spearman’s correlation test was used to search for genes 
related to eight genes in TCGA cohort (TCGA-LUAD). 
P<0.01 is considered statistically significant. We calculated 
correlation coefficient absolute values, and the top 400 hub 
genes were selected for functional enrichment analysis. 
Spearman correlation was calculated with the cor.test 
function in the R stats package (v.3.6.3). The KEGG 
pathway analysis and GO analysis were performed using 
the cluster Profiler R package, the R package org.Hs.eg.db 
and the R package Goplot. GO and KEGG analyses were 
performed with P.adj<0.05 and q value <0.2 as a threshold. 
The threshold for significance in GSEA was set at 0.05 
where we considered a significant FDR as below 0.25. 

Statistical analysis

All statistical analyses were performed using the R software 
package. Categorical variables were expressed as numbers 
and percentages. We use the non-parametric Wilcoxon 
signed-rank test to compare differences between groups. 
Survival analyses were performed using the Kaplan–Meier 
method. Cox-proportional hazards models were used to 
estimate hazard ratios (HRs), β regression coefficients, 
HRs, P values and 95% confidence intervals (CIs). A 
nomogram for predicting the OS was built using the R 
library “rms” package in R version 3.6.3 The performance 
of the nomogram models was evaluated by discrimination 
(C-index) and calibration (calibration plots) P≤0.05 was 
considered to be statistically significant. 

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results 

Flowchart on construction and validation of the 8-mRNA 
signature is shown in Figure 1.

Clinical characteristics

The clinical information of 535 patients was obtained from 
TCGA, including TNM-stage, clinical stage, gender, race, 
age and histologic grade. The details are shown in Table 1. 
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Construction of a prognostic prediction model for LUAD 
based on the TCGA training dataset

To identify mRNAs that correlated with the OS patients with 
LUAD, univariate Cox regression analysis was performed. 
The statistical analysis of survival was performed by R 
package survival and survminer, 742 mRNAs were associated 
with LUAD patients’ OS (P<0.01). In addition, a total of 
7,157 ER-associated genes were retrieved in LUAD using 
GeneCards database. 347 mRNAs were common between 
the two groups, shown in a Venn diagram (Figure 2A). Then, 
the least absolute shrinkage and selection operator (LASSO) 
regression was used to avoid overfitting and screened eight 
mRNAs (LDHA, DKK1, MELTF, VDAC1, FUT4, PLK1, 

KRT6A and GALNT2) as variates to construct prognostic 
for LUAD patients (Figure 2B,2C).

The internal validation data sets in TCGA verifies the 
robustness of the prognostic model

The predictive model was defined as the linear combination 
of the expression levels of the eight mRNAs weighted by 
their relative coefficient in lasso regression coefficients, 
as follows: risk score = (LDHA × 0.09667454) + (DKK1 
× 0.06514894) + (MELTF × 0.02890339) + (VDAC1 × 

TCGA samples of LUAD 
from 535 patients

Conducting univariate 
Cox regression

Validation with ROC 
analysis and survival plot

8 ER-related prognostic 
mRNA identified 

Risk validation model

ER-related mRNA

K-M plot

Expression level 
validation

Nomogram and ROC 
analysis

GEO and IHC validation

Crossing part of 
prognosis mRNA and 

ER-related mRNAs

Conducting LASSO 
analysis among crossing 

part

Figure 1 Flowchart on construction and validation of the 8-gene 
prognostic signature. TCGA, The Cancer Genome Atlas; 
LUAD, lung adenocarcinoma; ER, endoplasmic reticulum; IHC, 
immunohistochemistry.

Table 1 The baseline information

Characteristic Levels Overall

Patients, n 535

T stage, n (%) T1 175 (32.9)

T2 289 (54.3)

T3 49 (9.2)

T4 19 (3.6)

N stage, n (%) N0 348 (67.1)

N1 95 (18.3)

N2 74 (14.3)

N3 2 (0.4)

M stage, n (%) M0 361 (93.5)

M1 25 (6.5)

Pathologic stage, n (%) Stage I 294 (55.8)

Stage II 123 (23.3)

Stage III 84 (15.9)

Stage IV 26 (4.9)

Gender, n (%) Female 286 (53.5)

Male 249 (46.5)

Race, n (%) Asian 7 (1.5)

Black or African 
American

55 (11.8)

White 406 (86.8)

Age, years, n (%) ≤65 255 (49.4)

>65 261 (50.6)

Smoker, n (%) No 75 (14.4)

Yes 446 (85.6)

