
© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(7):2262-2274 | https://dx.doi.org/10.21037/tcr-22-19

Introduction

Primary liver cancer, one of the most common cancers, 
contributes to a large number of cancer-related deaths 
worldwide (1,2). Hepatocellular carcinoma (HCC) accounts 
for the majority of cases among all types of primary liver 
cancers (3). The main risk factors for HCC development 
include liver cirrhosis, infection with hepatitis B virus 
(HBV)/hepatitis C virus (HCV), alcohol abuse, and 

metabolic syndrome (4-7). In addition, other factors, 
such as smoking and aflatoxin B1 intake, have been 
identified as contributors to HCC (8,9). HCC is frequently 
characterized by mutations in TERT, TP53, and ARID1A, 
and dysregulation of the WNT, RAS, and mTOR signaling 
pathways (10,11). However, not all of these onco-drivers 
are considered druggable targets, and pharmaceuticals 
for HCC treatment currently available pharmaceuticals 
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are currently limited. Tyrosine kinase inhibitors (TKIs) 
such as Sorafenib, Regorafenib, and Lenvatinib have been 
demonstrated to have limited survival advantages for HCC 

(12-14). However, identification of novel druggable targets 
for more effective treatment of HCC has inevitably become 
a priority.

Recently, there has been an increase in research focusing 
on the tumor microenvironment (TME), in particular, 
its immune component. It is widely accepted that the 
immune components of the TME significantly influence 
the pathophysiological progress of tumors, therapeutic 
responses, and clinical outcomes (15-17). Furthermore, 
immunotherapies that modulate the immune response against 
tumors are making promising clinical progress. Antibodies 
blocking immune-checkpoint molecules, such as PD-1 and 
CTLA-4, are being tested and put into clinical application 
with inspiring results (18). Thus, a deeper understanding of 
the immune components of the TME is indispensable for 
developing novel strategies for HCC treatment.

To explore the role of immune components in HCC, 
we used TCGA database and screened immune cells that 
were related to overall survival in HCC patients. Next, we 
identified common genes that were related to candidate 
immune cells and found that 14 candidates were correlated 
with overall survival. To study the biological role of the 
differentially expressed genes (DEGs) related to immune 
components, we used gene ontology (GO) analysis to identify 
the enriched pathways and functions. Our study characterizes 
the immune features of HCC, and provides potential clues on 
HCC therapies. We present the following article in accordance 
with the REMARK reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-19/rc).

Methods

Samples collection and data processing

Expression data with clinical information from HCC 
patients were downloaded from The Cancer Genome 
Atlas (TCGA) website (https://portal.gdc.cancer.gov/). 
These data included fifty files from normal tissues and 
369 individual files from tumor tissues. The Fragments 
Per Kilobase per Million (FPKM) values were used in 
subsequent analyses. The clinicopathologic features of HCC 
patients were shown in Table 1 and website: https://cdn.
amegroups.cn/static/public/tcr-22-19-01.zip. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). Since the data from the TCGA were 
de-identified and publicly available, no institutional review 
board approval was necessary and no informed consent was 
signed for this study.

Table 1 Clinicopathologic parameters of HCC patients in TCGA 
cohorts

Clinicopathologic 
parameters

TCGA

Total (n=369) %

Age, years

<60 169 45.80%

≥60 199 53.93%

Not reported 1 0.27%

Gender

Male 249 67.48%

Female 120 32.52%

T

T1 181 49.05%

T2 94 25.47%

T3 78 21.14%

T4 13 3.52%

Tx 1 0.27%

Not reported 2 0.54%

N

N0 250 67.75%

N1 4 1.08%

Nx 114 30.89%

Not reported 1 0.27%

M

M0 265 71.82%

M1 4 1.08%

Mx 100 27.10%

Stage

I 171 46.34%

II 86 23.31%

III 83 22.49%

IV 5 1.36%

Not reported 24 6.50%

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome 
Atlas.

https://tcr.amegroups.com/article/view/10.21037/tcr-22-19/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-19/rc
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/tcr-22-19-01.zip
https://cdn.amegroups.cn/static/public/tcr-22-19-01.zip
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Identifying immune cells related to survival

