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affecting tumor development and immune microenvironment in
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Background: E2F] plays a crucial role in cell cycle regulation. However, the exact role of E2FI in liver
hepatocellular carcinoma (LIHC) remains controversial. This study aimed to integrate disparate data by
bioinformatics for a deeper insight into the possible roles of E2F1 in LIHC.

Methods: Differentially overexpressed genes in LIHC were screened by GEO2R. Gene ontology and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed by WebGestalt. Then,
hub genes were selected via STRING and Cytoscape, followed by validation with Oncomine, GEPIA2,
and Human Protein Atlas (HPA). Next, E2F] expression was investigated using Oncomine, GEPIA2,
TIMER2.0, UALCAN, and HPA. Then, Kaplan-Meier plotter was adopted to investigate survival. After
that, E2FI promotor methylation, mutations and copy number alterations were analyzed with UALCAN
and cBioPortal. Moreover, competing endogenous RNAs (ceRNAs) network were established using
ENCORI, miRCancer, and Kaplan-Meier plotter. Additionally, the association between E2FI and immune
microenvironment was investigated through TISCH and TIMER2.0.

Results: Six hub genes including E2F1 were identified. E2F1 was overexpressed in most solid cancers
including LIHC. E2FI overexpression was correlated with poor prognosis in LIHC. Copy number
alterations could positively affect E2FI expression. Moreover, ceRNAs network was established with 3 long
non-coding RNAs (IncRNAs) named AC025048.4, AC090114.2, and AC092171.5, as well as 4 microRINAs
(miRNAs) including miR-150-5p, miR-302¢-3p, miR-520d-3p, and miR-330-5p. Single cell sequencing
data showed that E2F] was mainly expressed in malignant cells and proliferating T cells, and that E2F
targets almost exclusively enriched in proliferating T cells. Besides, there existed a positive correlation
between E2FI and certain immune cells including CD8(+) T cells, CD4(+) T cells, B cells, macrophages, and
dendritic cells.

Conclusions: This study elucidated that E2F1 could affect tumor development and immune
microenvironment in LIHC. Thus, E2FI might be a potential prognostic biomarker and therapeutic target
for LIHC.
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Introduction

Primary liver cancer is perceived as one of the most lethal
cancers, which is ranked the seventh and the second of
new cases and deaths respectively among all malignancies
worldwide (1). Liver hepatocellular carcinoma (LIHC) is
the major subtype of primary liver cancer, accounting for
approximately 75% (2). In recent years, novel treatment
strategies including immune-checkpoint inhibitors, tyrosine
kinase inhibitors and monoclonal antibodies have been
applied to the treatment for LIHC and have achieved great
progress (3); however, the outcome remains poor with a
S-year survival only standing at about 20% in the United
States (4).

Since 50-60% LIHC patients need to be exposed to
systemic therapies throughout their entire treatment (3),
it is particularly necessary to identify more candidate
anti-LIHC targets for effective diagnosis, prognosis, and
treatment (5). Nevertheless, approximately 25% of LIHC
exist with potentially actionable mutations, which are yet
to be translated into the clinical practice (6). Therefore,
identifying vital biomarkers and exploring their latently
clinical significance could facilitate the development of
novel precision treatments.

E2F family of transcription factors plays a crucial role in
cell differentiation, response to DNA damage, and cell life
cycle (7). A variety of E2F isoforms have been characterized
and can be found in most cell types (8). It has been
demonstrated that E2F family genes are overexpressed and
associated with the development and prognosis in several
types of cancers including LIHC (9-13).

Despite that E2F] is the classic and the most studied E2F
member, the role of E2F1 in LIHC is controversial. Some
studies reported that E2F1 could promote the proliferation
of LIHC by activating ERK/mTOR, B-Myb, BRCAI,
Stathmin 1 (14-17) or could inhibit c-Myc-driven apoptosis
via activating PIK3CA/Akt/mTOR and COX-2 pathway (18).
Meanwhile, several studies indicated that E2F1 exhibited
tumor-suppressing activity in LIHC. For instance, TFDP3/
E2F1 pathway could promote LIHC cell apoptosis by
upregulating HIF-2a, and HIF-2a overexpression was
associated with favorable overall survival (OS) of LIHC
patients (19). Thus, more studies are needed to further
verify the exact role of E2FI in LIHC (13).

Bioinformatics is an effective way to integrate and
process vast life sciences data (20). Thus, this study adopted
bioinformatics to merge disparate data sources to explore
the possible roles of E2F1 in LIHC. Hub genes in LIHC
were identified followed by exploring the expression
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level and prognostic value of E2FI. Moreover, possible
regulating mechanisms including promotor methylation,
mutation, copy number alterations, and competing
endogenous RNAs (ceRNAs) of E2F] were investigated.
In addition, the association between E2F1 and tumor
immune microenvironment was examined using single
cell sequencing data. We present the following article in
accordance with the REMARK reporting checklist (available
at https://tcr.amegroups.com/article/view/10.21037/tcr-22-
218/rc).

