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Background: Abnormal glucose and lipid metabolism plays a critical role in gastric carcinogenesis and 
development. Hence, we presented a systematic analysis of glucose and lipid metabolism-related genes to 
explore their function and prognostic value in gastric cancer (GC).
Methods: The consensus clustering algorithm was used to identify the molecular subtypes based on glucose 
and lipid metabolism-related genes. Subsequently, cox regression analysis and lasso regression analysis 
were utilized to establish a risk prediction model. A clinical nomogram was constructed to assist prognosis 
assessment. In addition, ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) algorithms 
were performed to evaluate the immune infiltration of the metabolic model, and GSEA was used for 
enrichment analysis of the metabolic signature. Finally, we explored the association between the risk model 
and anti-cancer therapy for the purpose of clinical application for GC treatment.
Results: GC samples were divided into 2 subtypes based on glucose and lipid metabolism-related genes, 
patients in cluster 2 had a better overall survival (OS) than those in cluster 1. Fifty-two genes were identified 
by univariable regression analysis. Finally, a 13-gene metabolic signature (CACNA1H, CHST1, IGFBP3, 
NASP, STC1, VCAN, NUP205, NUP43, PGM2L1, CAV1, ELOVL4, PRKAA2, TNFAIP8L3) was successfully 
constructed that demonstrated good performance in different datasets, as well as an independent hazardous 
factor for prognosis. In addition, the nomogram constructed with the clinical variables showed higher 
predictive efficacy for predicting the 1-, 3-, and 5-year OS. The 13-gene metabolic signature was significantly 
associated with immune scores and immune cell infiltration in high-risk group. Moreover, GSEA analysis 
revealed that cancer- and immune-related pathways were enriched in the high-risk group. Finally, our results 
indicated that there might exist an immunosuppressive status in the high-risk groups.
Conclusions: This study demonstrated that glucose and lipid metabolism-related genes were significantly 
associated with prognosis. Meanwhile, it will provide novel insights into exploring the immunoregulation 
roles of these genes.
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Introduction

Gastric cancer (GC) is among the most common and lethal 
digestive malignancy worldwide, according for 768,793 
deaths in 2020 (1). Most patients with GC are frequently 
detected at later stages due to atypical and unobvious 
symptoms. Despite great progress in GC treatment, the 
5-year survival rate for patients with advanced GC still need 
to be improved (2,3). The high recurrence and metastasis 
rate lead to shorter survival (4). Therefore, there is an 
urgent need to explore the mechanism of tumorigenesis and 
identify prognostic biomarkers of GC.

Emerging evidence has confirmed that there is a systemic 
link between tumor growth and metabolic pathways. 
Aberrant metabolic reprogramming, especially glycolysis 
and lipid metabolism, is currently considered a hallmark 
feature of cancers, including GC (5-7). Glucose metabolic 
reprogramming maintains the acquisition of energy 
allowing cancer cells to survive during different disease 
states (8,9). Glucose metabolism is also highly correlated to 
lipid metabolism (10). The lipid metabolic reprogramming 
refers to the sufficient supply of energy and the synthesis 
of structural and functional lipids, thereby satisfying the 
demands of increased membrane biogenesis in cancer cells 
(11,12). The dysfunctional metabolic programming based 
on glucose and lipid metabolism has also been proven 
to contribute to tumor metastasis, chemotherapy drug 
resistance, and immune escape (13). However, glucose 
and lipid metabolism have a high level of complexity in its 
regulation. No such risk model has been established based 
on glucose and lipid metabolism related genes. Moreover, 
the potential mechanism in relation to disease is still 
unknown. Several coding or/and noncoding RNAs have 
been shown to mediate a wide range of biological processes 
in cancer cells, including glucose and lipid metabolism 
(14,15). These genes exert direct or indirect effects on 
glucose and lipid metabolism both in vivo and in vitro.

To enhance our understanding of  g lucose and 
lipid metabolism in GC, it is necessary to perform an 
integrative analysis of the potential roles of glucose and 
lipid metabolism related genes. In this study, we identified 
the metabolic subtypes based on the expression of genes 
related to glycolysis and lipid metabolism. A GC prognostic 
signature was established and verified based on glucose and 
lipid metabolism-related genes. In addition, we constructed 
a nomogram based on the prognostic signature and clinical 
features to improve the markers’ clinical utility. Finally, we 
also clarified the relationship between prognostic signature 

and other in patients with GC, including the signaling pathway 
and tumor microenvironment. This study might provide 
research clues for the accurate prevention and treatment of 
GC. We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-22-168/rc).

Methods

Data source

The RNA sequencing data and the corresponding clinical 
information of GC patients were downloaded from The 
Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) dataset (Table S1),  respectively. 
Subsequently, the Fragments per Kilobase Million (FPKM) 
data were normalized to transcripts per kilobase million 
(TPM) values. The expression values in GSE84437 and 
GSE62254 dataset [the Asian Cancer Research Group 
(ACRG) cohort] were performed to log2-transformed. 
Four samples without clinical follow-up information were 
removed. TCGA-Stomach Adenocarcinoma (STAD) (371 
samples) and GSE84437 (433 samples) data sets were 
merged to produce the final training set (804 samples), 
and GSE62254 (300 samples) served as the final validation 
set. The R package SVA was utilized to perform batch 
effect removal on the different data sets. This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The flowchart is shown in Figure 1.

Glucose and lipid metabolism gene set

Four glucose metabolism datasets [Kyoto Encyclopedia of 
Genes and Genomes (KEGG) glycolysis gluconeogenesis, 
Hallmark glycolysis, Reactome regulation of glycolysis, and 
Reactome glycolysis] and four lipid metabolism datasets 
(KEGG glycerophospholipid metabolism, hallmark fatty acid 
metabolism, Reactome metabolism of lipids, and Reactome 
phospholipid metabolism) were obtained from MSigDB (https://
www.gsea-msigdb.org/gsea/msigdb) and chosen as reference 
gene sets. A total of 1,118 glucose and lipid metabolism related 
genes were selected for the study (Tables S2,S3).