We calculated the proportions of 22 types of immune 
cells using software CIBERSORTx. First, we uploaded 
the matrix of FPKM values for all  samples to the 
CIBERSORTx website (https://cibersortx.stanford.edu/
index.php) as the Mixture file. Next, we selected the LM22 
matrix (default setting) within the software as the signature 
gene file, and ran the software in the relative mode, with 
batch correction and quantile normalization both disabled. 
We set the permutations for significance analysis to 100. 
We then identified survival-related immune cells using the 
survival R package based on the proportion of each cell 
type. We used the log-rank test to analyze the survival data 
and set the medians of the proportions of cell types as the 
cut-off values. We analyzed the relationship between the 
proportions of immune cells and clinical stages using the 
one-way ANOVA.

Identification of immune-related genes and common genes

The specific genes for each type of survival-related immune 
cell were identified by calculating the DEGs between 
the high- and low-expressing samples using the median 
of proportions as the cut-off value. DEGs were analyzed 
using the limma R package. Benjamini & Hochberg (BH) 
method for multiple hypothesis testing on the P values were 
performed in differential expression analysis. Significantly 
altered genes for each cell type included those with 
|log2(FoldChange (FC))| >2, and P value <0.05. The results 
were visualized using the ggplot2 R package. Common 
genes were screened and visualized by UpSet R package.

Enrichment analysis of immune-related genes and 
common genes

Significant Gene Ontology (GO) enrichment analyses were 
performed using the cluster profiler R package. A P value 
<0.05, and |ave_log2FC| >2, were chosen as the thresholds.

Relationship between immune components and common 
genes

We calculated the Pearson correlation between the common 
genes and 22 types of immune components, and the result 
was visualized by the ggplot2 R package. Additionally, we 
calculated the correlation between the common genes and 
the overall survival by the Log-Rank test.

Statistical analysis

Method of one-way analysis of variance (ANOVA) 
was performed to compare differences in immune cell 
components among stages, while Tukey’s multiple 
comparisons test was performed to compare differences in 
components of immune cells between any two of stages.

Results

Identifying immune cells related to HCC overall survival

It is widely reported that immune infiltration is related 
to the occurrence, progression, and prognosis of HCC. 
To further explore the relationship between immune 
components and prognosis in HCC, the proportions 
of 22 types of immune cells were calculated using the 
online software CIBERSORTx (Figure 1A) (19). The 
proportion of macrophages was 39.9%±11.8% and T cells 
was 36.28%±12.8%, which accounted for the majority of 
immune cells (Figure 1B). 

By analyzing the survival data of HCC patients in TCGA 
cohorts, we identified the proportion of M0 macrophages 
(OS: HR =0.4688, 95% CI: 0.3284 to 0.6692, logrank 
P<0.0001), naïve B cells (OS: HR =1.579, 95% CI: 1.107 
to 2.254, logrank P=0.011), resting mast cells (OS: HR 
=1.577, 95% CI: 1.109 to 2.242, logrank P=0.011), CD4+ T 
cells (memory resting) (OS: HR =1.494, 95% CI: 1.055 to 
2.116, logrank P=0.023), follicular helper T (Tfh) cells (OS: 
HR =0.6425, 95% CI: 0.4536 to 0.9101, logrank P=0.012), 
γδT cells (OS: HR =1.648, 95% CI: 1.146 to 2.369, 
logrank P=0.0064), and eosinophils (OS: HR =0.5744, 
95% CI: 0.3284 to 1.005, logrank P=0.049) as candidate 
immune cells related to overall survival (Figure 1C). Higher 
proportions of Tfh cells, M0 macrophages and eosinophils 
correlated with worse prognosis, while higher proportions 
of naive B cells, CD4+ T cells (memory resting), γδT cells, 
and resting mast cells correlated with better prognosis 
(Figure 1D). Thus, we considered these six types of immune 
cells as survival-related cells, and as immune candidates for 
further investigation.