Age, years, median (IQR) 66 (59, 72)
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0.02789367) + (FUT4 × 0.02732278) + (PLK1 × 0.01364355) 
+ (KRT6A × 0.01078567) + (GALNT2 × 0.00537792). Risk 
scores for each patient in the training set were calculated 
based on the risk-score values, patients were stratified into 
low-risk (n=261) and high-risk groups (n=261), using the 
median risk score as the cutoff point. As shown in Figure 3A, 
Kaplan-Meier analysis revealed that the low-risk patients 
have a better OS than those with high-risk (HR 2.72, 95% 
CI: 2.00 to 3.69, P<0.001). Compared with the low risk score 
group, the patients with high risk score had worse prognosis. 
In time-dependent ROC curve analyses, the AUC for the 
eight -mRNA signature prognostic model was 0.749 at one 
year, 0.737 at two years and 0.707 at four years of OS, this 
suggests that the model had good discrimination (AUCmax 
=0.749) (Figure 3B). Next, we conducted the gene expression 
analysis of 8-gene signature between high and low risk 
group. Results showed that the expression of LDHA, DKK1, 
MELTF, VDAC1, FUT4, PLK1, KRT6A and GALNT2 
were significantly higher in the high-risk group than in the 
low-risk group, implying that high expressions of these genes 
were to be positively correlated with the high-risk score 

(P<0.001) (Figure 3C). The distribution of risk scores, the 
survival status and mRNA expression of patients were ranked 
by risk score and were shown in Figure 3D, we found that 
patients with higher risk scores were more likely to die.

Kaplan-Meier survival analysis of LDHA, DKK1, 
MELTF, VDAC1, FUT4, PLK1, KRT6A and GALNT2 in 
TCGA-LUAD patients

We further performed the survival analysis of the eight genes 
expression for TCGA-LUAD patients. We separated the 
patients into high and low mRNA-expressing groups based on 
the median mRNA expression of each gene signatures. The 
results showed that high expression of LDHA (P<0.001, HR 
=1.72, Figure 4A), DKK1 (P<0.001, HR =2.01, Figure 4B),  
MELTF (P=0.001, HR =1.6, Figure 4C), VDAC1 (P<0.001, 
HR =1.88, Figure 4D), FUT4 (P<0.001, HR =1.74, Figure 4E),  
PLK1 (P<0.001, HR =1.87, Figure 4F), KRT6A (P=0.002, HR 
=1.59, Figure 4G), GALNT2 (P<0.001, HR =1.71, Figure 4H)  
has been associated with worse prognosis. This result was 
consistent with the heat map in Figure 3D. This result 
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suggests that high expression of LDHA, DKK1, MELTF, 
VDAC1, FUT4, PLK1, KRT6A and GALNT2 correlates 
with poor prognosis in LUAD. Tables of descriptive statistics 
and statistically different for survival analysis are shown in 
website: https://cdn.amegroups.cn/static/public/tcr-22-106-
01.docx.

Univariate, and multivariate analysis were used to 
evaluate the prognostic value of TNM-stage,  
pathologic stage, gender, age and risk score

To identify the independence of risk score in clinical 
applications, risk score and clinical information for the 

training cohort was used to analyze the relevant HR and 
P value using univariate and multivariate Cox regression. 
Univariate analysis revealed that the pathologic stage and risk 
score were significant risk factors affecting patient survival 
(HR: 2.247; 95% CI: 1.598–3.160; P<0.001) (Figure 5A). In 
multivariate Cox regression analysis pathologic stage and risk 
score remained an independent prognostic factor (HR: 2.062; 
95% CI: 1.455–2.922; P<0.001) (Figure 5B). Univariate and 
multivariate Cox regression analysis of TNM-stage, gender, 
age and risk score are shown in Table S1. Univariate and 
multivariate analysis were used to evaluate the prognostic 
value of pathologic stage, gender and risk score. The detail is 
shown in Table 2. The above results show that the prediction 
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model showed good predictive power. The above results 
show that the prediction model showed good predictive 
power.

