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Background: Hypoxia has a profound impact on the development and progression of hepatocellular 
carcinoma (HCC). This study aimed to explore and elucidate how hypoxia affect prognosis, immune escape 
and drug responses in HCC.
Methods: HCC-specific hypoxia signatures were identified based on the intersect of differentially expressed 
genes (DEGs) of GSE41666 and GSE15366. The hypoxia score was calculated using the gene set variation 
analysis (GSVA) function and validated on GSE18494. We collected five cohorts [The Cancer Genome Atlas 
(TCGA), GSE14520, GSE39791, GSE36376, GSE57957] for further analysis. First, we analyzed the effect 
of the hypoxia score on prognosis. Next, we systematically analyzed the potential hypoxia-related immune 
escape mechanisms and the effect of hypoxia upon immunotherapy. Then, we predicted and screened 
potential sensitive drugs for HCC patients with high hypoxia levels using machine learning and docking.
Results: We constructed a novel HCC-specific hypoxia score and undertook further analysis in five cohorts 
(TCGA, GSE14520, GSE39791, GSE36376, GSE57957). We observed that patients with high hypoxia 
scores exhibited worse overall survival (OS) in TCGA and GSE14520. We also constructed a hypoxia-related 
nomogram that had good performance in predicting HCC patients’ prognosis. Furthermore, patients with 
lower hypoxia scores had a lower risk of immune escape and thus may benefit from immunotherapy. Finally, 
we predicted and screened VLX600 as the candidate drug for HCC patients with high hypoxia scores. We 
further explored and elucidated why VLX600 was more sensitive in HCC patients with high hypoxia than 
with low hypoxia HCC patients using weighted gene co-expression network analysis (WGCNA).
Conclusions: This study provides further evidence of the link between hypoxia and prognosis and immune 
escape in HCC patients. Moreover, our research screened VLX600 as a potential drug for HCC patients 
with high hypoxia levels and elucidated the potential mechanism.
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Introduction

Hepatocellular carcinoma (HCC) is the fourth leading 
cause of cancer-related deaths worldwide (1). Unfortunately, 
patients with advanced HCC have few treatment options, 
and prognosis is poor. Treatment options for advanced 
HCC, including surgical resection and non-surgical 
therapies, are of limited effectiveness (2). Research has 
shown that metastasis and recurrence rate of HCC are 
up to 70% after 5 years following curative resection (3). 
Notwithstanding the merit of immunotherapy in some 
advanced HCC patients, the survival improvements have 
been modest (4,5). Therefore, exploring new drug targets 
or new mechanisms of tumorigenesis is a crucial yet 
challenging task.

Hypoxia refers to an intrinsic characteristic of solid 
tumors that is caused by the imbalance between the rate of 
tumor cell proliferation and the vascular nutrient (6). The 
association between hypoxia and malignant progression and 
poor prognosis in HCC has been well documented in the 
literature (7). Increasing evidence in recent years supports 
that cancer cells can develop invasive and metastatic features 
during adaptation to the hypoxic microenvironment (8). 
Hypoxia can induce HCC cell growth through HMGB1 
activation of the TLR9 signaling pathway (9). Dou et al. 
found that hypoxia can promote the proliferation and 
migration of HCC cells via upregulating TUFT1 to activate 
the Ca2+/PI3K/AKT pathway (10). Moreover, recent 
evidence demonstrates that hypoxia has close relationships 
with the formation of the immunosuppressive tumor 
microenvironment. Cui et al. found that hypoxia-inducible 
lipid droplets promote HCC immune escape from natural 
killer cells through the interleukin 10/signal transducer 
and activator of the transcription 3 signaling pathway (11). 
Ye et al. demonstrated that hypoxia can induce epithelial-
mesenchymal transition (EMT) and the establishment of 
an immunosuppressive tumor microenvironment (TME) 
via the HIF-1α/CCL20/IDO axis in HCC (12). Although 
associations between hypoxia and the immunosuppressive 
microenvironment in HCC have previously been observed 
in some contexts, the comprehensive interplay between 
hypoxia and the immunosuppressive microenvironment 
in HCC is not fully understood. Therefore, further study 
on the relationship between hypoxia and immune escape 
in HCC is required in order to develop new therapeutic 
strategies.

In this study, we analyzed hypoxia-related genes in HCC 
by using The Cancer Genome Atlas (TCGA) and Gene 

Expression Omnibus (GEO) databases and constructed a 
hypoxia score. Then we explored the association of hypoxia 
with prognosis and the immune microenvironment in 
HCC. We also predicted and screened potential drugs for 
patients with high hypoxia levels and discussed the working 
mechanism of the candidate drugs. These findings may 
make a meaningful contribution to the development of 
comprehensive therapeutic strategies for HCC patients. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-22-253/rc).

Methods

HCC data sets downloading and preprocessing

TCGA gene expression data [transcripts per million (TPM) 
and row counts], copy number data, mutation data, clinical 
data and sample information of HCC were downloaded 
from Xena (13). The segment file of copy number was 
analyzed using GISTIC (14) with default parameters. We 
retrieved three independent mRNA microarray data sets 
(GSE41666, GSE15366, and GSE18494) based on hypoxia-
treated HCC cells (HepG2) from GEO (https://www.
ncbi.nlm.nih.gov/geo/). Data sets and available clinical 
information on four HCC cohorts including GSE36376 
(n=240), GSE14520 (n=225), GSE39791 (n=72), and 
GSE57957 (n=39) were downloaded from GEO. The 
raw data of microarray datasets was processed via RMA 
algorithm background correction, log2 transformation, 
quantile normalization, and annotation by the Affy R 
package (15). We also used the IMvigor210 dataset from 
623 patients with metastatic urothelial cancer receiving the 
PD-L1 inhibitor atezolizumab to validate the association 
between hypoxia and resistance to immunotherapy. 
The raw transcriptomic and clinical data were retrieved 
from the IMvigor210 dataset (http://research-pub.
gene . com/IMvigor210CoreBio log ie s )  u s ing  the 
IMvigor210CoreBiologies R package (16). We transformed 
the raw count of IMvigor210 to TPM for further analysis.

Generation of a novel hypoxia gene signature and 
calculation of hypoxia score

GSE41666 contained the gene expression profles of HepG2 
cells exposed to normoxia (21% O2) and hypoxia (0% O2) 
for 24 h. GSE15366 contained the gene expression profles 
of HepG2 cells exposed to normoxia (20% O2) and hypoxia 
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(2% O2) for 72 h. GSE18494 collected the gene expression 
profles of HepG2 cells under normoxic conditions (19% 
O2, 0 h) and after 4, 8 and 12 h of hypoxia treatment (0.5% 
O2). We aimed to screen the gene signatures which were 
stably induced by acute hypoxia and chronic hypoxia. Thus, 
we calculated the differentially expressed genes (DEGs) 
in hypoxia and non-hypoxia in GSE41666 (acute hypoxia  
24 h) and GSE15366 (chronic hypoxia 72 h). Log-fold 
changes (logFC) >1 and adjusted P value <0.01 were 
selected as the threshold. Next, we selected the intersection 
of up-regulated DEGs in GSE41666 and GSE15366 as the 
up-regulated hypoxia gene set. The intersection of down-
regulated DEGs in GSE41666 and GSE15366 was selected 
as the down-regulated hypoxia gene set. Gene ontology 
(GO) enrichment analysis of up- and down-regulated 
hypoxia gene sets was carried out utilizing the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) (17). The up hypoxia score was calculated using 
gene set variation analysis (GSVA) (18) based on the up-
regulated hypoxia gene set. The down hypoxia score was 
calculated using GSVA based on down-regulated hypoxia 
gene set. The hypoxia score was defined as the up hypoxia 
score minus the down hypoxia score. To test the reliability 
of our hypoxia score, we validated our hypoxia score on 
GSE18494. Finally, we calculated the hypoxia scores for 
five HCC cohorts (TCGA-LIHC, GSE36376, GSE14520, 
GSE39791, and GSE57957).

