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Background: Gastric cancer (GC) is a global health problem. As a complicated heterogeneous disease, The 
Cancer Genome Atlas (TCGA) Research Network recognized four subtypes of GC, including Epstein-Barr 
virus (EBV)-positive GC (EBVaGC), which accounts for approximately 9% of all GC cases. The response 
to immunotherapy in GC is limited, and whether EBV status is a predictor of immunotherapy remains 
controversial. 
Methods: The differential gene expression analysis was utilized to compare the gene expression between 
the EBV-positive group and the EBV-negative group in the TCGA-Stomach Adenocarcinoma (TCGA-
STAD) cohort. Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) 
network analysis, and gene functional enrichment analysis were used to investigate the most pivotal hub 
genes and their roles. The “Estimation of Stromal and Immune cells in Malignant Tumours using Expression 
data” (ESTIMATE) and CIBERSORT algorithms were performed to infer the immune compositions of 
tissue samples. Furthermore, quantitative real-time polymerase chain reaction (RT-qPCR) and survival 
analysis were used to validate the expression and prognosis of these hub genes in Sun Yat-sen University 
Cancer Center (SYSUCC) cohort. A GC cohort that received anti-programmed cell death 1 (PD-1) therapy 
was used to analyze the predicted efficacy based on the expression of hub genes. 
Results: There is a total of 1,686 differentially expressed genes (DEGs) between the EBV-positive group 
and EBV-negative group, and WGCNA identified a yellow-colored module that was most related to EBV 
features. Functional enrichment analysis of 144 genes in this yellow module demonstrated that these genes 
primarily performed immune-related functions, and PPI network analysis through the CytoHubba plug-in 
identified 11 hub genes in the network. The RT-qPCR results in the SYSUCC cohort further validated that 
the hub genes were all increased in the EBV-positive group. Finally, we found that a potential classifier was 
associated with the efficacy of immunotherapy based on the expression of these 11 hub genes. 
Conclusions: Our study identified several hub genes associated with EBV status that are closely related to 
the immune microenvironmental features of EBVaGC and may be used as molecular markers for predicting 
the immune response in GC.
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Introduction

Gastric cancer (GC) is a global health problem and the 
third leading cause of cancer death worldwide (1-3). 
The Cancer Genome Atlas (TCGA) Research Network 
recognized four distinct molecular subtypes of GC in 2014, 
including Epstein-Barr virus (EBV)-positive, microsatellite 
instable (MSI), genomically stable (GS), and chromosomal 
instable (CIN) GC (4). EBV-positive GC (EBVaGC) is 
defined by EBV infection in cancer cells, which accounts for 
approximately 9% of all GC cases (5,6). Compared to EBV-
negative GC (EBVnGC) patients, those infected patients 
have a favorable survival (7,8), which suggests a unique 
characteristic of EBVaGC.

Therapeutic strategies for GC remain limited, and 
immunotherapies, such as programmed cell death 1 (PD-1) 
inhibitors, only benefit a few GC patients. Previous research 
observed dramatic responses of EBVaGC patients after 
immunotherapy. Several studies reported that patients with 
EBV-positive tumors derived longer clinical benefits with 
anti-programmed cell death-ligand 1 (PD-L1) antibody 
treatments (9-13). This beneficial effect may be associated 
with the active immune microenvironment induced by 
EBV infection. Compared to EBV-negative tumors, EBV-
positive status induces a tumor microenvironment with 
ample immune cell infiltration and elevated expression 
of immune response genes (5,14-16). However, the effect 
of immunotherapy in EBVaGC is inconsistent, and no 
predictive biomarkers for effectiveness were reported 
(7,11,14). Therefore, it is necessary to explore EBV 
infection-induced changes of immune status and the tumor 
microenvironment and identify potential biomarkers for 
the selection of EBVaGC patients who might obtain greater 
benefits from immunotherapy.