Establishment of the prognostic nomogram

The optimism-corrected C-index values (for OS, C‐index 

= 0.739, 95% CI: 0.717–0.762) indicated that the proposed 
nomograms could accurately predict the 1‐, 3‐, and 5‐year 
OS of LUAD patients. In addition, the 1‐, 3‐, and 5‐year 
calibration curves of OS visually confirm good fit between 
predicted survival and observed survival, which could also 
prove the prediction accuracy of prognostic nomograms 
(Figure 6).
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External dataset verifies the robustness of the eight-gene 
signature model

As a validation set we used the GSE30219, GSE31210 and 
(GSE50081+GSE37745) separately. Kaplan-Meier curves 
in the GSE31210 dataset confirmed that patients with 

high‐risk scores had a worse OS than patients with low‐risk 
scores (HR 1.60, 95% CI: 1.21–2.12, P =0.001) (Figure 7A). 
The risk score distribution of independent validation dataset 
GSE30219 was then plotted, as shown in Figure 7B. There 
were more deaths in high‐risk score group. The expression 
level of LDHA, DKK1, VDAC1, PLK1, KRT6A and 

A

B

Figure 5 Forest plots between risk score and clinical characteristics. (A) Univariate analysis revealed that the TNM stage and risk score were 
significant risk factors affecting patient survival (P<0.001). (B) Multivariate Cox regression analysis suggested that risk score might be an 
independent prognostic indicator for the OS of patients with LUAD (P<0.001). LUAD, lung adenocarcinoma.
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GALNT2 were significantly higher in the high-risk group 
than in the low-risk group, implying that high expressions 
of these genes were to be positively correlated with the 
high-risk score (Figure 7C). Again, Kaplan–Meier curves in 
the GSE31210 dataset confirmed that patients with high‐
risk scores had a worse OS than patients with low‐risk scores 

(HR 5.66, 95% CI: 2.91–11.00, P<0.001), (Figure 7D). The 
distribution of risk scores, the survival status and mRNA 
expression of patients were ranked by risk score and were 
shown in Figure 7E. The expression level of LDHA, DKK1, 
VDAC1, PLK1, KRT6A and GALNT2 were significantly 
higher in the high-risk group than in the low-risk group, 

Table 2 Univariate and multivariate Cox regression analysis of risk score and clinical features by using overall survival time

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Risk score 514

Low risk score 257 Reference

High risk score 257 2.643 (1.946–3.588) <0.001 2.462 (1.808–3.354) <0.001

Gender 514

Male 237 Reference

Female 277 0.963 (0.721–1.286) 0.799

Pathologic stage 514

Stage I 288 Reference

Stage II 121 2.421 (1.693–3.462) <0.001 2.320 (1.621–3.319) <0.001

Stage III 80 3.474 (2.383–5.065) <0.001 3.096 (2.119–4.525) <0.001

Stage IV 25 3.797 (2.198–6.561) <0.001 3.852 (2.223–6.676) <0.001
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Figure 6 The nomogram and calibration curve developed for model. (A) Establishment of nomograms for the prediction of OS in patients 
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implying that high expressions of these genes were to be 
positively correlated with the high-risk score (Figure 7F). 
Finally, Kaplan–Meier curves in (GSE50081+GSE37745) 
dataset confirmed that patients with high‐risk scores had a 
worse OS than patients with low‐risk scores (HR 1.66, 95% 
CI: 1.27–2.16, P<0.001) (Figure 8A). The distribution of risk 
scores, the survival status and mRNA expression of patients 
were ranked by risk score and were shown in Figure 8B. 
The expression level of LDHA, DKK1, MELTF, VDAC1, 
FUT4, PLK1, KRT6A and GALNT2 were significantly 
higher in the high-risk group than in the low-risk group, 
implying that high expressions of these genes were to be 
positively correlated with the high-risk score (Figure 8C). 
Tables of descriptive statistics and statistically different 
for survival analysis are shown in website: https://cdn.
amegroups.cn/static/public/tcr-22-106-02.docx. Notably, 

the variation trend of subgroups eight mRNAs is consistent 
within the training set, even when the training and test sets 
consist of individuals from distinct populations. As such, the 
model is both robust and reliable. 

GO, KEGG and GSEA enrichment analyses

GO enrichment analysis showed correlated genes to 
be enriched for mitotic sister chromatid segregation, 
chromosome, centromeric region and cadherin binding 
etc.  In addition, KEGG pathway analysis showed 
enrichment of genes associated with cell cycle glycolysis 
etc. (Figure 9A), for more detailed information, please 
see the list in Table 3. GSEA showed enrichment in cell 
cycle etc. (Figure 9B). The top 5 most enriched GSEA are 
provided in Table S2.
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Differential expression in normal and tumor tissues from 
the TCGA-LUAD database and immunohistochemistry 
(IHC) results of the seven genes from the Human Protein 
Atlas (HPA) database 

We found the immunohistochemical results of 7 key 
molecules (LDHA, MELTF, VDAC1, FUT4, PLK1, 
KRT6A and GALNT2) in the HPA database, we could 
qualitatively observe the obvious expression difference of 
LDHA, MELTF, VDAC1, PLK1, KRT6A and GALNT2 
between normal and LUAD samples at the protein levels. 
There was no difference in FUT4 expression at the protein 
level (Figure 10A-10G). All of the results were consistent 
with data in TCGA-LUAD datasets. Unfortunately, DKK1 
was absent from the HPA database.