Using the consensus clustering algorithm to identify 
molecular typing based on glucose and lipid metabolism-
related genes

Cluster analysis algorithms were gradually utilized 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-168/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-168/rc
https://cdn.amegroups.cn/static/public/TCR-22-168-Supplementary.pdf
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://cdn.amegroups.cn/static/public/TCR-22-168-Supplementary.pdf
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to explore hidden groupings, and exhibited a good 
performance. In this study, a consensus clustering analysis 
was utilized to cluster samples of training set using the 
R package ConsensusClusterPlus. The parameters were 
shown below: number of repetitions =1,000, number 
of clusters from 2 to10, pFeature =1, and pItem =0.8. 
According to the inflection point, as illustrated in  
Figure 2, the optimal number of clusters was further 
determined. To evaluate the prognostic implication of 
glucose and lipid metabolism-related genes, the Kaplan-
Meier curve was selected to compare the overall survival 
(OS) of the different subgroups.

Lasso cox regression analysis

Lasso regression analysis was conducted to perform variable 
selection, which could compress variables to overfit the 
risk mode (16,17). Certain coefficients were compressed 
via setting others to zero to determine the optimal factor 
(16,17). Ten-fold cross-validation were used running lasso 
regression to avoid overfitting. Subsequently, these factors 
were utilized to establish an optimized model based on 
multivariate Cox regression analysis. Patients with GC were 
segregated into high- and low-risk groups using the median 

risk score value. Kaplan-Meier method was used to assess 
the difference in survival outcomes between two groups. 
The receiver operating characteristic (ROC) curve was 
plotted to evaluate the performance of the risk model. The 
risk model was evaluated using a validation set, which was 
consistent with its coefficient from training set.

Construction of a nomogram

Univariate and multivariate Cox regression analyses were 
performed to choose potential risk factors. The clinical 
variable was added to the nomogram model for further 
analysis. The nomogram was utilized to predict the 1-, 3-, 
and 5-year OS rate with the R package rms. The calibration 
and ROC curve were applied to estimate the performance 
of the nomogram model.

Gene set enrichment analysis (GSEA)

To elucidate relevant biological significance of risk score, 
GSEA analysis was utilized to expound on the noteworthy 
differences between the high- and low-risk groups. We 
performed 1,000 repetitions of gene set permutations, 
and utilized the normalized enrichment score (NES) 

Figure 1 The flowchart of this study. ACRG, Asian Cancer Research Group; GEO, Gene Expression Omnibus; GSEA, gene set enrichment 
analysis; ICI, immune checkpoint inhibitor; STAD, Stomach Adenocarcinoma; TCGA, The Cancer Genome Atlas.

RNA-seq data and clinical data from TCGA and GEO

Glucose and lipid metabolism-related genes TCGA-STAD cohort GSE84437 data set

Training set

Gene sets associated with prognosis (N=52)

Construction of a 13-gene signature risk model 

RNA-seq data and clinical 
data from ACRG cohort

Clinical relevance GSEA analysis Tumor immune infiltration ICIs response

Cluster analysis and survival analysis

Univariate Cox regression analysis

LASSO Cox regression analysis
External validation
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Figure 2 Cluster analysis based on glucose and lipid metabolism-related gene and OS in the cluster 1/2 subgroups. (A-C) The clustering 
results when the number of classifications is k=2, 3, and 4. (D) Consensus clustering CDF with k valued 2 to 9. (E) Relative alteration in 
the area under the CDF curve with k valued 2 to 9. (F) Kaplan-Meier survival curves for clusters C1 and C2 in the training set (P=0.003). 
C1 and C2 represent different metabolic statuses. GC in C1 is marked with red, and C2 is marked with blue. CDF, cumulative distribution 
function; GC, gastric cancer; OS, overall survival.
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as evaluation metrics. The thresholds were set as false 
discovery rate (FDR) <0.05. 

Evaluation of immune scores and immune infiltration 

To evaluate the immune status of different samples, we 
performed ESTIMATE and single-sample GSEA (ssGSEA) 
algorithms to explore differences between the different 
groups. The ESTIMATE algorithms were used to analyze 
the immunological characteristics of the high- and low-risk 
groups. In addition, we performed ssGSEA to analyze the 
immune infiltration statuses and relevant immune-related 
pathways based on the R package gsva.

Exploration of the potential susceptibility to anti-cancer 
therapy

To explore the potential effect of anti-cancer therapy, we 
also evaluated the correlation between the expression of 
key immune checkpoint genes. Besides, we performed 
correlation analysis based on Pearson method using R 
software. 

Statistical analysis

All the statistical analyses were conducted with R software 
(Version 3.6.3). P<0.05 or FDR <0.05 was served as 

statistically significant.

Results

Cluster analysis based on glucose and lipid metabolism-
related genes

The consensus clustering algorithm was used to cluster 
the training set samples (804 samples) through the R 
package ConsensusClusterPlus. Due to higher inter-
group correlation when k=4 not k=2, the optimal number 
of clusters selected was 2 (Figure 2A-2E). Namely, the GC 
samples in the training set could be clustered into subtypes, 
named cluster 1 and cluster 2, based on glucose and lipid 
metabolism-related genes. Besides, the survival analysis 
was further utilized to evaluate the prognostic value of 
subcluster. As shown in Figure 2F, patients in cluster 2 
showed more favorable OS rates than patients of cluster 1 
(P=0.003) (Figure 2F). The result showed that glucose and 
lipid metabolism-related genes are associated with prognosis 
in GC.

Identification of glucose and lipid metabolism-related 
prognostic genes

Next, univariate Cox analysis was employed to identify 
the potential prognostic value of these glucose and lipid 
metabolism-related genes in the training set. P value less 
than 0.01 was selected as the threshold for filtering, and 52 
genes were significantly associated with OS. These genes 
were selected for further analysis.