To explain the distinct molecular features of EBV-
positive status, we first employed differential gene 
expression analysis by comparing RNA-seq of EBVaGC 
patients and EBVnGC patients in the TCGA-Stomach 
Adenocarcinoma (TCGA-STAD) cohort and generated 
a co-expression network using the weighted gene co-
express ion network analys i s  (WGCNA) method. 
Subsequently, we further performed Gene Ontology (GO) 
enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis to investigate the 
functions of these differentially expressed genes (DEGs). 
To explore the EBV infection-induced changes in immune 
status, the “Estimation of Stromal and Immune cells in 
Malignant Tumours using Expression data” (ESTIMATE) 

and CIBERSORT algorithms were used to evaluate the 
tumor microenvironment compositions in each tumor 
tissue sample. Notably, we identified a potential classifier 
related to the efficacy of immunotherapy. Our results 
suggested that this classifier may be used as a potential 
biomarker to identify patients with GC who are most likely 
to benefit from immunotherapy. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-461/rc).

Methods

Data resources and pre-processing

In this study, we utilized 3 different datasets for analysis. 
TCGA-STAD was defined as the discovery dataset, 
including 375 tumor samples and 32 normal samples. The 
RNA-seq data at the count and Fragments Per Kilobase 
per Million (FPKM) levels were downloaded through 
the “TCGAbiolinks” (17) R package. Count data were 
used for differential gene expression analysis through the 
“DESeq2” (18) R package, and the FPKM values were 
then transformed into Transcripts Per Kilobase Million 
(TPM) values for subsequent analysis. Genome annotation 
files were downloaded from Gencode (http://ftp.ebi.ac.uk/
pub/databases/gencode/Gencode_human/release_22/
gencode.v22.annotation.gtf.gz) to transform the Ensembl 
ID to gene symbols and separate protein-coding genes. 
EBV information was obtained as described in a previous 
publication (19), which included 263 GC patients. We then 
took the intersection between 375 tumor samples and 263 
samples that had EBV information and obtained a total of 
228 tumor samples that contained exact EBV information 
(including 207 EBV-negative tumor samples and 21 EBV-
positive tumor samples) for subsequent analyses.

The second dataset was from our hospital, named 
the Sun Yat-sen University Cancer Center (SYSUCC) 
cohort. A total of 137 fresh-frozen tumor tissues, including 
70 archived EBV-positive GC specimens and 67 EBV-
negative tissue samples, were obtained from GC patients 
who underwent surgical resection at SYSUCC. The 
clinicopathological characteristics of the patients were 
summarized in Table S1. The Institutional Research Ethics 
Committee of SYSUCC approved the study.

The last dataset was a GC cohort that received anti-PD-1 
therapy (11). We downloaded the transcriptome fastq files of 
this dataset from the European Nucleotide Archive through 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-461/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-461/rc
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http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.annotation.gtf.gz
https://cdn.amegroups.cn/static/public/TCR-22-461-Supplementary.pdf
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accession PRJEB25780. FastQC v0.11.9 software and 
MultiQC v1.0.dev0 (20) software were used to examine the 
quality of reads, and fastp v0.23.1 (21) software was used to 
trim reads with low quality. STAR v2.7.9a (22) software was 
applied to align the reads to the human reference genome 
(hg38), and RSEM v1.3.3 (23) software was employed to 
quantify the expression of genes and transcripts.

Differential gene expression analysis

TCGA-STAD RNA-seq data at the count level was 
applied for differential gene expression analysis by the  
“DESeq2” (18) R package. To identify DEGs between the 
EBV-positive group and EBV-negative group, we set the 
cutoff as |log2FC| >1.5 and adjusted P value <0.05. Only 
genes that met this filtering criterion were considered as the 
DEGs, and we generated a volcano plot to visualize these 
DEGs using the “ggplot2” R package.

Weighted gene co-expression network analysis 

To investigate the relationship between the expression 
of DEGs and clinical EBV phenotype, we performed 
weighted gene co-expression network analysis through 
the “WGCNA” (24) R package. Firstly, the expression 
matrix of DEGs was set as the input file, and Pearson 
correlations between each gene and the other genes were 
calculated to generate a gene-gene correlation matrix. 
After that, the optimal solution of the parameter β of the 
adjacency function was determined, and the adjacency 
matrix was constructed to make the gene-gene correlation 
coefficient matrix meet the requirements of a scale-free 
network. Next, we constructed a topological overlap 
measure (TOM) matrix. In addition to simply considering 
the direct relationship of genes in pairs, the TOM matrix 
can also be more in line with the mutual effects of genes in 
the organism. Finally, we converted the TOM matrix to a 
dissimilarity matrix and used the dynamic cut tree method 
to perform hierarchical clustering and construct the gene 
modules. The minimal gene number in each module was set 
as 50. We correlated these gene modules with the clinical 
EBV feature to determine the best correlation module with 
the EBV phenotype.

