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Introduction

Prostate Cancer is a high incidence malignant tumor that 
afflicts men worldwide. In China, prostate cancer accounted 
for 8.16% of the total number of new cancer cases in males, 
with a mortality rate of 13.61% (1). In the United States, 
prostate cancer is the most common (comprising 26% of 
all cases) malignant tumor in males (2). The incidence of 

prostate cancer has continuously increased globally (3). 
Prostate cancer patients undergo biochemical relapse (BCR), 
which results in the poor prognosis (4,5). BCR is defined as 
two consecutive rising prostate-specific antigen (PSA) values 
>2 ng/mL above the nadir PSA value after radiation therapy 
(RT) or >0.2 ng/mL after radical prostatectomy (RP) (6).

Urologists have made great progress in the diagnosis 
and treatment of prostate cancer, especially with the 
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Table 1 Characteristics of the included datasets

Dataset Omics Data type GPL
Number of tissues

Number of genes
Healthy Cancer

GSE60117 miRNA Microarray GPL13264 21 56 2,735

GSE21036 miRNA Microarray GPL8227 28 99 881

GSE76260 miRNA Microarray GPL8179 32 32 1,146

GSE79021 mRNA Microarray GPL19370 49 153 20,280

GSE62872 mRNA Microarray GPL19370 160 264 20,280

GSE70768 mRNA Microarray GPL10558 74 112 48,107

GSE70769 mRNA Microarray GPL10558 NA 94 48,107

TCGA mRNA RNA-Seq NA 52 492 55,268

GSE, Gene Expression Omnibus Series; GPL, Gene Expression Omnibus Platform; TCGA, The Cancer Genome Atlas; miRNA, microRNA.

discovery of new biomarkers for liquid biopsies and imaging 
techniques that can assist clinicians in making decisions. 
Prostate cancer is a group of heterogeneous tumors with 
individual differences, molecular markers play an important 
role in assisting diagnosis and predicting prognosis 
(7,8). Therefore, it is essential to find novel and effective 
molecular markers associated with the diagnosis and 
prognosis for PCa.

Non-coding microRNAs (miRNAs) are single-stranded 
small RNA molecules involved in post-transcriptional gene 
regulation (9). Accumulating evidence has revealed that 
miRNAs participate in regulating cellular biological and 
pathophysiological processes of cancer cells. In addition, 
miRNAs can be detected stably in biofluids to achieve 
non-invasive tumor diagnosis and efficacy evaluation, 
which have been applied to assist clinical diagnosis and 
prognosis. However, few studies on multi-dataset analysis 
of combined RRA of miRNA-mRNA in prostate cancer 
have been reported. This study aims to construct miRNA-
mRNA regulatory networks of prostate cancer progression 
by using bioinformatics methods, to identify core miRNAs 
and hub target genes. Hub genes may be used to build-up 
a nomogram model for clinical prognosis. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-653/rc).

Methods

Data collection and preprocessing

The datasets were downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). We selected 3 
miRNA datasets (GSE60117, GSE21036 and GSE76260), 
4 mRNA datasets (GSE79021, GSE62872, GSE70768 
and GSE70769) ,  and The Cancer  Genome Atlas 
(TCGA) database (https://gdc-portal.nci.nih.gov/). The 
characteristics of these datasets were shown in Table 1. PCa 
patients were confirmed by pathological examination and 
included both metastatic and in situ cancers. In GSE70769 
and TCGA datasets, the survival information of the 
patient who had undergone RP or RT was collected for 
the subsequent biochemical relapse-free survival (BCRFS) 
analysis. The study was conducted based on the Declaration 
of Helsinki (as revised in 2013).

Differential miRNA and mRNA screening

Differentially expressed miRNAs (DEMs) and differentially 
expressed genes (DEGs) were determined by comparing 
two groups between normal and cancerous tissues in 
each GEO dataset. Datasets were corrected using the 
‘normalizeBetweenArrays’ package of R software (version 
4.1.2). The ‘limma’ package of R software was used to 
screen DEGs in the dataset, and the screening criteria 
for DEMs and DEGs were adjusted P values <0.05. The 
correction methods were Benjamini and Hochberg (BH), 
to address false-positivity (10). The DEMs and DEGs 
in these datasets were analyzed using the R package 
‘RobustRankAggreg’ (11). The RRA analysis was applied to 
calculate the significance probability of all genes in the final 
sequence, which might integrate the differential expression 
matrix of each dataset (11).

https://tcr.amegroups.com/article/view/10.21037/tcr-22-653/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-653/rc
https://www.ncbi.nlm.nih.gov/geo/
https://gdc-portal.nci.nih.gov/
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Construction of miRNA-mRNA regulatory networks