Discussion 

In this study, we identified 8-gene prognostic signature 
associated with ER stress and risk scores from TCGA 
dataset. Furthermore, univariate and multivariate Cox 
regression analysis showed that risk score is an independent 
prognostic factor and is associated with poor outcomes. 
The nomograms showed excellent predictive ability. Finally, 
enrichment analysis showed enrichment in cell cycle, 
glycolysis, and others.

Dysregulation of the cell cycle is a hallmark of cancer (17).  
A study by Duan et al. found that ROS can inhibit cell 
growth by cell cycle arrest via ER stress (18). Hepatitis C 
virus (HCV) induces ER stress and alters a cascade of signal 
transduction pathways that control cell cycle and cellular 
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growth (19). Our study results confirm this conclusion. 
In addition, while normal cells primarily rely on oxidative 
phosphorylation or anaerobic glycolysis to generate ATP, 
cancer cells often favor aerobic glycolysis in a phenomenon 
known as the Warburg effect. There is evidence that low 
oxygen tension activates complex III of the mitochondrial 
electron transport chain to increase cytosolic ROS 
production, required for stabilizing the key hypoxia response 
transcription factor HIF1α (20). ROS can also generate 
highly reactive peroxidized lipid byproducts, which form 
destructive covalent adducts with various ER chaperones 
(21,22). This conclusion was consistent with our findings. In 
our study, ER is involved in several tumor-related signaling 

pathways. Although many studies have explored the 
mechanisms underlying ER, it cannot be ignored, however, 
that the stress of the ER can be induced by various factors. 
This is also the potential reason for the model diversity.

In addition, a previous study has shown that LDHA 
upregulation independently predicts poor survival in LUAD. 
DKK1 promotes migration and invasion of non-small cell 
lung cancer via β-catenin signaling pathway (23). There is 
also a study shown that FAM83A-AS1 promotes LUAD 
cell proliferation, migration, invasion and the epithelial-
mesenchymal transition (EMT) in vitro and tumor growth 
in vivo. Mechanistically, FAM83A-AS1 functions as an 
endogenous sponge of miR-150-5p by directly targeting it, 

Figure 9 GO, KEGG and GSEA enrichment analyses. (A) The top 12 most enriched GO and the KEGG. (B) The top 5 most enriched 
GSEA. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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removing inhibition of MMP14, a target of miR-150-5p (24).  
Findings from a recent study suggest that decreased 
expression of microRNA-320a promotes proliferation and 
invasion of non-small cell lung cancer cells by increasing 
VDAC1 expression (25). FUT4 is involved in PD-1-
related immunosuppression and leads to worse survival in 
patients with operable LUAD (26). There is also a study 
suggests that Plk1 promotes the migration of human LUAD 
epithelial cells via STAT3 signaling (27). KRT6A promotes 
lung cancer cell growth and invasion through MYC-
Regulated pentose phosphate pathway (28). Furthermore, 
GALNT2 promotes cell proliferation, migration and 
invasion by activating the Notch/Hes1-PTEN-PI3K/Akt 
signaling pathway in LUAD (29). The above results show 
that LDHA, DKK1, MELTF, VDAC1, FUT4, PLK1, 

KRT6A and GALNT2 promotes tumor progression in 
LUAD suggesting its role as an oncogene. It is consistent 
with our study.

However, this study also has some limitations. First of all, 
these findings also needed a wet lab validation to determine 
their true oncogenic potential, this is something to study 
in future work. Furthermore, in our study, due to the 
inclusion of multiple data sets, and fail to fully remove the 
batch effect in such cases. Despite these shortcomings, our 
results also provided valuable information about prognostic 
predictions for patients with LUAD.

Conclusions

A prognostic model based on 8 genes was constructed. 