Functional enrichment analysis

GO functional enrichment analysis and KEGG pathway 

analysis for genes in the selected module were performed 
using the “clusterProfiler” (25) R package. The function 
“dotplot” was used to visualize the enrichment results. 
An adjusted P value <0.05 was considered statistically 
significant.

Estimation of the tumor microenvironment and 
proportions of immune cells

To study differences in the composition of the tumor 
immune microenvironment between the EBV-positive 
group and the EBV-negative group, we used the “Estimation 
of Stromal and Immune cells in Malignant Tumours 
using Expression data” (ESTIMATE) R package (26) and 
CIBERSORT (27) algorithms to evaluate the immune 
microenvironment of the tumor tissues. ESTIMATE 
calculated the stromal score, immune score, ESTIMATE 
score, and tumor purity. CIBERSORT was performed 
to evaluate the proportion of 22 different types of tumor 
immune infiltrating cells (TIICs) in each tumor sample. 
Differences in the scores and infiltrating cell proportions 
between the EBV-positive group and the EBV-negative 
group were compared by using the Wilcoxon test.

Protein-protein interaction (PPI) network construction 
and hub gene identification

We uploaded all genes in the selected module to the 
STRING website (https://string-db.org/) to construct 
the PPI network. All parameters were set as default, and 
the generated network was exported for visualization and 
subsequent network-based analysis in Cytoscape v3.8.2 
software (28). The CytoHubba plug-in (29) provides 
12 different methods to identify the vital nodes in the 
PPI network. To identify the key genes with the most 
recognition times among these 12 methods, we first 
analyzed the top 10 key genes in the PPI network using the 
12 methods in the CytoHabba plug-in and then counted the 
occurrence of these genes. Genes that occurred 5 or more 
times were finally identified as the hub genes.

Quantitative real-time polymerase chain reaction  
(RT-qPCR)

Total RNA from tissues was extracted using TRIzol reagent 
(15596018, Invitrogen, Carlsbad, California, USA) and 
converted to cDNA using the Prime Script RT Master 
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Mix Kit (RR036A, Takara, Tokyo, Japan) according to 
the manufacturer’s instructions. RT-qPCR analysis was 
performed using a LightCycler 480 instrument (Roche 
Diagnostics, Switzerland) by using GoTaq qPCR Master 
Mix (A6002, Promega, Madison, Wisconsin, USA). Relative 
mRNA expression was normalized to β-actin, and the fold 
change was calculated with the 2−ΔΔCt method. The primers 
used in this study were listed in Table S2.

Survival analysis of hub genes

We used gene expression data and survival information 
from the SYSUCC cohort to analyze the effect of hub genes 
on prognosis. Each gene was divided into two groups, high 
expression and low expression, according to the median 
value. The R packages “survival” and “survminer” were 
employed to plot the Kaplan-Meier survival curves and 
perform log-rank tests to compare the survival differences 
of the two groups. P<0.05 was considered statistically 
significant.

Immunotherapy efficacy analysis

As mentioned earlier, the cohort of Kim et al. (11) was 
an anti-PD-1-treated GC cohort, and we downloaded 
their transcriptome data for reprocessing and quantified 
the expression profiles. After that, we extracted the TPM 
expression values of 11 key genes, used the R package 
“pheatmap” to plot the expression heatmap of these  
11 genes, and clustered the genes according to the default 
parameters of the pheatmap function. According to the 
clustering result, we counted the number of treatment 
response cases and calculated the objective response rate 
(ORR) and clinical benefit rate (CBR) in each subclass.