Methods
Identification of overexpressed genes in LIHC

Two Gene Expression Omnibus (GEO) series, named
GSE46408 (21) and GSE54238 (22,23), containing LIHC
and normal liver tissue gene expression profiles were
selected from GEO (RRID:SCR_004584) (24). Six LIHC
tissue samples and 6 paired normal liver parenchyma
samples of GSE46408, as well as 13 advanced LIHC
tissue samples and 10 normal liver samples of GSE54238
were respectively compared by GEO2R (25) to screen
differentially expressed genes (DEGs). Significantly
overexpressed DEGs were chosen by the criteria of adjusted
P value <0.05 and log2FC >1.5 (FC: fold change). Some
genes displayed multiple log2FC values in one GEO
series due to the use of different probes. Those genes that
displayed conflicting log2FC values, some of which >0
(representing overexpression in LIHC) and the others <0
(indicating under-expression in LIHC), were excluded. The
shared overexpressed DEGs in 2 GEO series were chosen
for further study.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGQG) pathway enrichment analysis

The biological process, cellular component, molecular
function annotations of GO, as well as KEGG pathway
enrichment were adopted to analyze the functions of
the shared overexpressed DEGs using WebGestalt 2019
(RRID:SCR_006786) (26). Parameters are as following:
organism: homo sapiens, method: over-representation
analysis, reference set: genome protein coding. The results
were visualized through R programming.

PPI network construction and bhub genes selection

STRING database Version 11.5 (RRID:SCR_005223) (27)
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was applied to construct protein-protein interaction (PPI)
network of the shared overexpressed DEGs with the
following parameters: network type: full STRING network,
active interaction sources: all, interaction score: at least
0.700 (high confidence). The STRING analyzing result
including nodes (genes) and experimentally determined
interaction parameters was input into Cytoscape software
(RRID:SCR_003032) (28) with CytoHubba plugin
(RRID:SCR_017677). Calculating via betweenness
methods, hub genes were selected with the interaction
score >160.

Hub genes validation

Next, to verify the expression of selected hub genes,
the difference of mRNA expressions of each hub gene
in LIHC and normal liver tissue were compared via
Oncomine (RRID:SCR_007834) (29) and GEPIA2
(RRID:SCR_018294) (30) respectively. Besides,
immunohistochemical staining images in Human Protein
Atlas (HPA, RRID:SCR_006710) (31-33) were adopted to
illustrate the protein expression of each hub gene in LIHC
and normal liver tissue.

Analysis of E2F1 mRNA and protein expression in various
cancers including LIHC

The mRNA expression levels of E2FI in various
cancers including LIHC and paired normal tissues were
compared by Oncomine, GEPIA2, and TIMER2.0
(RRID:SCR_018737) (34). In Oncomine, the thresholds
were set as: P value of 1E-4, fold change of 2, gene rank of
top 10%, and data type of all. TIMER2.0 used Wilcoxon
test to count E2F1 expression difference between cancer
and the corresponding normal tissue. Besides, to verify
E2F1 expression level in LIHC, TCGA data containing
E2F1 mRNA expression level and clinicopathological
features of LIHC were synthesized and analyzed through
UALCAN web (RRID:SCR_015827) (35), and were
graphically illustrated with Graphpad Prism Version
9.2.0 (RRID:SCR_002798). Moreover, the E2F1 protein
expressions in different kinds of cancers including LIHC
were traced from HPA, which present the percentage
of patients with high or medium immunohistochemical
staining using 3 different E2F1 antibodies (HPA008003,
CAB000329, CAB019308) respectively.
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Exploring the relationship between E2F1 expression and
survival in LIHC

The prognostic value of E2F] in LIHC was probed using
Kaplan-Meier plotter (RRID:SCR_018753) (36), which
integrated gene expression and clinical data simultaneously
from TCGA database (RRID:SCR_003193), GEO
database, and European Genome-Phenome Archive (EGA,
RRID: SCR_004944) database. The OS, disease-specific
survival (DSS), progression-free survival (PFS), and relapse-
free survival (RFS) in each clinicopathological characteristic
cohort were analyzed according to E2F1 expression level
by the following parameters: cut-off: median, RNAseq ID:
1869, and default settings for all other parameters.
Moreover, the clinical data and E2F1 expression data
were retrieved from TCGA database. Multivariate Cox
regression analysis was carried out by SPSS Version 26
(RRID:SCR_019096) to analyze whether E2F1 expression
level could serve as an independent prognostic factor for
LIHC. High and low E2FI expression subgroups were
categorized based on the median expression level of E2F].