FunRich was a bioinformatics tool, which could predict 
miRNA target genes for functional enrichment (12). 
Common DEGs (co-DEGs) could be obtained by using 
FunRich (version 3.1.3) to predict miRNA target genes. 
Co-DEGs were used to construct miRNA-mRNA 
regulatory networks. Cytoscape (version 3.8.2) was used 
to visually display each network (13). Top 3 miRNAs with 
Edge Percolated Component (EPC) scores (connectivity 
greater than 30) were selected to build-up the core network 
of miRNAs using the EPC topology algorithm. Co-DEGs 
regulated by miRNAs in the core network were selected as 
core network genes.

Gene function enrichment analysis

The GO (Gene Ontology) function and KEGG (Kyoto 
Encyclopedia of Genes and Genomes) signal pathway 
analysis of co-DEGs were performed using the R 
software package “clusterProfiler” (14). GO enrichment 
included biological process (BP), cellular component 
(CC) and molecular function (MF). For KEGG functional 
enrichment-related signalling pathways, the screening 
criteria were adjusted P<0.05 to control false discovery rate 
(FDR).

Differential expression and prognostic value of hub 
regulatory genes

TCGA and Genotype-Tissue Expression (GTEx) 
databases contain clinical samples and demographic/clinical 
information. Therefore, they can be used to verify statistical 
differences in the expression levels of core network genes 
between cancer and normal tissues in a large cohort. Hub 
target genes were analyzed using GEPIA2 web tools (http://
gepia2.cancer-pku.cn/). 

Establishment of nomogram 

The risk score of patients was calculated by ridge regression 
analysis. The TCGA and GSE70769 cohort was treated 
as training and validation set, respectively. Multivariate 
and univariate COX regression analyses were performed 
for each candidate. A nomogram prediction model was 
established for independent prognostic factors using R 
package ‘rms’ (https://CRAN.R-project.org/package=rms). 

100 points were allocated to the most dangerous predictors 
with the highest B coefficient, and corresponding scores 
were assigned to other predictors according to relative 
weight. The accuracy of prediction was evaluated using 
calibration diagram and AUC. 

Statistical analysis

Statistical analysis was performed using R software (version 
4.1.2). Differences between groups were compared with 
Wilcoxon tests. The BCRFS curves were generated by 
using Kaplan-Meier (K-M) plots, while the differences were 
evaluated by log-rank tests. Univariate and multivariate 
Cox proportional hazard models were applied to estimate 
potentially predictive values of parameters. Time-
ROC curves were plotted and utilized to assess potential 
prognostic power of risk scores. Calibration plots and 
AUCs were applied to evaluate the prediction accuracy of a 
nomogram. A P<0.05 was considered statistically significant.

Results

Screening of differential miRNAs and mRNAs associated 
with prostate cancer

Three miRNA datasets were analyzed with the RRA 
method. A total of 22 DEMs were up-regulated whereas 14 
down-regulated (Figure 1A). A total of 896 DEGs were up-
regulated whereas 915 down-regulated in prostate cancer. 
As shown in Figure 1B, the top 20 up-regulated and down-
regulated genes were sorted by Log2 Fold Change.

Construction of the miRNA-mRNA network

Among the 36 DEMs screened from miRNA datasets, 17 
miRNAs could be predicted by FunRich software, and a 
total of 2,575 target genes could be predicted. Among them, 
184 genes were selected based on intersection of co-DEGs 
and target genes. Then, miRNA-mRNA reaction network 
was constructed according to regulatory relationship using 
Cytoscape3.8.2 (Figure 2A). In addition, three core network 
miRNAs were obtained by EPC topology algorithm 
screening, which were highly expressed in prostate cancer 
tissues, including hsa-miR-106b-5p, hsa-miR-17-5p and 
hsa-miR-183-5p. The key gene network comprised of 32 
core genes as shown in Cytoscape (Figure 2B), while the key 
network module information was summarized in Table 2.

http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
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Figure 1 Heatmaps of DEMs and DEGs in prostate cancer tissues by RRA analysis. (A) Heatmap of DEMs; (B) Heatmap of DEGs; Green 
color represents down-regulation; Red color represents down-regulation. DEM, differentially expressed miRNA; DEG, differentially 
expressed gene; RRA, Robust Rank Aggregation.