Characteristics of hypoxia-related clinical, molecular, and 
metabolic features 

The clinical data of TCGA and GSE14520 was downloaded 
from the Xena and GEO websites, respectively. We 
compared the difference of hypoxia scores in conventional 
clinical characteristics. To investigate the correlation 
between hypoxia scores and molecular subclasses of HCC, 
we used nearest template prediction (NTP) method to 
make subclass predictions for TCGA and GSE14520 
based on subclass-specific signatures. Then we compared 
the differences in hypoxia scores between different 
subclasses. Next, we utilized the GSVA method to assess 
the level of cancer-related hallmarks and metabolism 
features. The cancer-related hallmarks were downloaded 
from the Molecular Signatures Database (Msigdb) (19). 
The metabolism gene sets were obtained from previous 
research (20). We explored the differences in cancer-related 
hallmarks and metabolic features between the high hypoxia 
group and low hypoxia group with respect to TCGA, 

GSE14520, GSE36376, GSE39791, and GSE57957. Copy 
number variation (CNV) data on TCGA in the high group 
and low hypoxia groups were analyzed using the GISTIC 
with default parameters and visualized using maftools R 
packages (21). We identified the high hypoxia and low 
hypoxia peculiar copy number amplification and deletion 
sites. To further explore how CNV affected hypoxia, we 
carried out Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis for these CNV sites. Mutation 
data on TCGA in the high hypoxia and low hypoxia groups 
were analyzed and visualized using maftools R packages.

Survival analysis and building nomograms for hypoxia 
scores to evaluate the predictive performance of HCC 
patients’ prognosis 

Patients in TCGA and GSE14520 cohorts were stratified 
into high and low hypoxia groups based on the median value 
of the hypoxia scores. Kaplan-Meier (K-M) survival analysis 
was performed to evaluate the overall survival (OS) of 
patients with high and low hypoxia scores using the survival 
R package (22). The survival differences were evaluated by 
the two-sided logrank test. Univariate and multivariate Cox 
regression analyses were performed to determine whether 
the hypoxia scores can predict the prognosis independently 
using survival R package. The nomogram for prognosis 
prediction was built by integrating the factors that can 
predict the prognosis independently using the nomogramEx 
R package (23). The calibration curves of TCGA and 
GSE14520 were plotted using the rms R package (24).

Association of hypoxia with the immune microenvironment 
and immunotherapy response

First, the relative levels of distinct immune cell types were 
estimated using CIBERSORT tools (https://cibersort.
stanford.edu) (25). However, CIBERSORT estimates only 
relative levels of distinct immune cells and does not assess 
the level of fibroblasts and endothelial cells. Fibroblasts 
and endothelial cells are the important components of the 
TME. Thus, we estimated the absolute level of adaptive 
immune cells and innate immune cells using the GSVA 
method. The gene signatures of adaptive immune cells 
and innate immune cells were obtained from The Cancer 
Immunome Atlas (TCIA) (26). The absolute level of 
fibroblasts and endothelial cells were assessed using the R 
package MCP-counter (27). We compared the infiltration 
of immune cells between the high hypoxia and low hypoxia 
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group using the Wilcoxon test. The list of chemokines 
was obtained from a previous study (28). The differences 
in chemokines between the high hypoxia and low hypoxia 
groups were calculated using the Wilcoxon test and adjusted 
the P values using the false discovery rate (FDR) method. 
The potential immunogenomic indicators [mutation 
load, neoantigen load, homologous recombination defect 
(HRD) scores, aneuploidy scores, and fraction of loss of 
heterozygosity (LOH)] were downloaded from the NIH 
genomic data commons (https://gdc.cancer.gov/about-
data/publications#/?groups=&years=&programs=TCGA
&order=desc). We collected 76 immunomodulators [10 
classical major histocompatibility complex (MHC), 11 non-
classical MHC, 25 immune inhibitors, and 47 immune 
stimulators] from TCIA (26). The correlations between 
immunomodulator expressions and hypoxia scores were 
calculated for the TCGA cohort. We calculated T-cell 
dysfunction scores based on gene sets (TGFB1, CD274, 
CTLA4, IL10, PDCD1, CD276, HAVCR2, TNFRSF9, 
LAG3, TIGIT, ICOS) that negatively regulate T-cell 
function using an ssGSEA algorithm. IFNγ and TGFβ 
gene sets were obtained from a previous study (29) and the 
ssGSEA algorithm was used to evaluate the level of IFNγ 
and TGFβ pathways. The clinical response to immune 
checkpoint blockade (anti-PD1/CTLA4) was predicted 
using the Tumor Immune Dysfunction and Exclusion 
(TIDE, http://tide.dfci.harvard.edu/) tool (30).

Screening sensitive drugs for the high hypoxia group

Expression profile data of human cancer cell lines 
were obtained from the Broad Institute Cancer Cell 
Line Encyclopedia (CCLE) project (https://portals.
broadinstitute.org/ccle/) (31). Drug sensitivity data on 
cancer cell lines were obtained from the PRISM repurposing 
dataset (19Q4, released December 2019, https://depmap.
org/portal/prism/) (32). The drug sensitivity data used the 
area under the dose–response curve [area under the curve 
(AUC)] values as a measure of drug sensitivity. Lower AUC 
values indicated higher sensitivity to treatment. We excluded 
drugs with more than 20% of data missing. Next, we used 
the K-nearest neighbor algorithm to impute the missing 
AUC values. Then, we used the pRRophetic R package, 
which has a built-in ridge regression mode to predict the 
drug response of patients based on their expression profiles 
and the AUC value of each drug. The we used the model to 
predict the drug response for TCGA patients. We further 

screened the potential drugs for the high hypoxia group. 
The potential drugs for high hypoxia patients must have 
a significantly lower AUC than in the low hypoxia group. 
Thus, we calculated the logFC of predicted differential 
drug response between the high hypoxia score group (top 
decile) and low hypoxia score group (bottom decile). We 
selected logFC <−0.20, and P value <0.05 as the threshold. 
Moreover, we calculated Spearman correlations between the 
AUC value and hypoxia to screen drugs that had a negative 
correlation with hypoxia. We selected correlation <−0.30 
and P value <0.05 as the threshold. The selected compounds 
were studied by docking using Autodock Vina (33) and 
the binding interaction analyzed using Pymol software. 
To determine how the sensitive drugs work, we identified 
the gene co-expression modules using the WGCNA R  
package (34) and selected the most relevant module. 
Enrichment analysis using DAVID was carried out using 
genes in the drug-sensitive relevant module.

Statistical analysis

For comparisons of two groups, we used wilcoxon rank-
sum test. For comparisons of more than two groups, we 
used Kruskal-Wallis tests. The two-sided Fisher’s exact test 
was performed for the contingency tables. All statistical P 
values were two-sided. The survival curves of each data set 
were generated by Kaplan-Meier analysis, and statistically 
significant differences were determined through the 
log-rank test. The AUC was calculated using “pROC” 
package (35). The mutation and copy number of patients 
were analyzed using the maftools R package (21). All data 
processing was performed using R 3.6.1.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Identification for a novel HCC-suitable hypoxia signature 
that includes 74 genes

The overall workflow of this study is shown in Figure 1. 
First, we carried out microarray analysis to identify 
hypoxia-related DEGs with logFC satisfying logFC >1 or 
logFC <−1 and adjusted P value <0.01 in GSE41666 and 
GSE15366. A total of 18 negative hypoxia signatures and 
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56 positive hypoxia signatures were screened (Figure 2A). 
Functional analysis of these hypoxia signatures strongly 
indicated that these signatures were hypoxia related  
(Figure 2B). To further test the hypoxia signatures, we 
calculated the hypoxia scores on GSE18494. The outcome 
showed that hypoxic HCC cells had significantly higher 
hypoxia scores than did the control group and increased 
with time (Figure 2C). Therefore, the hypoxia scores 
calculated based on the 74 hypoxia signatures can reflect 
the hypoxic condition in HCC cells. Thus, we used the 74 
hypoxia signatures to assess the hypoxia level for TCGA-
LIHC, GSE14520, GSE36376, GSE39791, and GSE57957. 
Results showed that cancer samples showed a significantly 
higher hypoxia level than normal samples (Figure 2D).