Investigating E2F1 promotor methylation level in LIHC

E2F1 promotor methylation levels in LIHC and normal
liver tissue were investigated from TCGA database via
UALCAN web. Results were graphically presented through
Graphpad Prism Version 9.2.0. In addition, 373 LIHC
samples containing data of mRNA Expression z-Scores
(RNA Seq V2 RSEM) and Methylation (HM450) beta-
value simultaneously were obtained from TCGA Firehose
Legacy Cohort via cBioPortal (RRID:SCR_014555) (37,38).
Methylation (HM450) beta-value was normalized into 0 to
1. Then simple linear regression was performed by SPSS
Version 26 to calculate the correlation between promotor
methylation and mRNA expression and visualized by
Graphpad Prism Version 9.2.0.

Analysis of mutations and copy number alterations (CNAs)
of E2F1 in LIHC

916 LIHC samples of 914 patients in 3 studies [TCGA,
Firehose Legacy; AMC, Hepatology 2014 (39); INSERM,
Nat Genet 2015 (40)] were adopted to analyze the frequency
and types of E2F] mutation via cBioPortal. Following that,
673 samples of 671 patients in 2 LIHC studies (TCGA,
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Firehose Legacy; AMC, Hepatology 2014) were used
to acquire the frequency of copy-number alterations.
Meanwhile, E2F1 mRNA expression levels in different
copy number groups of the TCGA Firehose Legacy
Study were compared with One-way ANOVA using SPSS
Version 26. Moreover, 349 samples of the TCGA Firehose
Legacy Study containing mRNA expression data and copy-
number alterations data simultaneously were retrieved
from cBioPortal, the correlation of the relative linear copy-
number values and the mRNA expression z-scores (RNA
Seq V2 RSEM) was analyzed by simple linear regression
via SPSS Version 26 and exhibited via Graphpad Prism
Version 9.2.0.

Exploring possible cceRNAs of E2F1

According to the mechanism of ceRNAs (41), it is assumed
that long non-coding RNAs (IncRNAs) as ceRNAs (ce-
IncRNAs) could negatively affect the expression of certain
microRNAs (miRNAs) which then negatively affect
E2F1 levels. Thus, ce-IncRNA levels should be raised
and certain miRNA levels should be lowered. ENCORI
(RRID:SCR_016303) (42) was employed to explore possible
IncRNAs as ceRNAs (ce-IncRNAs) with the following
parameters: genome of human, assembly of hgl9, miRNA
number >2, P value <0.01, FDR <0.01, and with at least one
cancer type data. Following that, only those ce-IncRNAs
showing positive coefficient with E2F1 expression level (P
value <0.01 and FDR <0.01) in LIHC were supposed to
be ce-IncRNAs. Next, miRNAs which could be regulated
by the aforementioned ce-IncRNAs were retrieved
from ENCORI. The expression of those miRNAs was
investigated through miRCancer database (http://mircancer.
ecu.edu/) (43), only those downregulated miRNAs in LIHC
were selected for further study. Then, the relationship
between those miRNAs’ expression level and OS was
investigated using Kaplan-Meier plotter, those miRNAs
showing favorable OS for LIHC patients were included into
ceRINAs network.

Exploring the association between E2F1 and tumor
immune microenvironment via single cell sequencing data

Four human LIHC datasets (LIHC_GSE125449_
aPDL1aCTLA4, LIHC_GSE140228_10X, LTHC_
GSE140228_Smartseq2, and LIHC_GSE98638) were
retrieved from TISCH database (http://tisch.comp-
genomics.org/) (44). E2F1 expression levels in different
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major-lineage cell clusters of each dataset were investigated.
Moreover, the hallmark of up-regulated genes in different
cell clusters, as well as the enrichment of E2F targets
were also explored via TISCH database. Furthermore, the
correlations between E2F1 expression and the infiltrations
of different types of immune cells in LIHC were analyzed
by TIMER2.0 database.

The brief study process was illustrated by flowchart (see
Figure 1).

Statistical analysis

All statistical analysis were performed by SPSS Version 26.
Multivariate Cox regression analysis was carried out
to identify independent prognostic factors for LIHC.
Simple linear regression was performed to calculate the
correlation between promotor methylation and mRNA
expression of E2F1, as well as relative linear copy-number
values and mRNA expression of E2F]1. Besides, E2F1
mRNA expression levels in different copy number groups
were compared with One-way ANOVA. P value <0.05 is
considered statistically significant, the confidence interval
was set at 95%.

Ethical statement

The study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013).

Results
Overexpressed genes in LIHC

A total of 664 and 289 overexpressed DEGs were identified
from GSE46408 and GSE54238 respectively. Among those,
100 overexpressed DEGs shared in these 2 GEO series
were selected for further investigation (see Figure 2A4).