Table 3 GO and KEGG pathway enrichment analysis

Ontology ID Description Gene ratio Bg ratio P value P.adjust Q value

BP GO:0000070 Mitotic sister chromatid segregation 31/320 151/18670 1.04e-24 3.51e-21 2.95e-21

BP GO:0140014 Mitotic nuclear division 38/320 264/18670 3.44e-24 5.79e-21 4.86e-21

BP GO:0000819 Sister chromatid segregation 31/320 189/18670 1.25e-21 1.40e-18 1.17e-18

BP GO:0007059 Chromosome segregation 38/320 321/18670 4.13e-21 3.48e-18 2.92e-18

BP GO:0000280 Nuclear division 42/320 407/18670 6.06e-21 4.08e-18 3.43e-18

CC GO:0000775 Chromosome, centromeric region 25/330 193/19,717 2.18e-15 9.56e-13 6.92e-13

CC GO:0098687 Chromosomal region 31/330 349/19,717 3.72e-14 8.15e-12 5.89e-12

CC GO:0000779 Condensed chromosome, 
centromeric region

19/330 118/19,717 9.77e-14 1.43e-11 1.03e-11

CC GO:0005819 Spindle 30/330 347/19,717 1.99e-13 2.18e-11 1.58e-11

CC GO:0000776 Kinetochore 19/330 135/19,717 1.19e-12 1.05e-10 7.56e-11

MF GO:0045296 Cadherin binding 31/321 331/17,697 7.04e-14 3.94e-11 3.44e-11

MF GO:0050839 Cell adhesion molecule binding 33/321 499/17,697 1.51e-10 4.22e-08 3.68e-08

MF GO:0003688 DNA replication origin binding 6/321 24/17,697 3.47e-06 6.48e-04 5.65e-04

MF GO:0008017 Microtubule binding 16/321 246/17,697 1.15e-05 0.002 0.001

MF GO:0015631 Tubulin binding 18/321 336/17,697 4.51e-05 0.005 0.004

KEGG hsa04110 Cell cycle 19/165 124/8,076 5.02e-12 9.99e-10 8.82e-10

KEGG hsa00010 Glycolysis/gluconeogenesis 11/165 67/8,076 8.87e-08 8.82e-06 7.79e-06

KEGG hsa04114 Oocyte meiosis 13/165 129/8,076 2.04e-06 1.35e-04 1.19e-04

KEGG hsa01230 Biosynthesis of amino acids 8/165 75/8,076 1.35e-04 0.006 0.005

KEGG hsa05166 Human T-cell leukemia virus  
1 infection

14/165 219/8,076 1.48e-04 0.006 0.005

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular 
function.
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Extensive validation shows that this prediction model was 
proved to be robust and reliable. Our study further suggests 
that this difference between risk-score groups is primarily 
associated with cell cycle and glycolysis. The 8-mRNA 
signature may enable improved the prediction of clinical 
events and decisions about management of LUAD.
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Supplementary

Table S1 Univariate and multivariate Cox regression analysis of TNM-stage, gender, age and risk score by using overall survival time

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Stage_T 354

T1 104 Reference

T2 203 1.841 (1.172–2.890) 0.008 1.623 (1.032–2.554) 0.036

T3 31 3.918 (2.112–7.267) <0.001 3.471 (1.845–6.528) <0.001

T4 16 3.666 (1.787–7.519) <0.001 1.824 (0.843–3.950) 0.127

Stage_N 354

N0 230 Reference

N1 73 2.115 (1.435–3.116) <0.001 1.950 (1.313–2.897) <0.001

N2 51 3.178 (2.092–4.830) <0.001 2.415 (1.560–3.739) <0.001

Stage_M 354

M0 333 Reference

M1 21 1.869 (1.055–3.312) 0.032 1.913 (1.034–3.540) 0.039

Gender 354

Female 176 Reference

Male 178 1.086 (0.782–1.508) 0.624

Age 354

<65 161 Reference

≥65 193 1.016 (0.728–1.418) 0.925

Risk score 354

Low risk score 178 Reference

High risk score 176 2.247 (1.598–3.160) <0.001 2.062 (1.455–2.922) <0.001

Table S2 The top 5 most enriched GSEA

Name Set size ES NES P.adjust Rank

REACTOME_CELL_CYCLE 59 0.59906509 3.48019111 0.00781739 50

REACTOME_CELL_CYCLE_MITOTIC 55 0.5759843 3.29824666 0.00781739 50

REACTOME_CELL_CYCLE_CHECKPOINTS 35 0.53159171 2.68800317 0.00781739 50

REACTOME_M_PHASE 35 0.52834855 2.67160409 0.00781739 50

REACTOME_MITOTIC_METAPHASE_AND_ANAPHASE 28 0.48809888 2.30160681 0.00781739 125

GSEA, Gene set enrichment analysis; ES, enrichment score; NES, normalized enrichment score.