Associations between hypoxia scores and clinical features

In this section we aimed to analyze the association between 
hypoxia scores and clinical features. In five cohorts, 
only TCGA-LIHC and GSE14520 contained clinical 
information. We ranked the hypoxia scores in TCGA-
LIHC and GSE14520 from low to high to explore 
the associations between hypoxia and clinical features  
(Figure 3A,3B and Figure S1). As shown in Figure 3A and 
Figure S1, patients aged ≤55 years, female and HBV (−) 
patients had significantly higher hypoxia scores than older, 
male and HBV (−) patients in the TCGA cohort. However, 
the age, gender and HBV features did not show significant 
differences in the GSE14520 cohort. In the GSE14520 
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cohort, larger tumor size and recurrence indicated higher 
a hypoxia level, while the hypoxia level did not show 
significant differences in different recurrence statuses in 
the TCGA cohort (Figure 3B and Figure S1). Both the 
TCGA-LIHC and GSE14520 cohort showed that the later 
the stage, the higher the hypoxia level. To investigate the 
correlation between hypoxia and molecular subclasses, we 
used the NTP method to make subclass predictions based 
on subclass-specific signatures and compared the difference 
of hypoxia scores between different subclasses. In the past 
decade, accumulating robust transcriptome-based subclasses 
of HCC have been identified, including classifications of 
Boyault et al. (G1–G6) (36), Chiang et al. (37), Hoshida  
et al. (S1–S3) (38), Désert et al. classification (39), and 
Yang et al. (40). Hypoxia scores were found to be higher in 
Chiang’s unannotated, Désert’s ECM/STEM, Hoshida’s 
S1, and Yang’s C2 subclasses (Figure 3C,3D and Figure S2). 

Notably, these subclasses were demonstrated to have worse 
prognosis by corresponding studies, which was consistent 
with their characteristic higher hypoxia scores. Our results 
indicated that a higher hypoxia level correlated with 
advanced stage and worse molecular subtypes.

Associations between the hypoxia scores and molecular 
characteristics

First, we analyzed the biological hallmarks in the high 
hypoxia and low hypoxia groups. We found that the hallmark 
of angiogenesis, EMT, mitotic spindle, and WNT-β catenin 
signaling, were significantly enhanced in HCC patients 
with higher hypoxia scores (Figure 3E). The hallmarks 
of fatty acid metabolism, oxidative phosphorylation, and 
xenobiotic metabolism were significantly attenuated in 
HCC patients with higher hypoxia scores (Figure 3E). We 

Figure 2 The 74-gene hypoxia signature indicated hypoxia exposure in HCC cells. (A) Total 18 negative hypoxia signatures and 56 positive 
hypoxia signatures were screened. (B) The functional enrichment analyses of hypoxia signatures. (C) The hypoxia scores were calculated 
based on the 74-gene hypoxia signature in the HCC samples with different hypoxia time. (D) The distribution of hypoxia scores in 
cancer samples and normal samples in 5 cohorts (TCGA-LIHC, GSE14520, GSE36376, GSE39791 and GSE57957). *P<0.05, **P<0.01, 
***P<0.001. GO, Gene Ontology; FDR, false discovery rate; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.
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Figure 3 The clinical and biological features associated with hypoxia scores. (A) An overview of the association between hypoxia scores and 
clinical features of HCC patients in TCGA cohort. (B) An overview of the association between hypoxia scores and clinical features of HCC 
patients in GSE14520 cohort. (C) An overview of the association between hypoxia scores and HCC molecular subtypes in TCGA. (D) An 
overview of the association between hypoxia scores and HCC molecular subtypes in GSE14520. (E) The difference of biological features 
in high hypoxia patients and low hypoxia patients. *P<0.05, **P<0.01, ***P<0.001. HCC, hepatocellular carcinoma; TCGA, The Cancer 
Genome Atlas; N, normal; AVR-CC, active viral replication chronic carrier.
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Figure 4 The mutation features associated with hypoxia scores. (A) Oncoplot of 10 most frequently mutated genes in TCGA HCC 
patients. (B) The association between mutations and the level of hypoxia. (C) Scatter plot depicting the DEGs between hypoxia (x-axis) and 
CTNNB1 mutations (y-axis) and each of 58,581 genes. Eighty-five genes were found to be up-regulated in both high hypoxia group and 
wild type CTNNB1 group (red nodes). Ninety genes were found to be down-regulated in both low hypoxia group and mutation CTNNB1 
group (blue nodes). (|logFC| >1 and adjust P≤0.05) (D) Top 5 most significantly enriched gene sets in up-regulated genes (red) and down-
regulated genes (blue) (adjusted P<0.05). *P≤0.05, ***P≤0.001. TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma; DEGs, 
differentially expressed genes.

then analyzed the distribution of mutations in patients 
with high hypoxia and low hypoxia scores (Figure 4A). 
Utilizing the maftools R package, we found that patients 
with mutations of CTNNB1 and ALB demonstrated 
significantly lower hypoxia scores (Figure 4B). In order to 
search for cellular pathways associated with CTNNB1 and 
ALB, we performed correlation analyses between DEGs of 
CTNNB1 or ALB mutations and hypoxia-related DEGs. 

However, no ALB mutation-related DEGs were identified. 
For CTNNB1, 216 down-regulated and 177 up-regulated 
genes were identified with logFC >1 or logFC <−1 with 
an adjusted P value <0.05 (wild type vs. mutation). For 
hypoxia, 245 up-regulated and 233 down-regulated genes 
were identified with the same criterion (high hypoxia vs. low 
hypoxia). We obtained 85 shared up-regulated genes and 
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DEGs and hypoxia-related DEGs (Figure 4C). KEGG 
enrichment analysis revealed that shared up-regulated 
genes were significantly enriched in protein digestion and 
absorption pathways, the AGE−RAGE signaling pathway 
in diabetic complications pathway, proteoglycans in cancer 
pathway, relaxin signaling pathway, and amoebiasis pathway 
(Figure 4D). Those shared down-regulated genes were 
significantly enriched in metabolic or biosynthesis-related 
pathways (Figure 4D). We further analyzed significantly 
amplified or deleted CNV in patients with high hypoxia 
(Figure 5A) and low hypoxia scores (Figure 5B) using 
GISTIC. We found that the patients with high hypoxia 
and low hypoxia scores had different CNV inclination  
(Figure 5C). In patients with high hypoxia scores, 1q21.3, 
1q44, 2p24.1, 2p25.1, 2q33.1, 2q33.2, 3q26.2, 3q29, 
4p14, 5q35.3, 6p25.2, 7q11.23, 7q21.2, 7q31.2, 8q13.3, 
8q22.1, 8q24.21, 11q13.4, 13q34 and 19q13.11 were 
the characteristic copy number amplification regions  
(Figure 5C). In patients with high hypoxia scores, 1p36.32, 
3p13, 4q22.2, 4q34.3, 8p23.2, 10q23.31, 10q26.2, 12q24.32, 
13q14.2, 13q22.2, and 19p13.3 were the characteristic copy 
number deletion regions (Figure 5C). 1q32.1, In patients 
with low hypoxia scores,1q32.3, 1q42.3, 3q25.1, 5q35.1, 
8q11.1, 8q24.13, 8q24.3, 11q13.2, 13q33.3, 17q23.2, 
17q25.1, 19q12 and 20q13.13 were the characteristic copy 
number amplification regions (Figure 5C). In patients with 
low hypoxia scores, 1p32.3, 1p36.31, 4q21.23, 4q35.1, 
13q14.13, 14q32.33 and 16q23.1 were the characteristic 
copy number deletion regions (Figure 5C). High hypoxia 
specific copy number amplification regions significantly 
enriched in olfactory transduction pathway (Figure 5D). 
With high hypoxia scores, specific copy number deletion 
regions were significantly enriched in alcoholic liver 
disease, pyruvate metabolism, tyrosine metabolism, fatty 
acid degradation, and glycolysis/gluconeogenesis pathways 
(Figure 5D). With low hypoxia scores, specific copy number 
amplification regions did not enrich in any pathway. 
Low-hypoxia specific copy number deletion regions 
were significantly enriched in carbohydrate digestion 
and absorption, pancreatic secretion, complement and 
coagulation cascades, drug metabolism by cytochrome 
P450, and metabolism of xenobiotics by cytochrome P450 
pathways (Figure 5E).