Gene ontology and KEGG pathway enrichment

Analyzed by WebGestalt, the biological process annotation
of the 100 overexpressed DEGs mainly enriched in DNA
replication, mitotic cell cycle phase transition, cell cycle
phase transition, mitotic cell cycle process, mitotic cell cycle,
regulation of cell cycle process, cell cycle process, DNA
metabolic process, regulation of cell cycle, and cell cycle (see
Figure 2B). Cellular component mainly focused on mitotic
spindle, spindle pole, spindle, chromosomal region, nuclear
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Figure 1 Flowchart of brief study process. DEGs, differentially expressed genes; LIHC, liver hepatocellular carcinoma; GEO, Gene

Expression Omnibus; KEGG, Kyoto Encyclopedia of Genes and Genomes; HPA, Human Protein Atlas; CNAs, copy number alterations.

chromosome part, nuclear chromosome, chromosomal part,
chromosome, microtubule cytoskeleton, and cytoskeletal
part (see Figure 2C). Molecular function was mainly related
to RNA-DNA hybrid ribonuclease activity, DNA helicase
activity, helicase activity, catalytic activity, acting on DNA,
kinase binding, protein kinase binding, ATP binding, purine
ribonucleoside triphosphate binding, purine ribonucleotide
binding, and purine nucleotide binding (see Figure 2D).
KEGG pathway mainly concentrated on DNA replication,
cell cycle, and oocyte meiosis (see Figure 2E).

PPI network construction and bub genes selection

Sixty-four largest connected nodes (genes) and 375 edges
were constructed through STRING and illustrated by
Cytoscape. The other 36 nodes (genes) belonging to
separate interaction cluster were not included. Moreover,
by using CytoHubba plugin, 6 hub genes named CCNBI,
RFC4, E2F1, DSN1, TYMS, and AURKA were identified (see
Figure 2F).

Hub genes validation

Four datasets containing the expression levels of numerous
genes including 6 hub genes were selected and analyzed in

© Translational Cancer Research. All rights reserved.

Oncomine. Each hub gene was significantly overexpressed
in LIHC in at least 2 out of 4 datasets and no hub gene was
downregulated in these 4 datasets (see Figure 34). Analysis by
GEPIA2 also demonstrated that the mRNA expression level
of each hub gene in LIHC was statistically higher than that in
normal liver tissue (see Figure 3B). The immunohistochemical
staining images showed that the protein expression of each
hub gene exhibited higher level in LIHC samples than that

in normal liver tissue (see Figure 3C).

E2F1 mRNA and protein expression in various cancers
including LIHC

To deepen the understanding, this study selected one hub
gene named E2F] for further investigation. Firstly, the
mRNA expression of E2F] in various cancers and paired
normal tissues were investigated. Analysis via Oncomine
revealed that E2F] was overexpressed in most solid tumors,
such as liver cancer, lung cancer, breast cancer, colorectal
cancer, kidney cancer, ovarian cancer, etc., except for
brain and central nervous system cancer (see Figure 4A).
Exploration by GEPIA2 found that E2FI was significantly
overexpressed in 23 out 31 kinds of solid tumors including
LIHC, and no type of cancer exhibited downregulation
of E2F1 (see Figure 4B). These findings were verified by
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investigating TIMER?2.0, which showed that E2FI was
statistically overexpressed in 20 kinds of cancers containing
LIHC (see Figure 4C).

Furthermore, through analyzing 371 LIHC tissues and
50 normal tissues, UALCAN showed that E2F] mRNA
was overexpressed in LIHC regardless of race, gender, age,
stage (except for stage 4), grade, and TP53 mutation status
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(see Figure 4D). Besides, stage 2 and 3, grade 3, as well as
"TP53 mutant subgroups exhibited higher E2F1 expression
level compared to stage 1, grade 1 and 2, TP53 non-mutant
subgroups respectively (see Figure 4D). In addition, HPA
database showed that most kinds of cancers including liver
cancer displayed moderate to strong immunoreactivity to
E2F1 irrespective of different antibodies (see Figure 4E). To
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sum up, those data indicated that E2FI mRNA and protein
were overexpressed in most solid tumors including LIHC.

The relationship between E2F1 expression and survival in
LIHC

Kaplan-Meier plotter was utilized to investigate survival
data in accordance with E2FI expression level. Results

© Translational Cancer Research. All rights reserved.

revealed that OS, DSS, PFS, and RFS were significantly in
favor of E2F1 low expression cohort, and the hazard ratios
(HR) were 1.75 (1.23-2.49, P=0.0016), 1.91 (1.21-3.01,
P=0.0046), 1.60 (1.19-2.15, P=0.0018), and 1.68 (1.21-2.35,
P=0.002) respectively (see Figure SA-5D).