Construction and validation of the prognostic risk model in 
different datasets

The R package glmnet was utilized to perform Lasso-
penalized Cox regression analysis for 52 genes with 
potential prognostic value based on training set. The 
optimal lambda value was associated with the determinants 
of penalized term. As shown in Figure S1, we obtained the 
theoretically optimal model when lambda =13. Therefore, 
13 genes were eventually selected for detailed model 
building. The coefficient of risk score formula was shown in 
Table 1. To assess the model’s robustness, the Asian Cancer 
Research Group (ACRG) cohort was introduced as the 
independent validation datasets. Kaplan-Meier curve was 
further drawn to show the survival status of the GC samples 
(Figure 3A). This study suggested that high RiskScore 

Table 1 The gene coefficients of risk model

Gene Coefficient

CACNA1H 0.0073492701064191

CHST1 0.0481537527082623

IGFBP3 0.0350611211681865

NASP −0.0014241982646828

STC1 0.0830987998258511

VCAN 0.0209038567717716

NUP205 −0.076027779878957

NUP43 −0.108261343313484

PGM2L1 0.10183699405434

CAV1 0.0559587258963077

ELOVL4 0.0506717462447253

PRKAA2 0.0994553688728891

TNFAIP8L3 0.00733755211794015

https://cdn.amegroups.cn/static/public/TCR-22-168-Supplementary.pdf
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Figure 3 Prognostic value of the risk model in the training and validation set. (A,B) Kaplan-Meier survival analysis of GC patients between 
the high- and low-risk group based on the risk score formula in the training and validation set. (C,D) ROC curves of the 1-, 3-, and 5-year 
OS based on the risk signature in the training and validation set. (E,F) The median value of risk scores with survival and statuses of GC 
patients depends on the risk signatures. GC in high-risk group is marked with red, and in low-risk group is marked with blue. AUC, area 
under the curve; GC, gastric cancer; OS, overall survival; ROC, receiver operating characteristic curve.
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sample has a worse prognosis. The same coefficients as 
that from the training set were utilized to obtain the risk 
score of each patient according to the expression level. The 
survival status of the GC samples in the high-risk group was 
still worse than that of in the low-risk group (Figure 3B). 
Subsequently, we evaluated 1-, 3-, and 5-year predictive 
capability based on ROC. As shown in Figure 3C, the model 
has a good area under curve (AUC) value, and the AUC 
values calculated from TCGA for 1, 3, and 5 years were 
0.611, 0.619, and 0.641, respectively. Besides, the validation 
results indicated that the AUC value of the glucose and 
lipid metabolism-related prognostic signatures was 0.635 
in 1 year, 0.644 in 3 years, and 0.634 in 5 years (Figure 3D).  
Moreover, we calculated the risk score based on the 
expression level of these prognostic genes, and the samples 
were divided into the high- and low-risk groups based on 
the median risk score (Figure 3E). A high proportion of 
deaths with GC were still shown in the high-risk group, 

which was consistent with the training set (Figure 3F). The 
above results showed that our model has good robustness, 
and could support a stable potential for a predictive 
prognostic signature.

The relationship between risk score and clinical variables

Univariate and multivariate Cox regression analyses were 
selected for evaluation of the independent prognostic 
predictor successively. We demonstrated that the age 
[P<0.001, hazard ratio (HR) =1.026, 95% confidence 
interval (CI): 1.016–1.036], T (P=0.001, HR =1.255, 
95% CI: 1.093−1.442), N (P<0.001, HR =1.549, 95% 
CI: 1.383–1.735), and risk score (P<0.001, HR =1.241, 
95% CI: 1.162−1.326) were significantly correlated 
with OS in the training set (Figure 4A). After adjusting 
for confounding factors, the age (P<0.001, HR =1.029, 
95% CI: 1.019−1.039), N (P<0.001, HR =1.467, 95% 

Figure 4 Identification of the risk score as an independent prognostic factor by Cox regression analysis. (A,B) Training set. (C,D) Validation set.
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CI: 1.305−1.649), and risk score (P<0.001, HR =1.223, 
95% CI: 1.143−1.309) were confirmed to be independent 
prognostic factors by multivariate Cox regression analysis 
(Figure 4B). Similarly, univariate and multivariate Cox 
regression analyses showed the age, N, and risk score were 
independent prognostic factors as those in external dataset 
(Figure 4C,4D).

Establishment of a nomogram model to further improve 
the predictive power

To better improve the predictive potential of GC patients, 
a nomogram was then constructed to facilitate prediction of 
OS. The clinical variable, including age, gender, T, and N, 
was added to the nomogram model. As shown in Figure 5, 
the calibration curve for the nomogram is close to the 45° 
line, which indicated a good performance of the nomogram. 
Figure S2 showed that the nomogram model presents 
good accuracy in predicting OS, with AUC values of 0.715, 
0.736, and 0.743 at 1, 3, and 5 years, respectively, in the 
training set. Besides, the nomogram model was shown with 
the AUC values at 1, 3 and, 5 years were 0.791, 0.761, and 
0.723, respectively.

Evaluation the degree of correlation between risk score and 
immune score 

ESTIMATE algorithm was used to calculate each GC 
sample’s immune and matrix scores based on R package 
estimate. As shown in Figure 6, there were significant 
differences in the StromalScore, ImmuneScore, and 
ESTIMATEScore between the two groups in the training 
set (Figure 6A-6C). Besides, these significant differences 
were still existed in the independent validation ACRG 
cohort (Figure 6D-6F). In both cohort, patients in the high-
risk group had a higher StromalScore, ImmuneScore, and 
ESTIMATEScore. All these data demonstrated that the risk 
score constructed by glucose and lipid metabolism-related 
genes might correlate with immune response.

Exploration of relation between the risk score and pathways

To elucidate the potential links between the different 
samples’ risk scores and underlying biological significance, 
we performed GSEA analysis on the two risk-score groups. 
The results showed that several cancer-related pathways 
and immune-related pathways were significantly enriched 

in the high-risk group. Among them, the top five pathways 
in the high-risk group, include KEGG_CALCIUM_
SIGNALING_PATHWAY, KEGG_CYTOKINE_
CYTOKINE_RECEPTOR_INTERACTION, KEGG_
FOCAL_ADHESION, KEGG_NEUROACTIVE_
LIGAND_RECEPTOR_INTERACTION, KEGG_
PATHWAYS_IN_CANCER and KEGG_AMINOACYL_
TRNA_BIOSYNTHESIS, KEGG_GLYOXYLATE_
AND_DICARBOXYLATE_METABOLISM, KEGG_
HOMOLOGOUS_RECOMBINATION, KEGG_
MISMATCH_REPAIR, KEGG_ONE_CARBON_
POOL_BY_FOLATE in the low-risk group (Figure 7A,7B). 