Associations between the hypoxia scores and metabolism 
features

In the previous section, the outcome of hallmark analysis, 

mutation analysis, and copy number analysis indicated that 
metabolism in HCC patients with high hypoxia scores 
was inhibited. To further explore the metabolism features 
in a hypoxic microenvironment, we used the gene sets of 
seven metabolic super-pathways (vitamins and cofactors, 
lipid, carbohydrate, energy, TCA cycle, amino acids, and 
nucleotides) published in previous studies for reference 
(20,41). First, we assessed the level of seven metabolic 
super-pathways utilizing the GSVA method and compared 
the differences between high hypoxia and low hypoxia 
groups. Our outcome showed that all metabolic super-
pathways had a lower level in the high hypoxia group than 
in the low hypoxia group (Figure 6A). Vitamin cofactor, 
lipid, amino acid, and TCA cycles were significantly down-
regulated in the high hypoxia group in most cohorts.

We compared the similarity of different metabolic super-
pathways based on sample-level labels and found that 
vitamins and cofactors, lipid, carbohydrate, and energy 
pathways formed one tight cluster, whereas integration 
of the TCA cycle, amino acid, and nucleotide pathways 
formed another distinct cluster (Figure 6B). Moreover, 
vitamin and cofactor and lipid pathways formed a tight 
sub-cluster. There was a high correlation with the level 
of vitamins and cofactors and lipids. The TCA cycle and 
amino acids also formed a tight sub-cluster and showed 
high correlation. To further analyze the effect of metabolic 
abnormalities on patients’ survival, we carried out univariate 
Cox regression analysis. We found that lipids and energy 
were significant protective factors for HCC patients  
(Figure 6C). However, only energy was a significant protective 
factor in the TCGA cohort based on multivariate Cox 
proportional-hazards analysis (Figure 6D). Although energy 
did not show significance in the GSE14520 cohort, energy 
exhibited a protective tendency (Figure 6E). Lipids were not 
significant in both the TCGA cohort and GSE14520 cohort 
(Figure 6D,6E). These results provide an overall view of the 
alterations of different metabolic pathways and the effect on 
survival in the hypoxic microenvironment.

Hypoxia scores can be utilized as an independent prognostic 
factor in HCC patients

To test the performance of hypoxia scores in predicting 
prognosis, we drew the time-dependent ROC curves, and 
the AUCs were more than 0.6 in both TCGA cohort and 
GSE14520 cohort (Figure 7A,7B). The AUCs indicated 
the hypoxia scores performed well in predicting prognosis. 
Next, we explored the relation between hypoxia scores 
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Figure 5 The copy number variation features associated with hypoxia scores. (A) The significant copy number variation regions in HCC 
patients with high hypoxia scores. (B) The significant copy number variation regions in HCC patients with low hypoxia scores. (C) The 
unique copy number amplification and deletion regions of patients with high hypoxia scores (red) and low hypoxia scores (blue). (D) The 
KEGG enrichment results of high hypoxia-related copy number variations. The copy number amplification regions only enriched in 1 
pathway (red bar). The top 5 enriched pathways of copy number deletion regions were displayed (blue bar). (E) The KEGG enrichment 
results of low hypoxia related copy number variations. The copy number amplification regions did not enrich in any pathways. The top 5 
enriched pathways of copy number deletion regions were displayed (blue bar). HCC, hepatocellular carcinoma; KEGG, Kyoto Encyclopedia 
of Genes and Genomes.
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Figure 6 The metabolism features associated with hypoxia scores. (A) The difference of metabolic super-pathways between high hypoxia 
group and low hypoxia group. (B) Clustering pattern of the seven metabolic super-pathways based on the similarity of the GSVA scores 
across five cohorts. (C) Univariate Cox regression analysis of metabolic super-pathways in TCGA cohort and GSE14520 cohort. Blue nodes 
mean HR <1 while red nodes represent HR >1. Only lipid and energy super-pathways were significant in both TCGA cohort and GSE14520 
cohort. (D,E) Multivariate Cox regression analysis of hypoxia, lipid and energy super-pathways in TCGA cohort and GSE14520 cohort. 
Lipid super-pathway did not showed significance in any cohort. Energy showed significance in TCGA cohort but not in GSE14520 cohort. 
TCA, tricarboxylic acid cycle; GSVA, gene set variation analysis; TCGA, The Cancer Genome Atlas; HR, hazard ratio.

and patients’ survival. According to the median value of 
the hypoxia scores, 369 patients in the TCGA cohort 
and 221 patients in the GSE14520 cohort were stratified 
into high and low hypoxia score groups, respectively. 
K-M survival analysis suggested that the high hypoxia 
group had significantly worse OS (Figure 7C,7D). Then, 
we used univariate and multivariate Cox regression 
analysis to evaluate whether hypoxia scores can predict 
the prognosis independently of other traditional clinical 
characteristics. The results showed that the TNM stage and 
the hypoxia score were independent prognostic factors for 
OS both in the TCGA cohort and the GSE14520 cohort  
(Tables 1,2). To accurately predict a certain clinical outcome, 
we constructed predictive nomograms for the TCGA 
cohort and GSE14520 cohort (Figure 7E,7F). As the 
independent factors, hypoxia scores and stage were assigned 

scores and a total score was calculated by summing up the 
scores in each individual. The survival probability for the 
individuals at 1-, 3-, and 5-years was obtained through the 
function conversion relationship of total scores. We further 
constructed the calibration plot for internal validation of the 
nomogram. The calibration plot showed better consistency 
between the predicted OS outcomes and actual observations 
both in the TCGA cohort and GSE14520 cohort  
(Figure 7G,7H).

Associations between hypoxia scores and potential extrinsic 
immune escape mechanisms

The extrinsic immune escape mechanism mainly composed 
by four major aspects: lack of immune cells, presence of 
immunoinhibitory cells [such as type 2 macrophages, 

A B

C D E

#Events: 128; Global P-value (log-rank): 7.991e–05
AIC: 1291.43; Concordance index: 0.61
TCGA (N=369)

#Events: 85; Global P-value (log-rank): 6.6015e–05
AIC: 845.12; Concordance index: 0.65
GSE14520 (N=221)
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Figure 7 Evaluation of prognostic value of hypoxia scores. (A) The time dependent ROC curves of hypoxia scores in TCGA cohort. AUCs 
at 1, 3, and 5 years were used to assess prognostic accuracy. (B) The time dependent ROC curves of hypoxia scores in GSE14520 cohort. 
AUCs at 1, 3, and 5 years were used to assess prognostic accuracy. (C) The Kaplan-Meier survival analysis of high hypoxia group and low 
hypoxia group in TCGA cohort. High hypoxia group showed significant worse survival outcome. (D) The Kaplan-Meier survival analysis 
of high hypoxia group and low hypoxia group in GSE14520 cohort. High hypoxia group showed significant worse survival outcome. (E) 
Nomogram of the hypoxia score to predict 1-, 3- or 5-year OS in TCGA cohort using hypoxia score and TNM stage. (F) Nomogram of 
the hypoxia score to predict 1-, 3- or 5-year OS in GSE14520 cohort using hypoxia score and TNM stage. (G) Calibration curves of the 
nomogram for predicting the probability of OS at 1, 3, and 5 years in TCGA cohort. (H) Calibration curves of the nomogram for predicting 
the probability of OS at 1, 3, and 5 years in GSE14520 cohort. AUC, area under the curve; TCGA, The Cancer Genome Atlas; LIHC, liver 
hepatocellular carcinoma; ROC, receiver operating characteristic; OS, overall survival.
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Table 1 The univariate and multivariate Cox regression analysis outcome in TCGA cohort