Statistical analysis

In addition to the results of RT-qPCR, the statistical 
analyses and visualization of all other data were completed 
using R 4.1.0 software. Statistical analyses and visualization 
of RT-qPCR results were performed by GraphPad Prism 
7 software. All statistical methods are described in detail 
above.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

The DEGs and the most relevant module to EBVaGC

The flowchart of this study is shown in Figure 1. To explore 
the relationship between gene expression and EBV infection 
phenotype, we performed a differential gene expression 
analysis by comparing the EBV-positive group and the 
EBV-negative group in the TCGA-STAD cohort, which 
included 207 EBV-negative and 21 EBV-positive tumor 
samples for subsequent analysis. As shown in Figure 2A and 
website: https://cdn.amegroups.cn/static/public/tcr-22-461-
01.xlsx, a total of 1,686 DEGs were obtained, including 
127 upregulated DEGs and 1,559 downregulated DEGs. 
To investigate the relationship between the expression 
of DEGs and the clinical EBV phenotype, we used these 
DEGs to perform weighted gene co-expression network 
analysis using the “WGCNA” (24) R package. As shown 
in Figure 2B, the optimal value of parameter β was set as 3. 
Subsequently, we performed the dynamic tree cut method 
and obtained 16 gene modules (Figure 2C). The yellow 
module was the most correlated module to the EBV-positive 
phenotype (Figure 2D), which had 144 genes, including 
90 upregulated DEGs and 54 downregulated DEGs. In 
summary, we obtained DEGs and the most relevant module 
to EBVaGC by performing differential gene expression 
analysis and WGCNA.

Genes in the yellow module primarily perform  
immune-related functions

To explore the function of genes in the yellow module, 
we performed GO enrichment analysis and KEGG 
pathway analysis. At the biological process level, these 
genes primarily regulate the activation and adhesion of 
immune cells, including T cell activation, regulation of 
cell-cell adhesion, regulation of T cell activation, calcium 
ion homeostasis, and regulation of leukocyte cell-cell 
adhesion (Figure 3A). At the molecular function level, these 
genes primarily regulate the activities of cytokines and 
chemokines, including receptor-ligand activity, signaling 
receptor activator activity, cytokine activity, cytokine 
receptor binding, and chemokine activity (Figure 3B). 
Furthermore, these genes were primarily located on the 
external side of the plasma membrane (Figure 3C) at the cell 
component level and primarily enriched in several pathways 
regulating immune factors and cells, such as cytokine-
cytokine receptor interactions, natural killer cell-mediated 
cytotoxicity, chemokine signaling pathways and viral 

https://cdn.amegroups.cn/static/public/TCR-22-461-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-22-461-01.xlsx
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protein interactions with cytokines and cytokine receptors 
(Figure 3D). Besides, these genes were also enriched in 
cancer signaling pathways, such as the JAK-STAT signaling 
pathway (Figure 3D), which may lead to the initiation and 
progression of cancer. In conclusion, genes in the yellow 
module, which presented the characteristics of EBV status, 
primarily performed immune-related roles, and it may 
elucidate the molecular mechanisms of this special subset of 
EBVaGC.

Tumor microenvironment changes in the EBV-positive 
group

Gene functional enrichment analysis showed that the 
DEGs in the EBV-positive group primarily functioned 
in an immune-regulating role, which prompted further 
exploration of the tumor microenvironment composition 
in tumor tissues. We first used the ESTIMATE algorithm 
to calculate the immune score, stromal score, ESTIMATE 
score, and tumor purity in each tumor tissue sample then 
compared these scores between the EBV-positive group 
and the EBV-negative group (Figure 4A-4D). We found 

that the immune score and ESTIMATE score were both 
higher in the EBV-positive group than the EBV-negative 
group (Figure 4A,4B), but the stromal score between the 
two groups was not significantly different (Figure 4C). The 
tumor purity of the EBV-positive group was lower than the 
EBV-negative group (Figure 4D). These results suggested 
that the changed tumor microenvironment included more 
immune components in the EBV-positive group. The 
CIBERSORT algorithm calculates the proportion of 
different types of immune cells in tumor samples in more 
detail. Therefore, to further validate this inference, we next 
performed the CIBERSORT analysis to reveal the changes. 
As shown in Figure 4E, CIBERSORT calculated the 
proportions of 22 different types of immune cells and we 
found that CD8+ T cells, M1-like macrophages, and CD4+ 
memory-activated T cells were all elevated in the EBV-
positive group. Furthermore, M0 macrophages and CD4+ 
memory resting T cells were decreased in the EBV-positive 
group (Figure 4E). In summary, the components of the 
tumor microenvironment may be changed in EBV-positive 
GC, and this change might lead to an immune-activating 
phenotype.