GO and KEGG enrichment analysis

GO analysis of genes included biological process (BP), 
molecular function (MF) and cellular component (CC) 
(Figure 3A). The biological processes of co-DEGs mainly 
enriched in actin filaments regulation, mesenchymal 
development and muscular system. In terms of cellular 
components, “focal adhesions”, “cell-substrate adherens 
junction”, and “cell-substrate junctions” were the most 
dominant elements. For molecular functions, the GO terms 
enriched with co-DEGs included actin binding, platelet-
derived growth factor receptor binding, and activation of 
3',5' cyclic-AMP phosphodiesterase. In addition, KEGG 
analysis indicated involvement of focal adhesion, cGMP-
PKG signaling pathway and actin skeleton regulatory 
pathway in the pathogenesis of prostate cancer (Figure 3B). 
Afterwards, co-DEGs were mapped to 18 KEGG pathways, 
as shown in Figure 3C.

Validation of hub target genes

We performed gene expression values analyses of the four 
hub target genes (TMEM100, FRMD6, NBL1 and STARD4) 
by GEPIA2. These gene expression levels in prostate cancer 
were lower than those in normal control (P<0.05), as shown 
in Figure 4.

Establishment and verification of the nomogram

A risk score was calculated by ridge regression. The 
formula was as follows: risk score = (−0.018372 × 
STARD4) + (−0.017621 × FRMD6) + (−0.000546 × NBL1) 
+ (−0.000064 × TMEM100). According to univariate and 
multivariate COX regression analyses, Gleason and risk 
scores might be used as independent prognostic factors 
(Figure 5A). Nomogram can predict BCRFS for PCa 
patients (Figure 5B). The calibration plot demonstrated 
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B

A

Figure 2 Construction of miRNA-mRNA regulatory network and core network. (A) miRNA-mRNA regulatory network; (B) Core miRNA-
mRNA network.

good consistency between the prediction by nomogram and 
actual observation of 1-, 3- and 5-year BCRFS in prostate 
cancer (Figure 5C). The novel nomogram predicted the 
AUC of BCRFS at 1-, 3- and 5-year of 0.713, 0.732 and 
0.753 (Figure 5D). The BCRFS time of high-risk group 
was significantly lower than that of the low-risk group  
(Figure 5E).

Discussion

Previous studies have indicated that aberrant expression 
of miRNAs may dysregulate expression of tumour-related 
genes, and thus affect tumour development and progression 
(9,15-17). Although many genes have been proposed as 
miRNA regulatory targets in PCa, their functions remain 
unknown. The pathogenesis of prostate cancer involves 
various signalling pathways regulated by miRNAs-mRNAs. 
Several miRNAs have been well studied in prostate cancer. 
For example, circRNA-HIPK3 may upregulate CDC25B 
and CDC2, promote G2/M transformation and induce cell 
proliferation of prostate cancer by inhibiting miR-338-

3p (18). In addition, overexpression of miR-338-3p may 
downregulate BCL2 in LNCaP cells, and suppress apoptosis 
of prostate cancer cells (17). By contrast, MiR-338-3p 
directly targets the RAB23 gene and inhibits tumour growth 
in prostate cancer (19). Thus, it is critical to explore inter-
regulatory relationship of miRNAs-mRNAs in tumour 
development and progression of prostate cancer.

In this study, hsa-miR-106b-5p, hsa-miR-17-5p and hsa-
miR-183-5p were identified to construct a miRNA-mRNA 
regulatory network of prostate cancer. Hsa-miR-106b-5p, 
as an oncogene, may down-regulate RBMS1 expression 
in prostate cancer tissues and affect cell proliferation, gap 
closure and colony formation (20). Meanwhile, hsa-miR-
106b in the blood of prostate cancer patients is significantly 
higher than that of healthy controls (21). Moreover, 
lncRNA-FER1L4 competitively binds a specific miRNA 
through its miRNA response element and represses the 
inhibitory effects of hsa-miR-106b-5p on its target mRNAs. 
This process participates in the post-transcriptional 
regulation of cancer-related genes (22). In addition, high 
expression of hsa-miR-17-5p in the epithelium was a 
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predictive marker for poor prognosis in patients with 
PCa (23). Furthermore, circRNA-ITCH inhibited PCa 
progression by sponging hsa-miR-17-5p and increasing 
HOXB13 expression (24). In addition, high expression of 
hsa-miR-183-5p in local tissues of advanced prostate cancer 
may be related to lymph node metastasis and diffusion (25). 
Collectively, the three core miRNAs in this study were 
abnormally highly expressed in prostate cancer tissues, 
which was consistent with previous studies (16,21,23).