Moreover, subgroup analysis according to different
clinicopathological characteristics indicated that the
OS was significantly negatively correlated with E2F1
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Figure 5 The relationship between E2FI expression level and survival. (A-D) The Kaplan-Meier survival curves for overall survival (OS),

disease-specific survival (DSS), progression-free survival (PFS), relapse-free survival (RFS) respectively; (E) multivariate analyses of overall

survival by Cox regression analysis. LIHC, liver hepatocellular carcinoma.

expression level in the following subgroups: male, Asian,
Caucasian, stage 1, stages 1 and 2, stages 2 and 3, grade 2,
no hepatitis virus infection, no alcohol consumption (see
Figure SIA-S1I). In general, the results indicated that
high levels of E2FI were associated with poor prognosis in
LIHC.

In addition, 366 LIHC patients were retrieved from
TCGA database. Nineteen cases were excluded due to lack
of complete data. Therefore, 347 cases were subject to
analysis. Multivariate Cox regression analysis indicated that
E2F]I expression level and surgical margin are independent
factors influencing OS for LIHC. Specifically, low E2F1
expression level (HR =0.608, 95% CI: 0.412-0.897,
P=0.012) and negative surgical margin (HR =0.449, 95%
CI: 0.249-0.808, P=0.008) indicated better overall survival.

© Translational Cancer Research. All rights reserved.

Other factors such as age, gender, race, tumor grade, TMB
(tumor mutation burden) were not related to prognosis (see

Figure SE).

E2F1 promotor methylation level in LIHC

To explore factors contributing to E2F1 overexpression
in LIHC, promotor methylation was firstly investigated
from TCGA database via UALCAN web. Results showed
that there was no significant difference of E2FI promotor
methylation level between LIHC and normal liver
tissue, and were generally very low (see Figure 64). More
specifically, E2FI promotor methylation level exhibited no
statistical difference regardless of race, gender, age, stage,
grade, nodal metastasis status, and TP53 mutation status.

Transl Cancer Res 2022;11(8):2713-2732 | https://dx.doi.org/10.21037/tcr-22-218
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Nevertheless, the simple linear regression showed that
E2F1 promotor methylation level could negatively affect
E2F1 mRNA expression level in LIHC with the intercept
of 1.362 and the slope of -2.069 (ANOVA P value <0.001,
Coefficients P value <0.001) (see Figure 6B).

Mutations and CNAs of E2F1 in LIHC

Data indicated that E2F1 mutation frequency is low in LIHC.
Only 0.41% to 0.80% of the LIHC samples contained
mutations in the E2FI gene (see Figure 6C). Five missense
mutations were identified, including A108S, Q208L, S240R,
Q272L, and G291V. All these 5 mutations were not located in
the E2F/DP family winged-helix DNA-binding domain and
the significance was unknown. No other mutations such as
truncating mutations, in-frame mutations, splice mutations, or
fusion mutations were found (see Figure 6D).

The frequency of CNAs ranged from 0.43% to 1.06%
(see Figure 6L). Through analyzing 360 samples from the
TCGA Firehose Legacy Study, it is indicated that E2F1
mRNA expression level was significantly higher in gain
group than that in diploid group (P value =0.005) (see
Figure 6F). In spite of no statistical significance due to small
sample size, amplification group also showed higher E2F1
mRNA expression level compared to other groups (see
Figure 6F). Moreover, the simple linear regression showed
that relative linear copy-number values could positively
affect E2F1 mRNA expression level in LIHC with the
intercept of 8.239 and the slope of 1.567 (ANOVA P value
<0.001, Coefficients P value <0.001) (see Figure 6G).

Possible ceRNAs of E2F1

Since IncRNAs could negatively affect miRNAs which
then negatively affect E2F1 levels, those IncRNAs and
miRNAs positively and negatively correlated with E2F1
expression level respectively could be considered as
ceRNAs. ENCORI showed that 8 IncRNAs are considered
as possible ce-IncRNAs. Three out of 8 IncRNAs showed
significantly positive correlation with E2FI expression,
named AC025048.4, AC090114.2, and AC092171.5 (see
Figure 74-7C). Thus, these 3 IncRNAs are supposed to be
ce-IncRNAs. Twenty-six miRNAs that could be regulated
by the above 3 ce-IncRNAs were found. Thirteen out of
26 miRNAs exhibited lower expression in LIHC than
in normal liver tissue. Moreover, 4 out of 13 miRNAs
displayed favorable OS in LIHC patients and were included
into ceRNAs network, namely miR-150-5p, miR-302¢-3p,

© Translational Cancer Research. All rights reserved.
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miR-520d-3p, and miR-330-5p (see Figure 7D-7G). Thus,
the ceRNAs network was established (see Figure 7H).