Yellow module

PPI network Hub genes

Immunotherapy responsePrognosisRT-qPCR

SYSUCC cohort validation  
EBV+ (n=70) vs. EBV− (n=67)

TCGA-STAD  
EBV+ (n=21) vs. EBV− (n=207)

Kim et al. cohort validation  
EBV+ (n=5) vs. EBV− (n=40)

WGCNA

Enrichment analysis Related to immune

CIBERSORT

ESTIMATEDifferential expression analysis

Figure 1 The flowchart of this study. TCGA-STAD, The Cancer Genome Atlas-Stomach Adenocarcinoma; EBV, Epstein-Barr virus; 
WGCNA, weighted gene co-expression network analysis; PPI, protein-protein interaction; SYSUCC, Sun Yat-sen University Cancer 
Center; RT-qPCR, quantitative real-time polymerase chain reaction.
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Hub genes were increased in EBV-positive tumors

There are complex interactions and connections between 
genes. Hub genes, which are often pivotal nodes in a PPI 
network, may play the most important role. The above 
analysis revealed a total of 144 genes in the yellow module 
using differential gene analysis and WGCNA. Therefore, 
to identify the hub genes of these 144 genes in the yellow 
module, we first used these genes to construct the PPI 

network using the STRING website (Figure S1). Next, we 
counted the occurrence of the top 10 genes obtained by 12 
algorithms and identified the genes with a count greater 
than or equal to 5 as the final hub genes (as described in the 
Methods and Materials section). As shown in Figure 5A and 
Table S3, CD8A, CXCL10, CCR5, IFNG, CXCL9, GZMA, 
GZMB, KLRK1, TBX21, CCL5, and CD38 were identified 
as the hub genes in the PPI network, which suggests that 
these 11 genes might have a vital function in the EBV-
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Figure 2 Identification of the DEGs and most related modules between the EBV-positive group and EBV-negative group. (A) Volcano plot 
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positive group. Next, we used the SYSUCC cohort 
(including 70 EBV-positive samples and 67 EBV-negative 
samples) to perform RT-qPCR and validate the expression 
of these hub genes. Figure 5B-5L showed that all 11 hub 
genes were elevated in the EBV-positive group, which was 
consistent with the differential gene expression analysis 
(website: https://cdn.amegroups.cn/static/public/tcr-22-
461-01.xlsx). We analyzed the prognostic role of these hub 
genes. As shown in Figure S2A-S2K, although there were 
no statistically significant differences in the overall survival 
of patients with EBV-positive GC between high and low 
hub gene expression, a trend of a better prognosis in 
patients with high expression of these genes was observed. 
We hypothesize that the lack of a statistically significant P 
value was due to the relatively small sample size. Overall, 

these data suggested that several hub genes were increased 
in the EBV-positive group, but the prognostic roles of these 
genes need further validation.

A potential classifier was associated with immunotherapy 
efficacy

Because these hub genes were primarily immune-related, 
we then explored whether these genes were related to 
the efficacy of immunotherapy. GC has a complicated 
heterogeneity, and the response of EBV to immunotherapy 
is controversial. We investigated the role of these 11 hub 
genes in predicting immune efficacy in EBVaGC. To this 
purpose, we utilized Kim et al.’s cohort (11) which was a 
gastric cohort that received anti-PD-1 immunotherapy. The 
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Figure 5 Identification and validation of hub genes in the PPI network. (A) Counts of the top 10 key genes in the protein-protein interaction 
network analyzed using the 12 algorithms in the CytoHubba plug-in. Red points are hub genes with counts greater than or equal to 5, and 
blue points are genes with a count less than 5. (B-L) The expression of these 11 hub genes in the SYSUCC cohort. *, P<0.05; ***, P<0.001; 
and ****, P<0.0001. EBV, Epstein-Barr virus; PPI, protein-protein interaction.
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cohort contained 45 RNA-seq samples, including 5 EBV-
positive samples and 40 EBV-negative samples. We classified 
GC into 4 clusters according to the expression of the 11 
hub genes: cluster 1 (C1), cluster 2 (C2), cluster 3 (C3), and 
cluster 4 (C4). The expression of these 11 genes increased 
gradually from C1 to C4, and the different subtypes 
clustered according to these 11 hub genes had different 
responses to immunotherapy (Figure 6). Among the EBV-
positive samples, we found that 4 out of 5 cases were in the 
C4 subtype, while 1 sample was in the C2 subtype (Figure 6).  
EBV-negative tumor tissues were also present across the 
4 various subclasses, which suggests heterogeneity of the 
expression levels in different tumor tissues. We analyzed the 
immune efficacy of each cluster in this cohort sequentially. 
As shown in Table 1, the ORR of C1 was 8.33%, and the 
CBR was 50%. The ORR of C2 was 16.67%, and the CBR 
was 55.56%. The ORR of C3 was 33.33%, and the CBR 