Three pathways (KEGG_CYTOKINE_CYTOKINE_
RECEPTOR_INTERACTION, KEGG_FOCAL_
ADHESION, KEGG_NEUROACTIVE_LIGAND_
RECEPTOR_INTERACTION) in  the  high-r i sk 
group and two pathways (KEGG_AMINOACYL_
TRNA_BIOSYNTHESIS, KEGG_GLYOXYLATE_
AND_DICARBOXYLATE_METABOLISM) in the 
low-risk group were validated by the ACRG cohort, 
respectively (Figure 7C,7D). These results suggested that 
these pathways’ imbalance was related closely to GC 
development.

Correlation between the risk score and tumor immune 
infiltration 

To further explore the correlation between the risk score 
and tumor immune infiltration, ssGSEA algorithm was 
applied to find the differences in infiltration of primary 
immune cells in GC samples. We revealed that several 
types of tumor-infiltrating immune cells were enriched 
in the high-risk group, including dendritic cells (DCs), 
macrophages, mast cells,  neutrophils,  and tumor-
infiltrating lymphocyte (TIL). These results demonstrated 
good consistency between the training and validation set  
(Figure 8A,8B). Besides, we could differentiate between the 
high- and low-risk groups in both cohorts based on contents 
of the antigen presentation process, including chemokine-
chemokine receptor (CCR), major histocompatibility 
complex (MHC) class I, parainflammation, and type II 
interferon (IFN) response (Figure 8C,8D). Interestingly, 
the risk score was negatively correlated to MHC class I, 
suggesting there was a potential trend in the high-risk 
group toward enhanced immunosuppression compared with 
the low-risk group. The result was further confirmed by the 
findings of immune checkpoint inhibitors (ICIs).

https://cdn.amegroups.cn/static/public/TCR-22-168-Supplementary.pdf
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Evaluation of the association between the risk model and 
anti-cancer therapy

To evaluate the potential clinical application for GC 
treatment, we attempted to investigate the potential 
susceptibility to ICIs. We firstly assessed the correlation 
between risk scores and several genes affecting ICIs. 
Our study revealed that the risk score was related to the 
expressions of FAP, TAGLN, LOXL2, whereas it was 

negatively associated with POLE2, FEN1, MCM6, MSH6, 
MSH2 (Figure 9A,9B). Furthermore, we investigated the 
potential susceptibility to ICIs based on the expression level 
of the immune regulator. The results indicated that the 
expressions of CD200, CD44, TNFRSF4, NRP1, CD276, 
CD48, and CD28 were elevated in the high-risk groups, 
whereas the expression of HHLA2 was downregulated 
(Figure 9C,9D). Our results indicated that there might exist 

Figure 5 Development and validation of a prognostic nomogram based on risk signature. (A,B) Construction of a nomogram for 1-, 3-, 
and 5-year OS prediction along with risk score and clinical variables. (C,D) Calibration curves of OS for the GC patients. **, P<0.01; ***, 
P<0.001. GC, gastric cancer; OS, overall survival; Pr, predicted.
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an immunosuppressive status in the high-risk groups.

Discussion

Several macromolecules, such as proteins, nucleic acids, and 
lipids, have been proven to contribute to cell growth and 
proliferation via the production of metabolic intermediates 
(18,19). These agents act as the precursors necessary for life, 
which divert biological media from biomass production to 
improve organismal or cell viability (18,19). Accumulating 
evidence indicates that abnormal metabolic reprogramming 
is critically involved in the oncogenic signaling pathways, 
and has emerged as a hallmark of cancer (20-22). The results 
suggest metabolic markers might be possible therapeutic 
targets. As increasingly high-throughput techniques emerge, 
the novel technical means provide valuable molecular 
information to understand the potential roles of glucose 
and lipid metabolism. Previous studies demonstrated that 
a variety of biological characteristics could alter metabolic 

phenotype during a period of the transformation of normal 
cells into malignant cells, including enhanced glucose 
uptake and reactivation of de novo lipid biosynthesis  
(20-22). In addition, glucose provides energy and 
precursors for biosynthetic processes, and lipids function 
as an important component of some pathways and cell-
cell communication (23-25). There is tight connection 
between oncogenic transformation and abnormal metabolic 
reprogramming. However, no specific glucose and lipid 
metabolism related model has been developed for GC 
to predict prognosis and treatment response until now. 
Therefore, we constructed a risk model based on glucose 
and lipid metabolism gene signatures that could act as 
prognostic and therapeutic biomarker in GC.

Previous study confirmed that GC has been identified as 
a glycolytic-enhanced malignancy, and metabolomic studies 
have shown that there exists a predominance of lipid storage 
over consumption in gastric epithelial neoplasms (26-29). 
In this study, we have applied the consensus clustering 

Figure 6 Correlation between the different risk signature based on ESTIMATE algorithm. The high-risk group shows a significantly 
elevated immune score (A), Stromal score (B) and ESTIMATE score (C) in the training set. The results in the validation set were consistent 
with that of in the training set (D-F). GC in high-risk group is marked with red, and in low-risk group is marked with blue. GC, gastric 
cancer.
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Figure 7 Gene set enrichment analysis based on risk scores. (A) The result of high-risk group in the training set. (B) The result of low-
risk group in the training set. (C) The result of high-risk group in the validation set. (D) The result of low-risk group in the validation set. 
KEGG, Kyoto Encyclopedia of Genes and Genomes.

algorithm to the data set, and identified two subtypes of GC 
first based on genes related to glucose and lipid metabolism. 
Further, univariable regression analysis was performed to 
screen out OS-related gene sets, and 52 genes were obtained 
to display the cancer-related functions. Finally, the 13-gene 
risk signature was constructed by lasso penalized regression 
and multivariate Cox analysis, and demonstrated that the 
signature had high reliability and stable predictability. The 
application of Nomogram improved the predictive accuracy 
of the model notably, which could provide support to 
clinical decision-making.