Variables
Univariate Multivariate

HR (95% CI) P value HR (95% CI) P value

Age 1.01 (1–1.03) 0.08948 Not include

Gender

Male Reference Not include

Female 1.21 (0.85–1.74) 0.28596

BMI 0.97 (0.94–1.01) 0.1179 Not include

Alcohol

No Reference Not include

Yes 1.05 (0.72–1.53) 0.80107

Fibrosis ISHAK score

0 Reference Not include

1 & 2 1.08 (0.7–1.66) 0.63632

3 & 4 0.68 (0.28–1.66) 0.40065

5 0.75 (0.18–3.17) 0.6967

6 0.72 (0.39–1.33) 0.28791

Child

A Reference Not include

B 1.63 (0.77–3.44) 0.20077

C 2.14 (0.29–15.55) 0.45356

TNM stage

Stage I Reference Reference

Stage II 1.49 (0.91–2.45) 0.11347 1.22 (0.74–2.02) 0.42927

Stage III 2.8 (1.83–4.3) 0.0000023 2.17 (1.39–3.39) 0.00061

Stage IV 5.8 (1.79–18.86) 0.00345 4.02 (1.22–13.25) 0.02214

Recurrence

New primary tumor Reference Not include

Locoregional recurrence 1.05 (0.36–3.01) 0.93274

Intrahepatic recurrence 0.48 (0.17–1.38) 0.17464

Extrahepatic recurrence 0.71 (0.24–2.14) 0.54772

Vascular invasion

No Reference Not include

Yes 1.34 (0.88–2.04) 0.16919

Recurrence

No Reference Reference

Yes 113.68 (15.8–818.06) 2.59E-06 93.61 (12.99–674.74) 1.00E-05

Hypoxia scores 1.9 (1.38–2.62) 0.00008 1.44 (1.02–2.04) 0.03631

TCGA, The Cancer Genome Atlas.
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Table 2 The univariate and multivariate Cox regression analysis outcome in GSE14520 cohort

Variables
Univariate Multivariate

HR (95% CI) P value HR (95% CI) P value

Age 0.99 (0.97–1.01) 0.40489 Not include

Gender

Male Reference Not include

Female 0.59 (0.28–1.22) 0.15329

HBV

Normal Reference Not include

CC 1.06 (0.26–4.35) 0.93327

AVR-CC 1.42 (0.34–6) 0.63265

ALT

Low Reference Not include

High 1.08 (0.7–1.66) 0.72653

Tumor size

Small Reference Reference

Large 1.92 (1.25–2.96) 0.0028 1.08 (0.58–2.02) 0.80389

Cirrhosis

No Reference Reference

Yes 4.62 (1.14–18.8) 0.03241 2.82 (0.68–11.69) 0.15257

TNM stage

Stage I Reference Reference

Stage II 2.15 (1.24–3.73) 0.00658 1.42 (0.81–2.51) 0.22329

Stage III 5.22 (2.98–9.14) 8.03E-09 2.7 (1.36–5.34) 0.00444

AFP

Low Reference Reference

High 1.63 (1.06–2.5) 0.02505 1.15 (0.71–1.86) 0.58331

Recurrence

No Reference Reference

Yes 113.68 (15.8–818.06) 2.59E-06 93.61 (12.99–674.74) 1.00E-05

Hypoxia scores 2.29 (1.53–3.44) 6.00E-05 1.77 (1.14–2.74) 0.01037

HBV, hepatitis B virus; CC, chronic carrier; AVR-CC, active viral replication chronic carrier; ALT, alanine aminotransferase; AFP, alpha-
fetoprotein..

regulatory T cells (Tregs) and myeloid derived suppressor 
cells (MDSCs)], high concentrations of immunoinhibitory 
cytokines, and fibrosis (42). Based on the results of 
Cibersort, we found that high hypoxia score groups had 
a significantly higher proportion of M0 macrophages and 
lower proportion of M2 macrophages and resting mast cells 

(Figure 8A). We further used the GSVA method to assess 
the level of immune cells. The results showed that the 
high hypoxia group score had a significantly higher level 
of central memory CD4 T cells, activated CD4 T cells, 
and MDSC (Figure 8B). We also used the MCPcounter 
R package to assess the levels of endothelial cells and 
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Figure 8 Association of hypoxia with potential extrinsic immune escape mechanisms of LIHC. (A) The comparison of proportion of 
immune cells estimated by cibersort between high hypoxia group and low hypoxia group in 5 cohorts. (B) The comparison of absolute level 
of immune cells estimated by ssGSEA method between high hypoxia group and low hypoxia group in 5 cohorts. (C) The comparison of 
absolute level of stromal cells using MCPcounter method. (D) The comparison of mRNA expression of chemokines and receptors in high 
hypoxia group compared with low hypoxia group in 5 cohort. (E) The comparison of mRNA expression of interleukins and receptors in high 
hypoxia group compared with low hypoxia group in 5 cohort. (F) The comparison of mRNA expression of interferons and receptors in high 
hypoxia group compared with low hypoxia group. (G) The comparison of mRNA expression of other important cytokines in high hypoxia 
group compared with low hypoxia group. (A-G) Red block represents up-regulated in high hypoxia group and blue block represents down-
regulated in high hypoxia group. The black boxes represent significant difference (adjust P<0.05). Grey block indicates not available in the 
cohort. LIHC, liver hepatocellular carcinoma; ssGSEA, single sample Gene Set Enrichment Analysis algorithm.
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Figure 9 Association of hypoxia with potential intrinsic immune escape mechanisms of LIHC. Comparison of (A) silent mutation load, 
(B) non-silent mutation load, (C) neoantigen load, (D) HRD scores, (E) aneuploidy score and (F) fraction of LOH altered (G) cytolytic 
scores between high hypoxia group and low hypoxia group in TCGA cohort. Comparison of (H) MHC class-I molecules, (I) MHC 
class-II molecules, (J) immunoinhibitors and (K) immunostimulators between high hypoxia group and low hypoxia group in 5 cohorts.  
(G-J) Red block represents significant up-regulated in high hypoxia score group and blue block represents significant down-regulated in 
high hypoxia score group. The black boxes represent significant different. (L) The correlation among hypoxia scores, cytolytic scores, 
absolute level of cytolytic T cells (activated CD4 and CD8 T cells) and mRNA expression of immunoinhibitors. Red dots represent 
positive correlation and blue dots represent negative correlation. The black boxes represent significant difference (P<0.05). *P<0.05. 
**P<0.01. ***P<0.001. ns, not significant. LIHC, liver hepatocellular carcinoma; HRD, homologous recombination defect; LOH, loss of 
heterozygosity; TCGA, The Cancer Genome Atlas; MHC, major histocompatibility complex.
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fibroblasts. We found that high hypoxia score group had 
a significantly higher level of fibroblasts (Figure 8C). 
These findings suggest that patients with high hypoxia 
scores might be in a state with anti-tumor characteristics. 
However, the high hypoxia group not only had abundant 
number of active innate and adaptive immune cells but also 
immunosuppressive cells, such as MDSC. The infiltration 
of immunosuppressive cells suggests a role in immune 
escape. In addition, the high hypoxia group also had a 
higher level of stromal cells than in the low hypoxia group. 
The abundant stromal cells may also contribute to immune 
escape.