Exploring the relationship between immune cells and 
clinical stages of HCC

Next, we investigated the relationship between the 
proportions of each type of immune cells at different 
clinical stages. The proportions of memory resting CD4 
T cells were statistically different in distinct clinical stages 

https://cibersortx.stanford.edu/index.php
https://cibersortx.stanford.edu/index.php
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Figure 1 The relationship between the proportion of immune cells and overall survival in HCC. (A) The profile of the proportion of 
immune cells in the HCC samples. Each sample is represented by one column, and the proportion of the specific immune cell types is 
indicated by the column height in that sample. (B) The proportion of 22 types of immune cells in the HCC samples. Medians and quartiles 
are shown in black lines. (C,D) Survival analysis for the proportion of (C) follicular helper T (Tfh) cells, M0 macrophages, eosinophils, (D) 
naïve B cells, resting memory CD4+ T cells, γδT cells, and resting mast cells. HCC, hepatocellular carcinoma.
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(P<0.05), while the proportion of M0 macrophages was 
significantly lower in stage I than in stages II (P<0.05) and 
III (P<0.05), and the proportion of M1 macrophages was 
significantly higher in stage I than in stage III (P=0.0431). 
However, the proportions of most types of immune cells 
showed no statistical difference in the distinct clinical stages 
of HCC (Figure 2). These results suggest that there is no 
clear relationship between the proportion of immune cells, 
including survival-related immune cells, and clinical stages. 

Identification of DEGs related to immune cells and 
pathway analysis

Gene expression relating to the specific immune cell 
candidates was assessed as described in the ‘Methods’ 
section, revealing a total of 3,692 DEGs. Among these 
genes, 1,531 were related to naïve B cells, 2,321 to M0 
macrophages, 1,277 to Tfh cells, 1,447 to memory resting 
CD4+ T cells, 797 to γδT cells, 1,683 to resting mast cells, 
and 1,283 to eosinophils (Figure 3A-3G). 

Next, to explore the biological function of the DEGs, 
we performed Gene Ontology (GO) pathway enrichment 
analysis for each group of immune-related DEGs. The 
results of top 30 pathways are shown in Figure 3H,3I. The 
DEGs were mainly enriched in the regulation of RNA-
related processes (like metabolism and splicing), immune 
responses (like T cell activation, neutrophils activation, and 
immune-related cell surface receptor signal pathway), and 
mitosis-related processes (Figure 3H,3I and website: https://
cdn.amegroups.cn/static/public/tcr-22-19-01.zip). The 
results of the GO pathway enrichment analysis therefore 
suggest that RNA-related signal pathway may play a pivotal 
role in regulating immune components of HCC. 

Identification and analysis of common genes related to 
immune cells

We identified the distribution of DEGs in the overall 
survival-related immune cells to explore the common genes 
which may play important roles in regulating immune cells 
(Figure 4A). Sixteen genes were differentially expressed in 
all seven types of immune cells, including MFSD10, DBN1, 
ALDOA, ELOVL1, CBX3, HLF, HMGA1, TPD52L2, 
WDR1, SLC25A6, SYNGR2, ENO1, G6PD, COLGALT1, 
MANBAL, and JPT2. The expression pattern of 16 genes 
is shown in Figure 4B, and it was shown that the expression 
pattern of HLF seemed to be negatively correlated to 
the other 15 genes. Thus, 16 genes were considered as 

candidate genes of immune cells in HCC.