The gene signature was constructed with CACNA1H, 

CHST1, IGFBP3, NASP, STC1, VCAN, NUP205, NUP43, 
PGM2L1, CAV1, ELOVL4, PRKAA2, and TNFAIP8L3, 
which was correlated significantly with the OS and 
tumor immune microenvironment (TIME). Wang et al. 
reported that stanniocalcin-1 (STC1) positively regulated 
Bcl-2 to mediate gastric carcinogenesis, metastasis and 
chemoresistance under hypoxia, indicating that the 
carcinogenic and therapeutic roles of STC1 in GC (30).  
Wang et al .  found that Caveolin‑1 could enhance 
RANKL‑induced multi-cancer cells migration, including 
stomach, lung, renal and breast cancer cells (31). Rao et al. 
indicated that the signaling pathway STK11-PRKAA2-
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Figure 8 The relationship between the risk score and immune status. (A,B) Box plot of differences in immune cell infiltration between two 
groups in the training and validation set, respectively. (C,D) Box plot of differences in immune function between two groups in the training 
and validation set, respectively. *, P<0.05; **, P<0.01; ***, P<0.001. aDCs, activated dendritic cells; APC, antigen-presenting cell; CCR, 
chemokine-chemokine receptor; DCs, dendritic cells; HLA, human leukocyte antigen; iDCs, inhibited dendritic cells; IFN, interferon; 
MHC, major histocompatibility complex; NK, natural killer; ns, not significant; Th, T helper; TIL, tumor-infiltrating lymphocyte.
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ULK1 was linked to Gastrin-mediated autophagy activation 
in gastric adenocarcinoma cells (32). Jimenez et al. 
demonstrated that CACNA1H mediates the antiproliferative 
effects and promotes cancer stem cell suppression in 
hepatocellular carcinoma following exposure to tumor-
specific electromagnetic fields (33). Tu et al. found that 
cancer-related gene vasohibin-2 was critically involved 
in the proliferation of breast cancer cells by activating 
insulin‑like growth factors, including insulin like growth 

factor binding protein 3 (IGFBP3) and insulin like growth 
factor binding protein 6 (IGFBP6) (34). Kang et al. 
indicated that nuclear autoantigenic sperm protein (NASP) 
knockdown could facilitate transcription release and failure 
of replication initiation in hepatocellular carcinoma, which 
was achieved by abolished the supply of histone H3 and 
enhanced chromatin accessibility (35). Several bioinformatic 
analyses were performed to VCAN in GC without further 
exploration of the mechanisms using in vivo/in vitro 
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Figure 9 Analysis of the relationship of the ICIs and/or DNA in different group. (A) Correlation analysis between risk score and ICIs and/
or DNA in the training set (asterisk indicates a statistically significant). (B) Correlation analysis between risk score and ICIs and/or DNA 
in the validation set (asterisk indicates a statistically significant). (C) Comparison of the ICIs between the high and low-risk group in the 
training set. (D) Comparison of the ICIs between the high and low-risk group in the validation set. *, P<0.05; **, P<0.01; ***, P<0.001. ICIs, 
immune checkpoint inhibitors.
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experiments (36-38). Tian et al. found that NUP43 might 
predict prognosis in luminal A and in HER2+ breast 
tumors based on bioinformatics analysis (39). However, the 
potential roles of CHST1, NUP205, PGM2L1, ELOVL4, 
and TNFAIP8L3 remain unclear. Their roles need to be 
classified based on further validation.

Increasing evidence has confirmed that the TIME was 
strongly associated with the disease development and 
progression. In this study, the relationship between the 
risk scores and TIME in GC was under comprehensive 
evaluation. We demonstrated that GC patients with high-
risk scores had higher StromalScore, ImmuneScore, and 
ESTIMATEScore than those with low-risk scores. Previous 

study has found that GC patients with high stromal scores 
had a better prognosis, which was consistent with the 
present study (40). In-depth analysis of immune infiltrates 
indicated that the risk signature was correlated positively 
with the expression of DCs, Macrophages, mast cells, 
neutrophils, and TIL. Additionally, the risk score was 
negatively correlated to MHC class I. MHC class I plays 
the role of a gatekeeper, which promotes pathogens and 
transformed cells recognition via displaying peptides to 
CD8+ T cells (41). For the tumor to arise and progress, 
the evolutionary mechanism will be dominant to avoid 
elimination by CD8+ T cells and hence the immune 
response (41). Down-regulation of the MHC class I 
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expression at the cell surface was considered one of the 
hallmarks of immune escape, which significantly impaired 
the ability of CD8+ T cells to recognize the cancer cells (42). 
The present study indicated that the down-regulation of 
the MHC class I expression was more evident in our high-
risk group, suggesting there might exist the reduction of 
tumor-associated antigenic epitopes to facilitate immune 
evasion. In addition, among the immune checkpoint 
markers, the expressions of CD200, CD44, TNFRSF4, 
NRP1, CD276, CD48, and CD28 were highly expressed in 
the high-risk groups, whereas the expression of HHLA2 
was downregulated. The result indicated that GC patients 
grouped by this risk signature showed differences in 
responsiveness to immunotherapy. CD200 and CD44 
are stem cell-specific markers that play an important 
role in immunosuppression, which are highly expressed 
in several cancers and are correlated with unfavorable 
prognosis (43,44). Blocking CD200 or CD44 inhibit 
immune activation, and contribute to improve the efficacy 
of immunotherapy (45,46). TNFRSF4, also known as 
OX40L, is expressed on regulatory T cells, which promotes 
immune escape of leukemia stem cells (47). The high 
expression of NRP1 is associated with the poor prognosis 
of several cancers, which may assist cancer immune escape 
and enhance tumor progression via mediating Treg cell 
infiltration (48). CD276, also known as B7-H3, has been 
detected in several malignancies and associated with 
tumor progression and poor outcome (49,50). Agonistic 
targeting of CD276 can enhance immune surveillance 
and promote the anti-tumor response (51,52). CD28 is a 
T cells costimulatory factors, which transduces a positive 
signal to enhance the proliferation of T cells (53). Besides, 
CD28 ligation can also promote the production of various 
cytokines, such as IL-2, IL-4 and IL-10 (53). However, 
the role of CD28 in Treg cell differentiation seems to be 
determined by some other conditions, such as the level of T 
cell receptor (TCR) engagement and cytokine environment. 
Although HHLA2 functions as the inhibitor of CD4+ and 
CD8+ T cells and is helpful for cancer immunotherapy (54), 
the potential roles in GC deserve further study.

Although we performed this study based on a large 
sample of data sets, there were still several limitations 
about this study. First, this is a retrospective analysis, and 
all the data were obtained from public databases. Our risk 
signature must be further validated by prospective cohort. 
Secondly, high-risk factors for GC, such as unhealthy 
diets (particularly diets high in salt) and infections with 
Helicobacter pylori, were not included in this study. These 

factors might also affect GC patients’ prognosis. Thirdly, 
the AUC value ranging from 0.6 to 0.7 is not very 
satisfactory. We constructed the nomogram model to 
improve it, and showed good performance. However, there 
still needs more accurate model later through developing 
novel algorithms. Finally, although GSEA is an accepted 
method for functional analysis, the potential mechanisms 
mediated by the glucose and lipid metabolism-related risk 
genes must be further explored comprehensively and in-
depth.