We further analyzed the levels of cytokines in the high 
hypoxia group and low hypoxia group. We found CCL16, 
ARG1, IL6R, and FAS were significantly up-regulated 
in the high hypoxia group (Figure 8D-8G). In contrast, 
CCL20, CCR6, CXCL6, IL17RD, IL4R, IL8, IFNGR2, 
EPOR, PDGFA, VEGFA, and VEGFB were significantly 
down-regulated in the high hypoxia group.

Association of hypoxia scores with potential intrinsic immune 
escape mechanisms and tumor immunogenicity in HCC

We analyzed the hypoxia-associated potential of intrinsic 
immune escape mechanisms in HCC patients. Intrinsic 
immune escape indicates that tumor cells directly develop 
their ability for immune escape. We analyzed the intrinsic 
immune escape mechanism from two aspects: tumor 
immunogenicity and expression of immune checkpoint 
molecules.

First, we compared potential tumor immunogenicity-
related factors: mutation load, neoantigen load, and 
chromosomal instability level. These factors are the main 
source of tumor antigens. Patients with high hypoxia levels 
had significantly higher levels of silent mutation load, 
although there were no differences in non-silent mutation 
load and neoantigen load between high hypoxia score 
patients and low hypoxia score patients (Figure 9A-9C). We 
observed that high hypoxia score patients had a significantly 
higher level of chromosomal instability indices (HRD 
scores, aneuploidy scores, fraction of LOH and CNV load) 
compared with low hypoxia score patients (Figure 9D-9F). 
Significantly, the CNV load had a significantly higher level 
in both focal level and arm level in higher hypoxia score 
patients (Figure S3). The higher level of chromosomal 
instability may contribute to the high immunogenicity in 
the high hypoxia score group. Meanwhile, we observed 
that high hypoxia patients had significant higher level of 

cytolytic scores (Figure 9G). 
Next, we compared the expression levels of MHC 

molecules, immune stimulators, and immune inhibitors. 
Our results showed that TAP1, an MHC class I molecule, 
were significantly up-regulated in high hypoxia groups in 
most HCC cohorts (Figure 9H). MHC class II molecules 
did not significantly alter in most cohorts (Figure 9I). As 
for immune inhibitors, we found KDR was significantly 
down-regulated in most cohorts (Figure 9J). IL6R, an 
immunostimulatory agent, was significantly down-regulated 
in most cohorts (Figure 9K). Consistently, we observed that 
hypoxia scores showed significant positive correlation with 
most immunoinhibitors. Meanwhile, hypoxia scores also 
positive correlated with activated CD4 T cell and cytolytic 
scores (Figure 9L).

Association of hypoxia scores with the response to 
immunotherapy

We explored the relationship between hypoxia scores and 
immunotherapy. We observed that higher hypoxia scores 
were significantly correlated with the infiltration of anti-
tumor immune cells (such as activated CD4 T cells and 
central memory CD4 T cells). This implies that patients 
with high hypoxia scores may have an activated immune 
state. Meanwhile, high hypoxia score patients had a 
significantly higher level of fibroblasts (Figure 8C). Research 
has shown that fibroblasts may have negative effects on 
anti-tumor immune responses and immunotherapy (43). 
Patients with higher hypoxia scores showed significantly 
higher T-cell dysfunction in most cohorts (Figure 10A). 
This indicated that high hypoxia patients tend to have 
T-cell exhaustion. These patients’ T-cell function needs 
to be reinvigorated by immune checkpoint therapy. 
Furthermore, we compared the level of TGF-β and IFN-γ 
between high hypoxia group and low hypoxia group. We 
observed a significantly higher level of TGF-β in high 
hypoxia patients in all cohorts (Figure 10B) but IFN-γ did not 
exhibit significant differences in most cohorts (Figure 10C). 
TGF-β has been verified as inducing tumor progression, 
metastasis, and poor responses to cancer immunotherapy (44). 
These results suggested high hypoxia patients may not 
have a good response to immunotherapy. To validate our 
inference, we used the TIDE tool to predict the response of 
patients to immune checkpoint blockade (CTLA4 and PD1 
therapy). The results showed that high hypoxia patients 
had significantly higher TIDE scores in almost all cohorts 
(Figure 10D). This indicated that high hypoxia patients 

https://cdn.amegroups.cn/static/public/TCR-22-253-Supplementary.pdf
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Figure 10 Association of hypoxia with immunotherapy of LIHC. Comparison of (A) T cell dysfunction scores, (B) TGF-β scores, (C) 
IFN-γ scores, (D) TIDE scores between high hypoxia group and low hypoxia group in 5 cohorts. (E) Alluvial diagram showing the changes 
of hypoxia scores, vital status, overall response and binary response in IMvigor210 cohort. (F) Kaplan-Meier survival analysis of high 
hypoxia group and low hypoxia group in IMvigor210 cohort. Patients with high hypoxia showed significant worse survival than patients 
with low hypoxia. (G) The proportion of overall response in high and low hypoxia groups in IMvigor210 cohort. The statistical difference 
was measured with the Fisher’s exact test (P=0.05251). (H) Differences in hypoxia scores among different types of overall response in 
IMvigor210 cohort. The Kruskal-Wallis test was used to compare the statistical difference between different molecular subtypes (Kruskal-
Wallis test, P=0.04). (I) The proportion of binary response in high and low hypoxia groups in IMvigor210 cohort. The statistical difference 
was measured with the Fisher’s exact test (P=0.0185). (J) Differences in hypoxia scores between different types of binary response in 
IMvigor210 cohort. The Wilcoxon test was used to compare the statistical difference between different molecular subtypes (Wilcoxon test, 
P=0.006). (K) The proportion of immune microenvironment type in high and low hypoxia groups in IMvigor210 cohort. The statistical 
difference was measured with the Fisher’s exact test (P=0.02679). (L) Differences in hypoxia scores among different types of immune 
microenvironment in IMvigor210 cohort. The Kruskal-Wallis test was used to compare the statistical difference between different types 
of immune microenvironment (Kruskal-Wallis test, P=0.42). (M) ROC curves measuring the predictive value of the hypoxia scores, TMB, 
and combination of them in IMvigor210 cohort. LIHC, liver hepatocellular carcinoma; ns, not significant; TGF-β, transforming growth 
factor-β; PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response; ROC, receiver operating characteristic 
curve; TMB, tumor mutation burden. *, P<0.05; **, P<0.01; ***, P<0.001.
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may have a poor response to immunotherapy. In addition, 
we further validated our conjecture using IMvigor210 in 
384 patients with metastatic urothelial cancer receiving 
PD-L1 inhibitors with atezolizumab. First, we utilized 
an alluvial diagram to show distribution changes of vital 
status, overall response, and binary response in individuals 
in the IMvigor210 cohort (Figure 10E). The K-M survival 
analysis showed that patients with low hypoxia scores 
had significant clinical benefits and markedly prolonged 
survival when compared with patients with high hypoxia 
scores (Figure 10F). Although the distribution of patients 
with different overall responses did not show significant 
differences (Fisher’s exact test, P=0.05251, Figure 10G), the 
hypoxia scores of patients with complete response (CR) and 
partial response (PR) were significantly lower than patients 
with stable disease (SD) and progressive disease (PD) 
(Kruskal–Wallis test, P=0.04, Figure 10H). The proportion 
of immunotherapy responders was significantly higher in 
patients with low hypoxia scores compared with patients 
with high hypoxia scores (Fisher’s exact test, P=0.0185, 
Figure 10I). Patients with CR/PR showed significantly 
lower hypoxia scores than SD/PD patients (Wilcoxon test, 
P=0.006, Figure 10J). We also validated the role of hypoxia 
scores in determining different immune phenotypes in the 
IMvigor210 cohort, which contained complete information 
on immune phenotypes. We observed that the patients with 
desert phenotype remarkably reduced in low hypoxia group 
(Fisher’s exact test, P=0.02679, Figure 10K). Meanwhile, 
the excluded phenotype significantly accumulated in 
the low hypoxia group. However, the hypoxia scores 
did not show significant differences among the three 
phenotypes (Kruskal–Wallis test, P=0.42, Figure 10L). To 
further determine whether hypoxia scores can predict the 
response to immunotherapy, we carried out ROC analysis. 
The AUC indicated that our hypoxia scores had certain 
predictive ability independently and can improve the 
prediction performance of tumor mutation burden (TMB)  
(Figure 10M). Our results strongly indicated that hypoxia 
scores were significantly associated with immune escape 
and could contribute to the prediction of response to 
immunotherapy.