Exploring the relationship between common genes and 
clinical features of HCC

Relationship between overall survival and 16 candidates 
were explored, and 14 out of 16 genes (ALDOA, CBX3, 
COLGALT1, ELOVL1, ENO1, G6PD, HLF, HMGA1, JPT2, 
MANBAL, MFSD10, SLC25A6, SYNGR2, and TPD52L2) 
were shown to be correlated to overall survival significantly 
(Figure 5). Higher expression of ALDOA (OS: HR =0.5686, 
95% CI: 0.4008 to 0.8066, logrank P=0.0013), CBX3 (OS: 
HR =0.5425, 95% CI: 0.3811 to 0.7723, logrank P=0.00057), 
COLGALT1 (OS: HR =0.6135, 95% CI: 0.4323 to 0.8706, 
logrank P=0.0057), ELOVL1 (OS: HR =0.5433, 95% CI: 
0.3827 to 0.7715, logrank P=0.00054), ENO1 (OS: HR 
=0.4941, 95% CI: 0.3465 to 0.7047, logrank P<0.0001), 
G6PD (OS: HR =0.5214, 95% CI: 0.3672 to 0.7404, logrank 
P=0.00021), HMGA1 (OS: HR =0.5283, 95% CI: 0.3717 
to 0.7509, logrank P=0.0003), JPT2 (OS: HR =0.6893, 95% 
CI: 0.4878 to 0.9739, logrank P=0.034), MANBAL (OS: 
HR =0.6095, 95% CI: 0.4304 to 0.8630, logrank P=0.0048), 
MFSD10 (OS: HR =0.6126, 95% CI: 0.4325 to 0.8676, 
logrank P=0.0053), SLC25A6 (OS: HR =0.7061, 95% CI: 
0.4984 to 1.000, logrank P=0.049), SYNGR2 (OS: HR 
=0.5931, 95% CI: 0.4173 to 0.8428, logrank P=0.0032), and 
TPD52L2 (OS: HR =0.5947, 95% CI: 0.4193 to 0.8435, 
logrank P=0.0032) correlated with worse prognosis, while 
higher expression of HLF (OS: HR =1.428, 95% CI: 1.007 
to 2.025, logrank P=0.045) correlated with better prognosis. 

Also, the relationship between prognostic candidates and 
clinical stages were explored. We found that the expression 
levels of ALDOA and MFSD10 increased with the increase 
of clinical stages. Meanwhile, the levels of HLF decreased 
with the increase of clinical stages. Also, the level of CBX3, 
COLGALT1, JPT2, MANBAL, SYNGR2, and TPD52L2 
increased with clinical stage I to III. The levels of SLC25A6 
increased in stage IV compared to stage I. The level of 
ELOVL1, ENO1, G6PD, and HMGA1 showed no difference 
in distinct clinical stages (Figure 6). 

Exploring the relationship between candidate genes and 
immune cells

Additionally, we explored the correlation between candidate 
genes and the proportions of 22 types of immune cells, and 
found that candidate genes were mainly correlated to the 
proportions of naïve B cells, Tregs, γδT cells, resting NK 

https://cdn.amegroups.cn/static/public/tcr-22-19-01.zip
https://cdn.amegroups.cn/static/public/tcr-22-19-01.zip
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Figure 2 The relationship between immune cells and HCC stages. The proportions of 22 types of immune cells in different clinical stages 
of HCC are shown in violin plots. Medians are shown in black lines. Quartiles are shown in dotted lines. *, P<0.05; **, P<0.01; ***, P<0.001. 
HCC, hepatocellular carcinoma.
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Figure 3 Identification of DEGs related to immune cells and GO pathway analysis. (A-G) Gene expression profiles related to naive B cells, 
M0 macrophages, Tfh cells, memory resting CD4+ T cells, γδT cells, and resting mast cells. Volcano plots are used to present the data. The 
upregulated/downregulated genes are presented as red/blue dots according to the criteria: |log2Fold Change| >2 and P value <0.05. (H-I)  
GO pathway enrichment analysis on genes related to each type of immune cells. The significance of enrichment results is indicated by the 
color, and the count of genes enriched for each result is indicated by the dot size. DEGs, differentially expressed genes; GO, Gene Ontology.
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cells, M0 macrophages, and M1 macrophages (Figure 7). For 
example, the proportions of naïve B cells were negatively 
correlated to expression levels of 15 candidate genes (except 
for HLF), while the proportions of M0 macrophages were 
positively correlated to expression levels of 15 candidate 
genes (except for HLF). In summary, it is indicated that 
there were potential relationship between candidate genes 
and the function of immune cells to further exploration.

Discussion

Since the molecular and immune features of HCC have 
been comprehensively characterized (20,21), the prognostic 
value of immune-based markers has emerged. In this 
study, we aimed to identify the prognostic markers basing 
on key immune components of HCC. The key immune 
components of HCC were analyzed by calculating the 
proportions of 22 types of immune cells and the relationship 
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with overall survival of HCC patients. The results showed 
a diversification of the proportions of immune cells among 
patients, indicating an important role and the complexity of 
the immune component of HCC.