Conclusions

In this study, we constructed a robust 13-gene signature 
prognostic risk model in different datasets that was better 
for prediction of prognosis and treatment response. It will 
provide novel insights into exploring the immunoregulation 
roles of these genes.
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Table S1 The clinical features of gastric cancer patients in three cohorts.

Character TCGA (n=375) GSE84437 (n=433) GSE62254 (n=300)

Age

≤65 years 164 (44.2%) 283 (65.4%) 172(57.3%)

>65 years 207 (55.8%) 150 (34.6%) 128 (42.7%)

Gender

Female 134 (35.7%) 137 (31.6%) 101 (33.7%)

Male 241 (64.3%) 296 (68.4%) 199 (66.3%)

Stage

I 53 (15.1%) 53 (15.1%) 30 (10.0%)

II 111 (31.5%) – 97 (32.3%)

III 150 (42.6%) – 96 (32.0%)

IV 38 (10.8%) – 77 (25.7%)

T

T1 19 (5.2%) 11 (2.5%) 0 (0%)

T2 80 (21.8%) 38 (8.8%) 188 (62.7%)

T3 168 (45.8%) 92 (21.2%) 91 (30.3%)

T4 100 (27.2%) 292 (67.4%) 21 (7.0%)

N

N0 111 (31.1%) 80 (18.5%) 38 (12.7%)

N1 97 (27.2%) 188 (43.4%) 131 (43.6%)

N2 75 (21%) 132 (30.5%) 80 (26.7%)

N3 74 (20.7%) 33 (7.6%) 51 (17.0%)

M

M0 330 (93.0%) – 273 (91.0%)

M1 25 (7.0%) – 27 (9.0%)

TCGA, The Cancer Genome Atlas.
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Table S2 1,118 glucose and lipid metabolism-related genes from public database