Screening potential drugs for high hypoxia score HCC 
patients

Our results indicated that high hypoxia HCC patients tend 
have immune escape and a poor response to immunotherapy 
as well as a worse prognosis. Thus, screening drugs for high 

hypoxia HCC patients could have a profound impact on 
prognosis and immunotherapy. In this study, we constructed 
a drug response prediction model using the pRRophetic 
R package based on expression profile data and drug 
sensitivity data of CCLE. Next, we predicted the drug 
response for TCGA, GSE36376, GSE14520, GSE39791, 
and GSE57957 in five HCC cohorts. We screened drugs 
in which Spearman correlations between the AUC value 
and hypoxia scores were less than −0.3. Meanwhile, we 
conducted a differential drug response analysis between the 
high hypoxia score group (top decile) and the low hypoxia 
score group (bottom decile) to identify the potential 
drugs for the high hypoxia score group (log2FC <−0.2). 
A total of 16 compounds in five cohorts were screened  
(Figure 11A). Notably, VLX600 had lower estimated AUC 
values in the high hypoxia score group and a significant 
negative correlation with the hypoxia scores in most cohorts 
(GSE14520, GSE36376, and GSE39791). A compound 
with a lower AUC suggested that this compound may 
have high drug sensitivity. These results indicated that the 
VLX600 may exhibit high drug sensitivity in high hypoxia 
score patients. To further evaluate the association between 
VLX600 and hypoxia score, we focused on the mechanisms 
and effects of VLX600. VLX600 is a novel iron chelator 
that can disrupt intracellular iron metabolism, leading to 
inhibition of mitochondrial respiration and bioenergetic 
catastrophe with resultant tumor cell death (45). VLX600 
showed enhanced cytotoxic activity under conditions of 
nutrient starvation and tumor growth inhibition in vivo (46). 
Therefore, VLX600 showed good performance in vitro and 
in silico evidence and may be a promising treatment.

The annotation information downloaded from the 
PRISM website showed that USP14 was the target of 
VLX600. To explore how VLX600 binds with its target, 
we carried out molecule docking of VLX600 and USP14 
using Autodock vina. Based on the binding mode of 
VLX1570 (an analog of VLX600) with USP14 in a previous  
study (47), we roughly identified the binding position 
of VLX600 with USP14. The docking outcome showed 
that VLX600 binds with USP14 in a similar position 
as compared with VLX1570 (Figure 11B). In particular, 
VLX600 binds with ASN109 via hydrogen bonds. This 
indicated that ASN109 may play an important role in the 
binding of VLX600 and USP14. To further explore how 
VLX600 works, we used the WGCNA method to screen 
gene modules that were significantly correlated with the 
AUC of VLX600. The blue module (GSE14520), brown 
module (GSE36376), and turquoise module (GSE39791) 
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Figure 11 Screening of potential drugs with higher drug sensitivity in high hypoxia patients. (A) The potential sensitive drugs for patients 
with high hypoxia scores in 5 cohort. Blue block represents sensitive in high hypoxia patients, while red block represents not sensitive in 
high hypoxia patients. Black box represents the sensitive value is significant different in high hypoxia group compared with low hypoxia 
group. *, the sensitive value is significant correlated with hypoxia scores. (B) The binding mode of VLX600 in USP14 binding pocket. 
VLX600 existed hydrogen bond with ASN-109. (C) The protein-protein interaction network of VLX600 sensitive related genes. The size of 
the node positively correlated with the degree of the node. (D) The KEGG enrichment analysis outcome of VLX600 sensitive related genes. 
TCGA, The Cancer Genome Atlas; PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.

A B

C

D



Translational Cancer Research, Vol 11, No 7 July 2022 2117

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(7):2097-2121 | https://dx.doi.org/10.21037/tcr-22-253

were most positively correlated with the AUC of VLX600 
(Figure S4), and there were no shared genes among these 
modules. The yellow module (GSE14520), green module 
(GSE36376), and red module (GSE39791) were most 
negatively correlated with the AUC of VLX600 (Figure S4). 
A total of 516 genes were selected as the overlap for three 
modules (Figure 11C). The 516 genes were enriched in 44 
pathways (Figure 11D). Notably, most of these pathways 
were associated with metabolism. In general, VLX600, 
which showed robust in vitro and in silico evidence, was 
considered to have the most promising therapeutic potential 
in HCC patients with high hypoxia scores.

Discussion

Accumulating evidence suggests that hypoxia has an 
excellent effect in tumorigenesis and cancer treatment 
(48,49). However, how hypoxia affects prognosis, immune 
escape, and drug responses in HCC is still poorly 
understood. This study aimed to analyze the relationship 
between hypoxia of HCC and the effects of prognosis, 
immune escape, and drug responses in five different 
cohorts. Initially, we screened hypoxia signatures and 
calculated hypoxia scores for 947 HCC patients in five 
cohorts. Next, we conducted an in-depth analysis of the 
association between hypoxia scores and molecular subtypes, 
molecular features, and metabolism pattern. We observed 
that hypoxia scores were significantly positively correlated 
with advanced stage, angiogenesis, and EMT but negatively 
correlated with metabolism pathways. The hypoxia scores 
showed significant association with molecular subtypes. We 
identified also identified significant genomics alterations 
related to hypoxia. Then, the survival analysis outcome 
showed that hypoxia scores were significantly correlated 
with patients’ prognosis. Furthermore, the nomogram and 
calibration curves showed that hypoxia scores combining 
stage perform well in predicting patients’ prognosis. 
Through analyzing the immune factors systematically, we 
observed that high hypoxia score patients had a significantly 
higher infiltration of CD4+ T cells and MDSC. Moreover, 
T cells in high hypoxia TME showed a significantly higher 
level of dysfunction. HCC cells in high hypoxia conditions 
may sculpt develop their immune escape ability by 
enhancing genomic instability. Additionally, high hypoxia 
attenuated sensitivity to immunotherapy. Eventually, we 
screened VLX600 as the potential drug for high hypoxia 
HCC patients.

In this study, we observed that HCC in the hypoxic 

microenvironment inhibited metabolism and enhanced the 
ability of invasion and metastasis of tumor cells. Amino 
acid metabolism, carbohydrate metabolism, energy, lipids, 
nucleotides, tricarboxylic acid cycle, and vitamin and 
cofactor metabolism were all inhibited in the hypoxic 
microenvironment in HCC. In addition, HCC patients 
with high hypoxia scores had a significantly higher level 
of angiogenesis, EMT, and the Wnt/β-catenin pathway. 
Research has demonstrated that intra-tumoral hypoxia is 
caused by an imbalance of O2 availability due to insufficient 
blood supply from poor tumor vasculature and increased 
O2 consumption by metabolically active HCC cells (50). 
Reduced blood supply and high metabolic consumption 
may lead to lack of nutrients and O2, inhibiting metabolism. 
This appears to penalize the survival of HCC cells. 
However, HCC patients with high hypoxia scores showed 
worse survival and a more advanced stage. A previous 
study showed that the hypoxic microenvironment can 
trigger the expression of HIF1A, which can stimulate Wnt/
β-catenin signaling in HCC (51). This will also enhance the 
EMT, invasion, and metastasis of HCC (52). This was in 
accordance with our outcome. Altogether, we hypothesize 
that hypoxia weakens HCC cell metabolism and promotes 
the survival, invasion, and metastasis of HCC cells, 
eventually leading to poor survival for patients.