The association between E2F1 and tumor immune
microenvironment

Through exploring single cell sequencing data via TISCH,
1 dataset (LIHC_GSE125449_aPDL1aCTLA4) including
malignant cell cluster showed that E2F1 was expressed
in malignant cell cluster (see Figure §4,8B). The other 3
datasets including various immune cell clusters showed that
E2F] was mainly expressed in proliferating T cells (see Figure
84,8C-8E). Gene set enrichment analysis also indicated that
the hallmark of upregulated genes of proliferating T cells
mainly focused on E2F targets, G2ZM checkpoints, mitotic
spindle, and MYC targets (see Figure 8C-8E). Notably, E2F
targets were almost exclusively enriched in proliferating T
cells (see Figure 8C-8E). Furthermore, E2F1 was positively
correlated with specific types of immune cells, including
CD8(+) T cells, CD4(+) T cells, B cells, macrophages,
dendritic cells (see Figure 8F). Therefore, these findings
suggest that E2FI could affect immune functions and
thereby might influence the tumorigenesis and the
development of LIHC.

Discussion

LIHC is one of the most lethal cancers. Most of LIHC
patients are diagnosed at advanced stage and have poor
prognosis with roughly equivalent incidence rate and
mortality rate (2,45). It is indicated that some inner
molecular mechanisms may play important roles leading
to relatively high malignancy of LICH. Thus, exploring
molecular mechanisms is of potential significance for a
deeper understanding into LIHC. Nevertheless, although
studies have unveiled substantial amounts of knowledge
regarding mutations, epigenetic drivers, aberrant gene-
expression profiles, disrupted signaling pathways and
chromosomal aberrations (46), the efficacy of treatments
regarding those mechanisms remains limited, and it
desperately awaits a better understanding of the cancer’s
molecular biology (47). Hereby, this study adopted
bioinformatics to merge a great amount of data to explore
the possible roles of E2F1 in LIHC.

The reasons for choosing E2F1 as the research objective
are as follows: E2F1 as one of hub genes in LIHC was
demonstrated by this study and was verified by several
other studies (48,49). Moreover, the roles of E2F1 in

Transl Cancer Res 2022;11(8):2713-2732 | https://dx.doi.org/10.21037/tcr-22-218
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Figure 7 ceRNAs network of E2F1. (A-C) The correlation between expression level of E2FI mRINA and expression level of IncRINAs
including AC025048.4, AC090114.2, and AC092171.5 respectively; (D-G) overall survival in different expression level groups of miRINAs
including miR-150-5p, miR-302¢-3p, miR-520d-3p, and miR-330-5p; (H) ceRNAs network of E2F] in LIHC. ceRNAs, competing
endogenous RNAs; IncRNAs, long non-coding RINAs; miRNAs, microRNAs; LIHC, liver hepatocellular carcinoma.

tumorigenesis were investigated in other cancers. For
instance, E2F1 was overexpressed in breast cancer and
facilitated stemness and tumorigenesis through binding
with the promoter region of Nanog gene and promoting
its transcription (50). E2F1 mRNA expression level is
related to pathological parameters and is an independently
unfavorable factor for OS in clear cell renal cell
carcinoma (51). Although E2FI is one of the most
researched E2Fs family members (52), the exact role of
E2F1 in LIHC remains controversial and unsettled. It is

© Translational Cancer Research. All rights reserved.

reported that E2F] is upregulated in LICH and promotes
the development of LIHC via targeting MYBL2 or through
being regulated by SIRTS (15,53). E2F1 might also function
as a critical anti-apoptotic factor by counteracting c-myc-
initiated apoptosis via concomitant induction of PIK3CA/
Akt/mTOR and ¢-Myb/COX-2 pathways (18). On the other
hand, E2FI could inhibit hepatitis B virus (HBV) associated
LIHC by suppressing HBV life cycle through interfering
with the control of HBx on p53 promoter as well as directly
binding and activating p53 promoter (54). Also, E2F1