AADAT ACAA1 ACAA2 ACADL ACADM ACADS

ACADVL ACAT2 ACO2 ACOT2 ACOT8 ACOX1

ACSL1 ACSL4 ACSL5 ACSM3 ACSS1 ADH1C

ADH7 ADIPOR2 ADSL ALAD ALDH1A1 ALDH3A1

ALDH3A2 ALDH9A1 ALDOA AOC3 APEX1 AQP7

AUH BCKDHB BLVRA BMPR1B BPHL CA2

CA4 CA6 CBR1 CBR3 CCDC58 CD1D

CD36 CEL CIDEA CPOX CPT1A CPT2

CRAT CRYZ CYP1A1 CYP4A11 CYP4A22 D2HGDH

DECR1 DHCR24 DLD DLST ECH1 ECHS1

ECI1 ECI2 EHHADH ELOVL5 ENO2 ENO3

EPHX1 ERP29 ETFDH FABP1 FABP2 FASN

FH FMO1 G0S2 GABARAPL1 GAD2 GAPDHS

GCDH GLUL GPD1 GPD2 GRHPR GSTZ1

H2AZ1 HADH HADHB HAO2 HCCS HIBCH

HMGCL HMGCS1 HMGCS2 HPGD HSD17B10 HSD17B11

HSD17B4 HSD17B7 HSDL2 HSP90AA1 HSPH1 IDH1

IDH3B IDH3G IDI1 IL4I1 INMT KMT5A

LDHA LGALS1 LTC4S MAOA MCEE MDH1

MDH2 ME1 METAP1 MGLL MIF MLYCD

NBN NCAPH2 NSDHL NTHL1 ODC1 OSTC

PCBD1 PDHA1 PDHB PPARA PRDX6 PSME1

PTPRG PTS RAP1GDS1 RDH11 RDH16 REEP6

RETSAT S100A10 SDHA SDHC SDHD SERINC1

SLC22A5 SMS SUCLA2 SUCLG1 SUCLG2 TDO2

TP53INP2 UBE2L6 UGDH UROD UROS VNN1

XIST YWHAH ABCB6 ADORA2B AGL AGRN

AK3 AK4 AKR1A1 ALDH7A1 ALDOB ALG1

ANG ANGPTL4 ANKZF1 ARPP19 ARTN AURKA

B3GALT6 B3GAT1 B3GAT3 B3GNT3 B4GALT1 B4GALT2

B4GALT4 B4GALT7 BIK BPNT1 CACNA1H CAPN5

CASP6 CD44 CDK1 CENPA CHPF CHPF2

CHST1 CHST12 CHST2 CHST4 CHST6 CITED2

CLDN3 CLDN9 CLN6 COG2 COL5A1 COPB2

CTH CXCR4 CYB5A DCN DDIT4 DEPDC1

DPYSL4 DSC2 ECD EFNA3 EGFR EGLN3

ELF3 ENO1 ERO1A EXT1 EXT2 FAM162A

FBP2 FKBP4 FUT8 G6PD GAL3ST1 GALE

GALK1 GALK2 GCLC GFPT1 GFUS GLCE

GLRX GMPPA GMPPB GNE GNPDA1 GOT1

GOT2 GPC1 GPC3 GPC4 GPR87 GUSB

GYS1 GYS2 HAX1 HDLBP HK2 HMMR

HOMER1 HS2ST1 HS6ST2 HSPA5 IDUA IER3

IGFBP3 IL13RA1 IRS2 ISG20 KDELR3 KIF20A

KIF2A LCT LDHC LHPP LHX9 ME2

MED24 MERTK MET MIOX MPI MXI1

NANP NASP NDST3 NDUFV3 NOL3 NT5E

P4HA1 P4HA2 PAM PAXIP1 PC PDK3

PFKFB1 PFKP PGAM1 PGAM2 PGK1 PGLS

PGM2 PHKA2 PKM PKP2 PLOD1 PLOD2

PMM2 POLR3K PPFIA4 PPIA PPP2CB PRPS1

PSMC4 PYGB PYGL QSOX1 RARS1 RBCK1

RPE RRAGD SAP30 SDC1 SDC2 SDC3

SLC16A3 SLC25A10 SLC25A13 SLC35A3 SLC37A4 SOD1

SOX9 SPAG4 SRD5A3 STC1 STC2 STMN1

TALDO1 TFF3 TGFA TGFBI TKTL1 TPBG

TPI1 TPST1 TXN UGP2 VCAN VEGFA

VLDLR XYLT2 ZNF292 ACHE ADPRM AGPAT1

AGPAT2 AGPAT3 AGPAT4 CDIPT CDS1 CDS2

CHAT CHKA CHKB CHPT1 CRLS1 DGKA

DGKB DGKD DGKE DGKG DGKH DGKI

DGKQ DGKZ ETNK1 ETNK2 GNPAT GPAM

GPAT2 GPAT3 GPAT4 GPD1L PLA2G4B LCAT

LCLAT1 LPCAT1 LPCAT2 LPCAT3 LPCAT4 LPGAT1

LYPLA1 LYPLA2 MBOAT1 MBOAT2 MBOAT7 PCYT1A

PCYT1B PCYT2 PEMT PGS1 PHOSPHO1 PISD

PLA2G10 PLA2G12A PLA2G12B PLA2G15 PLA2G1B PLA2G2A

PLA2G2C PLA2G2D PLA2G2E PLA2G2F PLA2G3 PLA2G4A

PLA2G4B PLA2G4E PLA2G5 PLA2G6 PLD1 PLD2

PLPP1 PLPP2 PLPP3 PTDSS1 PTDSS2 TAZ

ACSS2 ADH1A ADH1B ADH4 ADH5 ADH6

ALDH1A3 ALDH1B1 ALDH2 ALDH3B1 ALDH3B2 ALDOC

BPGM DLAT FBP1 G6PC G6PC2 GALM

GAPDH GCK GPI HK1 HK3 LDHAL6A

LDHAL6B LDHB PCK1 PCK2 PDHA2 PFKL

PFKM PGAM4 PGK2 PGM1 PKLR AAAS

ADPGK GCKR GNPDA2 NDC1 NUP107 NUP133

NUP153 NUP155 NUP160 NUP188 NUP205 NUP210

NUP214 NUP35 NUP37 NUP42 NUP43 NUP50

NUP54 NUP58 NUP62 NUP85 NUP88 NUP93

NUP98 PFKFB2 PFKFB3 PFKFB4 PGM2L1 PGP

POM121 POM121C PPP2CA PPP2R1A PPP2R1B PPP2R5D

PRKACA PRKACB PRKACG RAE1 RANBP2 SEC13

SEH1L TPR AACS ABCA1 ABCB11 ABCB4

ABCC1 ABCC3 ABCD1 ABHD3 ABHD4 ABHD5

ACACA ACACB ACAD10 ACAD11 ACAT1 ACBD4

ACBD5 ACBD6 ACBD7 ACER1 ACER2 ACER3

ACLY ACOT1 ACOT11 ACOT12 ACOT13 ACOT4

ACOT6 ACOT7 ACOT9 ACOX2 ACOX3 ACOXL

ACP6 ACSBG1 ACSBG2 ACSF2 ACSF3 ACSL3

ACSL6 ACSM6 ACSS3 AGK AGMO AGPAT5

AGPS AGT AHR AHRR AKR1B1 AKR1B15

AKR1C1 AKR1C2 AKR1C3 AKR1C4 AKR1D1 ALAS1

ALB ALOX12 ALOX12B ALOX15 ALOX15B ALOX5

ALOX5AP ALOXE3 ALPI AMACR ANKRD1 APOA1

APOA2 APOA5 ARF1 ARF3 ARNT ARNT2

ARNTL ARSA ARSB ARSD ARSF ARSG

ARSH ARSI ARSJ ARSK ARSL ARV1

ASAH1 ASAH2 AWAT1 AWAT2 B3GALNT1 B4GALNT1

BAAT BCHE BDH1 BDH2 BMX CARM1

CAV1 CBR4 CCNC CDK19 CDK8 CEPT1

CERK CERS1 CERS2 CERS3 CERS4 CERS5

CERS6 CERT1 CGA CH25H CHD9 CIDEC

CLOCK CPNE1 CPNE3 CPNE6 CPNE7 CPT1B

CPTP CREBBP CROT CSNK1G2 CSNK2A1 CSNK2A2

CSNK2B CTSA CUBN CYP11A1 CYP11B1 CYP11B2

CYP17A1 CYP19A1 CYP1A2 CYP1B1 CYP21A2 CYP24A1

CYP27A1 CYP27B1 CYP2C19 CYP2C8 CYP2C9 CYP2D6

CYP2E1 CYP2J2 CYP2R1 CYP2U1 CYP39A1 CYP3A4

CYP46A1 CYP4B1 CYP4F11 CYP4F2 CYP4F22 CYP4F3

CYP4F8 CYP51A1 CYP7A1 CYP7B1 CYP8B1 DBI

DDHD1 DDHD2 DECR2 DEGS1 DEGS2 DGAT1

DGAT2 DGAT2L6 DHCR7 DHRS7B DPEP1 DPEP2

DPEP3 EBP ELOVL1 ELOVL2 ELOVL3 ELOVL4