was 55.56%. The ORR of C4 was 83.33%, and the CBR 
was 100%. These results suggest that groups with higher 
expression of these 11 hub genes were more sensitive to 
immunotherapy, regardless of EBV status. In summary, 
these data demonstrated that the classifier composed of these 
11 hub genes may be used to predict immunotherapeutic 
response in EBVaGC and the preclinical value of this 
classifier may be extended to all GC patients.

Discussion

EBVaGC was recently identified as a subtype of GC, and 
infected individuals are predominantly male, younger, and 
have better prognoses than EBVnGC patients (4,13,30). 
Therefore, exploring the relationship between gene 
expression and the EBV-infected phenotype in GC is 
essential to elucidate the diversity caused by EBV infection. 
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Table 1 The response evaluation criteria (RECIST) indexes in each cluster

Cluster All (n) PD (n) SD (n) PR (n) CR (n) ORR (%) CBR (%)

C1 12 6 5 1 0 1/12 (8.33) 6/12 (50.00)

C2 18 8 7 2 1 3/18 (16.67) 10/18 (55.56)

C3 9 4 2 2 1 3/9 (33.33) 5/9 (55.56)

C4 6 0 1 4 1 5/6 (83.33) 6/6 (100.00)

C1, cluster 1; C2, cluster 2; C3, cluster 3; C4, cluster 4. PD, progressive disease; SD, stable disease; PR, partial response; CR, complete 
response; ORR, objective response rate; CBR, clinical benefit rate.
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Here, we observed 1,686 DEGs between EBV-positive 
and EBV-negative patients by performing RNA-seq 
analysis, and the most relevant module to the EBV-positive 
phenotype was discovered using WGCNA. These findings 
may partially explain the distinct molecular characteristics 
of EBVaGC.

Several reports showed that EBVaGC was often 
accompanied by greater immune cell infiltration, such as 
CD8+ cytotoxic T cells and mature dendritic cells, than 
EBVnGC. Therefore, EBVaGC is mostly associated with 
an immune-active tumor microenvironment (15,31). The 
present study observed that genes in the yellow module 
mostly regulated immune cells, cytokines, and chemokines. 
The immune score and ESTIMATE score were both 
elevated in the EBV-positive group compared to the 
EBVnGC group, but the stromal score was not significantly 
different. These results further demonstrated that EBV 
infection changed the tumor microenvironment, which was 
related to an immune-activating phenotype.

A previous study showed that most EBVaGC patients 
were resistant to current chemotherapy options (5). 
Considering the higher efficacy of immunotherapy in 
some EBV-infected individuals, there is a need to identify 
predictive biomarkers of patients who are sensitive 
to immunotherapy. Here, we used genes in the EBV-
phenotype module to construct a PPI network using 
STRING database and identified 11 genes as the final hub 
genes. Then we employed RT-qPCR using RNA from 
tumor tissues in SYSUCC clinical cohorts to demonstrate 
the higher expression of these hub genes in EBVaGC.

In terms of the purpose of this study, we identified these 
11 hub genes that may be used to evaluate the efficacy 
of immunotherapy. We can classify GC into 4 clusters 
according to the expression of the 11 hub genes and the 
expression of these 11 genes increased gradually from C1 to 
C4. Notably, different subtypes clustered according to these 
11 hub genes had different responses to immunotherapy 
and individuals with elevated expression of these 11 genes 
were more prone to be beneficial in immunotherapy. 
Therefore, this classifier may be an applicable predictor for 
evaluating the efficacy of immune checkpoint therapy.