Transi Cancer Res 2022;11(8):2713-2732 | https://dx.doi.org/10.21037/tcr-22-218



2726 Tan et al. E2F1 as prognostic and therapeutic biomarker

LIHC_GSE125449_aPDL1aCTLA4 E2F1
E2F1
log (TPM/10 + 1)
008 o o 004 oo o 01 o 15 lasma
. -2.0
o o ot oot et o om0 om on om 1.0 Celtype (major-fineage)
®B 15
©® CD8Tex -
oo ‘m @ o o o o o om om © 05 ¢ Endothelal
Endotheli ® Hepatic progenitor
) & ® Malignant . -1.0
ao | ooe| [ cx [[oen . 00 9 " wdnonvacro * Moriacro
® Plasma
E g % s E é 3 [ g 8 g :.,;, % 2 :Ew ,‘:3 g Malignant ﬁ;\ﬁpallcpmgsllm 05
8 F 5 8 ® g § = £ 8 £ £ g ibroblasts .
e = © a ] £ £ 3 5 8 3 oy
3 o & 3 2 g8 g @k =>
o s & £ 2 & 00
= o -0
T
g
b5
C .
UP-REGULATED HALLMARK GENE-SETS
LIHC_GSE140228_10X E2F1 o e T r
et - H
HALLMARK_E2F_TARGETS gl - -— i
o L
10 oo -
= -
Celltype (major-lineage) s -ﬂ
B 5 . 3 o coumenent
© CD4Teonv [rveviirmeest
CD8T 1.5 i ] e 4!
pripe-pmian {
5 0 Love PO =
¥ o [os oseguiien
® Mast ¥ < 10 % ? D;g svortoms .- i
© Mono/Macro R S 5 | o - 1
o NK g i
® Plasma Lovel pr— 2
© Tprolif 2 e paronn| ,
LC. = 20 urrone._seeace | 1
oiacro ? © Treg 0.5 10 ’ s w nacers i
¢ i [ousjonind :
05 eyl . :
15 i —— o i
00 e L !
-10 0 10 [rseipemt - 1
e s e L R
UMAP 1 £3589 38883
£y % ¢ ¥ 2
e IR
8 [
UP-REGULATED HALLMARK GENE-SETS
Cottypn o
E2F1 wrimone | - —
LIHC_GSE140228_Smartseq2 HALLMARK_E2F TARGETS ) -h -
el - '
e sasam e |
1.75 10 Level Prenet i r 1
Hos ) e
1.50 i i e soina = 1
5 20 |
Celltype (major-lineage) o -
. 1.25 o [t ot
© CD4Teonv . e
© CDBTex =7 oo s o ]
°DC 10 = 10 =
olLC = o5 e s
© Mast 075 2 -5 s v s, o
# Mono/Macro : nroupen_peoron sessonse
®NK Cu\guv ronec.
© Plasma A 050  _ =
® Tprolif 7 10 Z cacccoont
| 005 : st
-15 i pltisnpmmgn)
-0.00 -10 0 10 frorapeant
UMAP_1 el -
ety
8\ sw 8: 3‘ 8| 3
R EE
g 38
§ 8
UP-REGULATED HALLMARK GENE-SETS
Galtypo_major_ineage o E—
LIHC_GSE98638 E2F1 w pesscnce e
HALLMARK_E2F_TARGETS e
A raso
25 pramem—
Golour [tpopinnd
LK peosreme
20 3 [P equomal
5 3 [ovaninsy e
2 e -
Celltype (major-lineage) PGiseemien
© CD4Teonv 15 o« Level ) s
©CD8T ‘ 24 a' Yoo [ oipnd
© CD8Tex <0 075 by
© Others 3 050 e
o Tprolif 10 025 papend
®Treg it
- o e
Los i 025 comocon e e
050 Pipamepad
o0 o sowime
-0.0 -5 0 5 ek
UMAP_1 H

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2022;11(8):2713-2732 | https://dx.doi.org/10.21037/tcr-22-218



Translational Cancer Research, Vol 11, No 8 August 2022

2727

Purity T cell CD8+_TIMER T cell CD4+_TIMER

B cell_TIMER

Neutrophil_TIMER Macrophage_TIMER Myeloid dendritic cell_TIMER

Rho =0.241 [ o Rho = 0.144] [~ o Rho_= 0.155
p = 5.806-06 p=17.52603

p=38303 | o

2.

Rho = 0.357]

o] Rho = 0.104 272 [+ Rho = 0446
p = 8.0267

B Rho = 0.
p=5.47602) p=291e0 p=299e-18

E2F1 Expression Level (log2 TPM)
=
LIHC

°

025 050 075 10000 0.5

10 15 00 o
Purity Infiltration level

5 10 15 2000 05
Infiltration level

Infiltration level

15 00 0.2 0.4 0.6 0.0 0.5 1.0 15 0.5 1.0 1.5 2.0
Infiltration level Infiltration level Infiltration level

Purity T cell CD8+ T cell CD4+ B cell

Neutrophil

Rho 0.104
p 7.52E E E 5.47E-02

Macrophage  Dendritic cell

-: positive correlation (p<0.05, p>0)

Spearman’s p : no significant (p>0.05)

Figure 8 The association between E2F1 and tumor immune microenvironment explored via single cell sequencing data from TISCH

database. (A) The heatmap of E2F1 expression levels in different types of cell clusters of 4 LIHC datasets; (B) E2F1 expression pattern in
the LIHC_GSE125449_aPDL1aCTLA4s dataset showed that E2F1 expressed in malignant cell cluster; (C-E) the E2F1 expression pattern,
the enrichment of E2F targets, and the hallmark of upregulated genes in different cell clusters investigated from 3 datasets, namely LIHC_
GSE140228_10X, LIHC_GSE140228_Smartseq2, and LIHC_GSE98638; (F) the correlations between E2F1 expression and infiltrations

of different immune cells in LIHC analyzed via TIMER2.0 database. Red arrows indicate E2F1 expression in malignant cell cluster or

proliferating T cell cluster. LIHC, liver hepatocellular carcinoma.

expression level proved to be positively related to tumor
apoptotic index in LIHC (55). Since the proliferative and
suppressive functions of E2F] in LIHC may coexist, it is
worth exploring the relationship between E2FI and LIHC
from translationally and clinically relevant viewpoints.