ELOVL6 ELOVL7 ENPP6 ENPP7 EP300 EPHX2

ESRRA ESYT1 ESYT2 ESYT3 ETNPPL FA2H

FAAH FAAH2 FABP12 FABP3 FABP4 FABP5

FABP6 FABP7 FABP9 FADS1 FADS2 FAM120B

FAR1 FAR2 FDFT1 FDPS FDX1 FDX2

FDXR FHL2 FIG4 FITM1 FITM2 GALC

GBA GBA2 GC GDE1 GDPD1 GDPD3

GDPD5 GGPS1 GGT1 GGT5 GK GK2

GK3P GLA GLB1 GLB1L GLIPR1 GLTP

GM2A GPCPD1 GPS2 GPX1 GPX2 GPX4

GRHL1 GSTM4 HACD1 HACD2 HACD3 HACD4

HACL1 HADHA HDAC3 HELZ2 HEXA HEXB

HILPDA HMGCLL1 HMGCR HPGDS HSD11B1 HSD11B2

HSD17B1 HSD17B12 HSD17B13 HSD17B14 HSD17B2 HSD17B3

HSD17B8 HSD3B1 HSD3B2 HSD3B7 HTD2 IDI2

INPP4A INPP4B INPP5D INPP5E INPP5F INPP5J

INPP5K INPPL1 INSIG1 INSIG2 KDSR KPNB1

LBR LGMN LHB LIPE LIPH LIPI

LPIN1 LPIN2 LPIN3 LRP2 LSS LTA4H

MAPKAPK2 MBTPS1 MBTPS2 MCAT MECR MED1

MED10 MED11 MED12 MED13 MED13L MED14

MED15 MED16 MED17 MED18 MED19 MED20

MED21 MED22 MED23 MED25 MED26 MED27

MED28 MED29 MED30 MED31 MED4 MED6

MED7 MED8 MED9 MFSD2A MID1IP1 MIGA1

MIGA2 MMAA MMUT MOGAT1 MOGAT2 MOGAT3

MORC2 MSMO1 MTF1 MTM1 MTMR1 MTMR10

MTMR12 MTMR14 MTMR2 MTMR3 MTMR4 MTMR6

MTMR7 MTMR8 MTMR9 MVD MVK NCOA1

NCOA2 NCOA3 NCOA6 NCOR1 NCOR2 NDUFAB1

NEU1 NEU2 NEU3 NEU4 NFYA NFYB

NFYC NPAS2 NR1D1 NR1H2 NR1H3 NR1H4

NRF1 NUDT19 NUDT7 OCRL OLAH ORMDL1

ORMDL2 ORMDL3 OSBP OSBPL10 OSBPL1A OSBPL2

OSBPL3 OSBPL5 OSBPL6 OSBPL7 OSBPL8 OSBPL9

OXCT1 OXCT2 PCCA PCCB PCTP PDCD6

PECR PEX11A PHYH PI4K2A PI4K2B PI4KA

PI4KB PIAS4 PIK3C2A PIK3C2B PIK3C2G PIK3C3

PIK3CA PIK3CB PIK3CD PIK3CG PIK3R1 PIK3R2

PIK3R3 PIK3R4 PIK3R5 PIK3R6 PIKFYVE PIP4K2A

PIP4K2B PIP4K2C PIP4P1 PIP5K1A PIP5K1B PIP5K1C

PITPNB PITPNM1 PITPNM2 PITPNM3 PLA1A PLA2G4C

PLA2G4D PLA2G4F PLA2R1 PLAAT1 PLAAT2 PLAAT3

PLAAT4 PLAAT5 PLB1 PLBD1 PLD3 PLD4

PLD6 PLEKHA1 PLEKHA2 PLEKHA3 PLEKHA4 PLEKHA5

PLEKHA6 PLEKHA8 PLIN1 PLIN2 PLIN3 PLPP6

PMVK PNPLA2 PNPLA3 PNPLA4 PNPLA5 PNPLA6

PNPLA7 PNPLA8 POMC PON1 PON2 PON3

PPARD PPARG PPARGC1A PPARGC1B PPM1L PPP1CA

PPP1CB PPP1CC PPT1 PPT2 PRKAA2 PRKAB2

PRKAG2 PRKD1 PRKD2 PRKD3 PRXL2B PSAP

PTEN PTGDS PTGES PTGES2 PTGES3 PTGIS

PTGR1 PTGR2 PTGS1 PTGS2 PTPMT1 PTPN13

RAB14 RAB4A RAB5A RAN RGL1 RORA

RUFY1 RXRA RXRB SACM1L SAMD8 SAR1B

SBF1 SBF2 SC5D SCAP SCD SCD5

SCP2 SEC23A SEC24A SEC24B SEC24C SEC24D

SELENOI SERPINA6 SGMS1 SGMS2 SGPL1 SGPP1

SGPP2 SIN3A SIN3B SLC10A1 SLC10A2 SLC25A1

SLC25A17 SLC25A20 SLC27A1 SLC27A2 SLC27A3 SLC27A5

SLC44A1 SLC44A2 SLC44A3 SLC44A4 SLC44A5 SLCO1A2

SLCO1B1 SLCO1B3 SMARCD3 SMPD1 SMPD2 SMPD3

SMPD4 SP1 SPHK1 SPHK2 SPNS2 SPTLC1

SPTLC2 SPTLC3 SPTSSA SPTSSB SQLE SRD5A1

SRD5A2 SREBF1 SREBF2 STAR STARD10 STARD3

STARD3NL STARD4 STARD5 STARD6 STARD7 STS

SULT2A1 SUMF1 SUMF2 SUMO2 SYNJ1 SYNJ2

TBL1X TBL1XR1 TBXAS1 TECR TECRL TGS1

THEM4 THEM5 THRAP3 THRSP TIAM2 TM7SF2

TMEM86B TNFAIP8 TNFAIP8L1 TNFAIP8L2 TNFAIP8L3 TNFRSF21

TPTE TPTE2 TRIB3 TSPO TSPOAP1 TXNRD1

UBE2I UGCG UGT1A9 UGT8 VAC14 VAPA

VAPB VDR
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Table S3 Eight glucose and lipid metabolism-related datasets

HALLMARK_FATTY_ACID_METABOLISM

HALLMARK_GLYCOLYSIS

KEGG_GLYCEROPHOSPHOLIPID_METABOLISM

KEGG_GLYCOLYSIS_GLUCONEOGENESIS

KEGG_GLYCOLYSIS_GLUCONEOGENESIS

REACTOME_GLYCOLYSIS

REACTOME_METABOLISM_OF_LIPIDS

REACTOME_PHOSPHOLIPID_METABOLISM

R E A C T O M E _ R E G U L AT I O N _ O F _ G LY C O LY S I S _ B Y _
FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM

KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure S1 Screening of glucose and lipid metabolism-related genes and construction of risk model. (A) The change trajectory of each 
independent candidate variable, with the vertical axis represents the coefficient of the independent variable and the horizontal axis represents 
the log value of the independent variable lambda. (B) Confidence interval under each lambda. The theoretically optimal model was 
determined when λ=13.
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Figure S2 ROC analysis of the specificity and sensitivity of the OS for the Nomogram model. (A-C) The AUC values of 1-, 3-, 5-year in 
the training cohort. (D-F) The AUC values of 1-, 3-, 5-year in the validation cohort. AUC, area under the curve; ROC, receiver operating 
characteristic curve; OS, overall survival.
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