There are some limitations to this study. First, our 
research primarily analyzed tumor tissue using a series of 
bioinformatics-related algorithms. Although we used our 
hospital cohort to validate the expression of hub genes 
using RT-qPCR, further experimental validation studies on 

the changes in the immune microenvironment are needed. 
Second, when using 11 hub genes for clustering, we tried 
to establish a signature to predict immune efficacy through 
various statistical methods, but we could not use these genes 
to establish a predictive model due to the small sample size 
and relatively large number of independent variables, which 
is also a direction for future in-depth research.

In conclusion, our study identified several hub genes 
associated with EBV status that are closely related to the 
immune microenvironmental features of EBVaGC and may 
be used as molecular markers for the prediction of immune 
response in GC. Higher expression of these genes indicated 
a greater benefit of immunotherapy in GC patients.
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Supplementary

Figure S1 The protein-protein interaction network was exported from the STRING database and visualized in Cytoscape v3.8.2 software.
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Figure S2 Kaplan-Meier plot of 11 hub genes in the EBV-positive group of the SYSUCC cohort. The expression of each gene was divided 
into a high expression group and a low expression group according to its median value. The red line represents the high expression group, 
and the blue line represents the low expression group. (A) CD8A. (B) CXCL10. (C) CCR5. (D) IFNG. (E) CXCL9. (F) GZMA. (G) GZMB. (H) 
KLRK1. (I) TBX21. (J) CCL5. (K) CD38.
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Table S1 The clinicopathological characteristics in Sun Yat-sen University Cancer Center (SYSUCC) cohort

Variable EBVaGC EBVnGC P value

Total 70 67

Age, years 0.037

≤60 35 46

>60 35 21

Gender <0.001

Male 61 39

Female 9 28

TNM stage 0.318

I-II 19 13

III-IV 51 54

Grade <0.001

G1-G2 35 12

G3 35 55

Location <0.001

Proximal 34 21

Distal 19 39

Whole 0 2

Body 6 5

Remnant 11 0

Lauren classification <0.001

Diffuse 6 34

Intestine 20 17

Mixed 43 1

Unknown 1 15
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Table S2 Quantitative real-time polymerase chain reaction (RT-qPCR) primers used in this study

Name Forward Primer Reverse Primer

β-actin TGGATCAGCAAGCAGGAGTA TCGGCCACATTGTGAACTTT

CD8A TCCTCCTATACCTCTCCCAAAAC GGAAGACCGGCACGAAGTG

IFNG TCGGTAACTGACTTGAATGTCCA TCGCTTCCCTGTTTTAGCTGC

CXCL10 GTGGCATTCAAGGAGTACCTC TGATGGCCTTCGATTCTGGATT

CCR5 TTCTGGGCTCCCTACAACATT TTGGTCCAACCTGTTAGAGCTA

GZMB GCAGATGCAGACTTTTCCTTC TCTCGTATCAGGAAGCCACC

CD38 AGACTGCCAAAGTGTATGGGA GCAAGGTACGGTCTGAGTTCC

TBX21 GCCCACGATGAAACCTGAGA GCTCCTTCATGCCCAAGACT

CCL5 TTTCCTGTATGACTCCCGGC AAGCCTCCCAAGCTAGGACA

GZMA ATTCTTGGGGCTCACTCAATAAC GGGTCATAGCATGGATAGGGAAA

CXCL9 ATTGGTGCCCAGTTAGCCTC CCACCGGACAGCACTCTAAA

KLRK1 CCTTGACCGAAAGTTACTGTGG GGCTGGCATTTTGAGACATACAA
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Table S3 Hub gene count in CytoHubba

Gene Count

CD8A 9

CXCL10 9

CCR5 9

IFNG 9

CXCL9 8

GZMA 8

GZMB 8

KLRK1 8

TBX21 8

CCL5 6

CD38 5

PRKCG 4

CD274 3

LAG3 3

PRKCQ 3

CALB1 2

IDO1 2

ABCG5 1

ABCG8 1

ALPP 1

CCL1 1

CD244 1

CKMT1A 1

CKMT1B 1

CX3CL1 1

FASLG 1

GBP4 1

HMGCS2 1

IKZF3 1

KLRC3 1

SLAMF7 1

SLC6A8 1

WARS 1