In our study, seven types of immune cells were found 
to be related to HCC survival, including naive B cells, 
Tfh, CD4+ T Cells (memory resting), γδT cells, M0 
macrophages, eosinophils, and resting mast cells. An 
increasing number of studies have identified specific 
immune cells as prognostic markers in HCC, including 

B cells, T cells, macrophages, and mast cells. Zhang et al. 
analyzed the distribution of B cells in HCC patients by 
multiplexed IHC and cytometry, and found that a high 
density of naïve B cells was a potential prognosticator 
for survival (22). Dysfunction of circulating Tfh cells 
has been reported to lead to HCC progression, and Tfh 
cells have potential as prognostic markers and a novel 
therapeutic targets (23,24). These findings, which were 
based on circulating Tfh, contradict with our results that a 
higher proportion of Tfh cells were associated with worse 
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prognosis, therefore the role of infiltrating Tfh cells needs 
further investigation. These results suggest that these seven 
types of immune cells could be predictors and potential 
targets of HCC prognosis. 

We also analyzed the DEGs related to immune cells 
and their biological functions, and found that DEGs were 
mostly enriched in RNA-related processes (like RNA 
splicing and RNA metabolism), immune responses (like 
T cell activation, neutrophils activation, and regulation 
of immune-related cell surface receptor signal pathway), 
and mitosis processes. It is implied that multiple processes 
especially RNA-related processes may play important 

roles in immune microenvironment of HCC, and deserve 
to explore their therapeutic potential. For instance, it has 
widely reported that RNA N6-methyladenosine, which is 
a modification pattern of mRNA and involves in mRNA 
stability splicing and translation, plays a crucial part in 
HCC carcinogenesis and drug resistance (25,26). 

Additionally, 16 common genes were identified from 
immune-related DEGs, and 14 of them (ALDOA, CBX3, 
COLGALT1, ELOVL1, ENO1, G6PD, HLF, HMGA1, 
JPT2, MANBAL, MFSD10, SLC25A6, SYNGR2, and 
TPD52L2) are significantly correlated with overall survival 
of HCC patients. HMGA1, a nuclear protein associated with 
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chromatin remodeling, is overexpressed in multiple cancers, 
including thyroid cancer, liver cancer, and pancreatic cancer 
(27-29). Wei et al. reported that HMGA1, activated by PD-
L1, promoted colorectal cancer stem cells expansion (30). In 
addition, several studies have suggested that ALDOA, ENO1, 
HLF, and G6PD are associated with cancer progression 
and immune response (31-34). It is generally accepted that 
macrophages are the main component in microenvironment 
of HCC, and play important roles in promoting or inhibiting 
hepatocarcinogenesis under particular circumstances (35). 
Interestingly, the proportions of M0 macrophages were 
significantly correlated to 16 candidate genes, indicating 
that M0 macrophage are associated with multiple biological 
aspects including energy metabolism, chromatin processing 
and RNA processing, and their potential relationships deserve 
further investigations. These results suggest that candidate 
genes may play a significant role in regulating immune 
components of HCC, and deserve further exploration the 
underlying mechanisms.

Our study has several limitations. First, the proportions 
of immune cells were calculated based on the TCGA 
dataset, so further validation will be required using other 
resources. Second, the relationship between immune 

cells and prognostic candidates were calculated using 
mathematical methods. These results should be confirmed 
by molecular biology experiments such as RNA-interfering 
and proliferation assay. Third, the proportions of Tfh cells 
and γδT cells were zero in many cases, suggesting that the 
results relating to these two immune cell-types may rely 
on outliers. Therefore, conclusions regarding Tfh cells 
and γδT cells should be made with caution. Fourth, by the 
reason of limited information of viral load, the relationship 
between hepatitis virus infection and immune markers or 
common candidates were not explored further in our study.

In summary, we identified seven types of survival-
related immune cell candidates and 16 common DEGs, 
and 14 of which were correlated with overall survival in 
HCC patients. These cells and candidate genes could be 
considered as prognostic markers, or potential targets for 
HCC treatment. Our research not only provides insights 
into immune cells of HCC, but also identifies potential 
therapeutic targets worth further exploration.

Conclusions

Our study not only presents an overview of the immune 
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features of the microenvironment of HCC, but also 
provides potential targets related to immune components.
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