Associations between hypoxia and the tumor immune 
microenvironment have previously been observed in some 
contexts (53,54). How hypoxia affects immune escape in 
HCC has not been well characterized. In this work, we 
systematically explored how hypoxia affected immune 
escape for HCC patients from extrinsic and intrinsic 
viewpoints. In extrinsic immune escape, we observed some 
anti-tumor characteristics [highly adaptive immune cells 
such as activated CD4 T cells, higher cytolytic scores, 
and higher expression level of TAP1 (an MHC I class 
molecule)] that may contribute to better survival outcome 
in the high hypoxia group; however, both a previous study 
and the current outcome have shown that HCC patients 
with high hypoxia had a worse survival outcome (55). We 
found that the high hypoxia group had more infiltration of 
immunosuppressive cells [tumor associated macrophages 
(TAMs) and MDSC]. Meanwhile,  immunotherapy 
analysis showed that high hypoxia groups had higher 
T-cell dysfunction scores and TGF-β scores. These 
immunoinhibitory factors might contribute to the extrinsic 
immune escape and lead to worse survival.

From the intrinsic viewpoint, although non-silent 
mutation load and neo-antigen load were not significantly 

https://cdn.amegroups.cn/static/public/TCR-22-253-Supplementary.pdf
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different between the high hypoxia group and low hypoxia 
group, the high hypoxia group showed a significantly higher 
silent mutation load, HRD scores, aneuploidy scores, 
fraction of LOH altered, and CNV load. These outcomes 
indicated that the high hypoxia group have greater 
chromosomal instability, which may contribute to producing 
more tumor antigen. Meanwhile, the high hypoxia group 
had a significantly higher level of MHC molecules, CD4 
T cells, and cytolytic score. Hypoxia scores were also 
positively correlated with cytolytic activity. These results 
indicate an activated immune state in the high hypoxia 
group. However, we also found that both the hypoxia 
scores and cytolytic activity were significant correlated with 
immunoinhibitor and immune checkpoint molecules (such 
as TIGIT, CTLA4, and CD96). This indicated that T-cell 
dysfunction and immunosuppression may be related in high 
hypoxia. The significantly higher level of T-cell dysfunction 
scores in the high hypoxia group is consistent with this 
finding. The higher expression level of immune checkpoints 
and more T-cell exhaustion contribute to immune escape 
and decrease survival.

A previous study showed that a high level of hypoxia in 
HCC indicated a poor immunotherapy response (54). Our 
outcome was consistent with this finding. In this study, 
we analyzed the potential mechanisms of how hypoxia 
attenuates immunotherapy. We observed that high hypoxia 
patients had significantly higher TGF-β scores, higher 
T-cell dysfunction scores, and more fibroblasts. Moreover, 
high hypoxia scores were significantly correlated with a 
high level of immuoinhibitors. These features may explain 
the unsatisfactory immunotherapeutic response to some 
extent. These outcomes further demonstrated that high 
hypoxia patients with increased T-cell infiltration, high 
cytolytic activity, and active anti-tumor immune status are 
more likely to receive immunotherapy but do not show 
high responsiveness because of increased immune escape 
and T-cell dysfunction. We further explored the association 
between hypoxia and immunotherapy. We found that 
patients with high hypoxia had a higher proportion of CR/
PR. Also, higher hypoxia scores were strikingly associated 
with desert immune phenotypes in which it was difficult for 
immunotherapy to exert an antitumor effect. 

We observed that high hypoxia patients had worse 
survival outcome than low hypoxia patients. Therefore, 
screening drugs in high hypoxia patients could have 
a profound impact on prognosis and treatment. Our 
prediction outcome showed VLX600 had significant 
sensitivity in high hypoxia patients in most cohorts. 

VLX600 is a mitochondrial oxidative phosphorylation 
(OxPhos) inhibitor which the primary mechanism is 
inhibition of Cox 1, 2, and 4 of the electron transport  
cha in  (46) .  Notab ly,  VLX600 showed enhanced 
cytotoxic activity under conditions of nutrient starvation 
and displayed tumors growth inhibition in vivo (46). 
Coincidentally, our outcome showed that patients with 
high hypoxia had significant inhibition of metabolism. This 
supported that VLX600 may be more sensitive for high 
hypoxia patients on the other side. Moreover, we observed 
that the gene modules that were positively correlated with 
the AUC value of VLX600 were significantly enriched in 
metabolism-related pathways. This indicated that a high 
expression level of genes in these modules may lead to 
active metabolism related pathways and a high AUC value 
for VLX600. Incidentally, a high AUC value represents 
low sensitivity of VLX600. Consequently, we inferred that 
active metabolism may attenuate the sensitivity of VLX600. 
We were curious as to why VLX600 was more sensitive in 
an inactive metabolism microenvironment. We inferred that 
VLX600 can inhibit the enzymes Cox I, II, and IV, which 
are the key mitochondrial electron transport enzymes. This 
limits mitochondrial electron transport and reduces the 
production of ATP. This will result in low ATP/ADP ratio 
and contribute to aerobic glycolysis. Finally, this will lead 
to the Warburg phenotype and contribute to proliferation 
of cancer cells that may be resistant to VLX600. Cancer 
cells lack the materials for aerobic glycolysis in conditions 
of nutrient starvation, leading to a lower level of aerobic 
glycolysis and Warburg phenotype. Also, this may be 
unfavorable for the survival and proliferation of cancer 
cells. HCC with a high hypoxia level often lacks blood 
vessels to provide nutrients and oxygen. This may explain 
why VLX600 was more sensitive in the high hypoxia 
microenvironment.

Conclusions

This study provides further evidence of the link between 
hypoxia and prognosis and immune escape in HCC patients. 
Moreover, our research screened VLX600 as potential 
sensitive drug for HCC patients with high hypoxia level and 
elucidate the potential mechanism.
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Supplementary

Figure S1 The association between hypoxia scores and clinical features in TCGA cohort and GSE14520 cohort. In TCGA cohort, we 
analyzed the association between hypoxia scores and (A) gender, (B) age, (C) child grade, (D) fibrosis ishak score, (E) stage, (F) HBV, (G) 
alcohol history, (H) recurrence status. In GSE145220 cohort, we analyzed the association between hypoxia scores and (I) gender, (J) age, 
(K) ALT level, (L) cirrhosis status, (M) stage, (N) HBV, (O) tumor size, (P) recurrence status. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not 
significant.
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Figure S2 The association between hypoxia scores and molecular subtypes in TCGA cohort and GSE14520 cohort. In TCGA cohort, 
we analyzed the association between hypoxia scores and (A) Boyault et al. classification, (B) Chiang et al. classification, (C) Desert et al. 
classification, (D) Hoshida et al. classification, (E) Yang et al. classification. In GSE145220 cohort, we analyzed the association between 
hypoxia scores and (F) Boyault et al. classification, (G) Chiang et al. classification, (H) Desert et al. classification, (I) Hoshida et al. 
classification, (J) Yang et al. classification. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant.
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Figure S3 Distribution of copy number alterations burden between high hypoxia group and low hypoxia group. (A) Copy number gain 
burden in focal level. (B) Copy number loss burden in focal level. (C) Copy number gain burden in arm level. (D) Copy number loss burden 
in arm level. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant.
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Figure S4 Identification of modules associated with the response of drugs in GSE14520 cohort, GSE36376 cohort and GSE39791 cohort. 
Heatmap of the correlation between the gene modules and the response of drugs in (A) GSE14520, (B) GSE39791, (C) GSE36376. Each 
row and column in the heatmap correspond to one gene module (labeled by color) or drug. In the heatmap, blue color represents negative 
correlation, while red represents positive correlation. Light color indicated lower correlation, and progressively darker color denotes higher 
correlation. The correlation coefficients and their P values (in brackets) had labeled in each cell. 