Four hub mRNAs were also identified associated with 
prostate cancer in this study, including TMEM100, FRMD6, 
NBL1 and STARD4. Previous studies have investigated the 
relationship between these hub genes and prostate cancer. 
For example, FRMD6 was abnormally hypermethylated 
and significantly down-regulated in prostate cancer tissues. 
Relatively low expression of FRMD6 was associated with 
postoperative biochemical recurrence. FRMD6 is proposed 
as a tumour-suppressive gene in prostate cancer (26). In 
addition, NBL1, a secreted protein, was highly expressed 
in the normal prostate. Low expression of NBL1 was 
associated with prostate cancer progression as a candidate 
biomarker (27). Notably, NBL1 expression in prostate 
cancer gland was down-regulated compared with normal 
gland, which might act as a tumour suppressor gene and 
a new therapeutic target (28). In this study, FRMD6 and 
NBL1 were significantly downregulated in prostate cancer 
tissues, and associated with disease-free survival (DFS) in 
prostate cancer patients. Its regulatory effects on TMEM100 
and STARD4 in PCa necessitate further investigations.

Through GO functional enrichment analysis, co-DEGs 
were significantly enriched in actin filament regulation 
process, adhesion spots and actin-binding function. KEGG 
pathway analysis identified co-DEGs enriched signalling 
pathways, including focal adhesion, cGMP-PKG, actin 
skeleton regulation, prostate cancer, and PI3K-Akt and 
cAMP. These cellular functions and signalling pathways 
were related to tumour development and progression 
of prostate cancer, which were consistent with previous 
studies (15,29,30). Meanwhile, inflammatory signalling 
pathways (PI3K-Akt and cAMP) indicate the importance of 
inflammation in tumour progression of localized prostate 
cancer. Inflammation markers of prostate cancer will help 
to discover accurate biomarkers and effective therapeutic 
targets (31). More importantly, in the validation set with 
expanded sample size by using the exogenous database 
“GEPIA2”, the hub target genes were significantly 
differentially expressed in prostate cancer versus normal 

Table 2 miRNA-mRNA core network module information

Gene Category
Change 

trend
Degree 
value

EPC  
score

hsa-miR-17-5p miRNA Up 35 42.675

hsa-miR-106b-5p miRNA Up 34 42.662

hsa-miR-183-5p miRNA Up 44 41.37

NTN4 mRNA Down 6 34.588

SIK1 mRNA Down 5 31.116

HECTD2 mRNA Down 4 30.801

EPHA7 mRNA Down 4 29.436

FRMD6 mRNA Down 4 28.987

RND3 mRNA Down 4 28.796

CFL2 mRNA Down 4 27.316

RNF38 mRNA Down 4 26.19

RBBP7 mRNA Down 3 25.813

TGFBR2 mRNA Down 3 25.73

TMEM100 mRNA Down 3 25.676

ANO6 mRNA Down 3 25.587

DPYSL2 mRNA Down 3 25.573

STARD4 mRNA Down 3 25.292

RBMS1 mRNA Down 3 25.215

HLF mRNA Down 3 25.042

MMP2 mRNA Down 3 25.019

GJA1 mRNA Down 3 25.018

CALD1 mRNA Down 3 24.922

TGFB1I1 mRNA Down 3 24.912

SYTL4 mRNA Down 3 24.902

TSHZ3 mRNA Down 3 24.844

FOXF1 mRNA Down 3 24.817

CLIP4 mRNA Down 3 24.696

CYBRD1 mRNA Down 3 24.69

CNN1 mRNA Down 3 24.508

AHNAK mRNA Down 3 24.488

TIMP2 mRNA Down 3 24.318

NBL1 mRNA Down 3 24.293

APCDD1 mRNA Down 3 23.427

SMOC1 mRNA Down 3 23.331

PDGFRA mRNA Down 2 18.842

EPC, Edge Percolated Component; miRNA, microRNA.
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prostate tissue. These genes were strongly associated with 
either overall survival (OS) or DFS, with good value for 
clinical diagnosis and prediction.

In this study, Gleason is an independent prognostic factor 
for biochemical recurrence in prostate cancer patients, 
which is consistent with previous studies (5,32). This novel 
nomogram based on two independent risk factors may be 
accurate for predicting 1-, 3- and 5-year BCRFS in patients 
with PCa, and its AUC is superior to that under the risk 
score alone or combined Gleason model.

This study has several limitations. Firstly, this study was 
a retrospective study using public databases. Secondly, the 
conclusion from this study needs to be validated with a large 
number of clinical samples.

In conclusion, our study suggests that this novel 
nomogram may be used as a biomarker for predicting 
biochemical recurrence and prognosis in patients with 
prostate cancer, with better sensitivity and specificity than 
existing clinical indicator models. Multi-center, prospective 
studies with large-sample sizes can be carried out in the 
future to verify our conclusion and clinical predictive value 
of this model.
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