Hence, this study assessed the clinical significance of
E2FI in LIHC using a variety of databases to consolidate the
results. It is confirmed that E2FI mRNA and protein were
overexpressed in LIHC regardless of clinicopathological
characteristics. Moreover, those harboring more malignant
features, such as advanced stage and high grade, exhibited
higher E2F1 expression level, potentially indicate that
E2F] may serve as a vital molecule in LIHC development.
Furthermore, this study revealed that E2F1 overexpression
is associated with poor OS and PFS, denoting that E2F1
may be employed as an unfavorable prognostic factor for
LIHC. These findings are, to some extent, in accordance
with the standpoint of Farra et 4l. (56), proposing that the
proliferative and apoptotic functions of E2F] in LIHC
may coexist but the proliferative effect seems to be more
pronounced than the apoptotic one.

Possible mechanisms contributing to the upregulation
of E2F1 were probed. Previous studies reported that E2F1
showed methylation differences between LIHC and healthy
liver tissue, as well as between LIHC and cirrhosis tissue,
suggesting E2F] promotor methylation plays an important
role in hepatocarcinogenesis (57,58). Gao et al. (59,60)
suggested that E2F1 could be epigenetically regulated by

© Translational Cancer Research. All rights reserved.

PcG via EZH2-mediated H3K27me3 in LIHC. However,
this study indicated promotor methylation may not be
considered as a vital factor that could influence E2F1
expression.

Gene amplification is also closely linked to the
pathogenesis and anti-tumor drug sensitivity in various
cancers (61). Chromosome 1q21-23 amplification has been
identified as the most frequent chromosomal alteration
associated with LIHC (62). Besides, CCN2/MAPK/
Id-1 loop feedback amplification is involved in oxaliplatin
resistance, and CCN2 or MAPK signaling inhibitor could
ameliorate oxaliplatin resistance in LIHC (63). This study
revealed amplification is one of the contributing factors
to the overexpression of E2F1. Kent et al. have shown
that copy number gains in E2F] or E2F3b resulted in
dosage-dependent spontaneous LIHC in mice without the
involvement of additional organs (64), suggesting that E2F1
is a vital molecule for LIHC.

Dysregulation of ceRNAs network has been implicated
in the pathogenesis of cancers like LIHC (65). An LIHC-
specific IncRNA-miRNA-mRNA ceRNAs network
is being expanded in recent years and is deemed as a
potential prognostic marker (66). It is also found that
ceRNAs could be harnessed to support LIHC treatment
and improve drug sensitivity (65,67). Nonetheless, the
ceRNAs network of E2FI in LIHC has not been well
established. Here, a ceRNAs network of E2F1 including 3
IncRNAs and 4 miRNAs was mapped out. The 3 IncRNAs
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named AC025048.4, AC092171.5, and AC090114.2 were
reported to be associated with poor prognosis in other
cancers such as lung adenocarcinoma, pancreatic cancer,
and cholangiocarcinoma, and the first two are related to
immunoregulatory pathways (68-71). The carcinostatic
role of the 4 miRNAs including miR-150-5p, miR-302c-
3p, miR-520d-3p, and miR-330-5p in LIHC were verified
by wet-lab experiment (72-75). Besides, miR-150-5p is
supposed to be one of the segments regarding sorafenib
resistance in LIHC (76).

Liver is a special immune-tolerant organ that can
effectively escape the immune response (77), while the
LIHC neoplasm contains a large number of immune
cells, forming a complex immune microenvironment
(78,79). The recent years have witnessed the emerging
and unprecedent progression of immunotherapy, however,
low response rate and consequent drug-resistance have
largely limited the efficacy of immunotherapy (80).
Exploring immune microenvironment to improve the
efficacy of immunotherapy is needed. By analyzing single
cell sequencing data, this study revealed that E2F1 was not
only expressed in malignant cell cluster but also expressed
in specific immune cell clusters. Yim ez a/. revealed that
LIHC from transgenic mice expressing Myc/E2fl or E2f1
exhibited poor prognosis. Moreover, 88% of LIHC from
E2f1 model were classified into high immune activity
subgroup with high Pd-1 expression, which can predict
the response to Pembrolizumab (81). Mechanically, one
study indicated that CASC11 and E2FI could impact the
activation of the NF-«B signaling and PI3K/Akt/mTOR
pathway and further regulate the expression PD-L1 (82).
Together with our findings, those evidence suggests that
E2FI could affect immune microenvironment and thereby
might be employed as a potential therapeutic target for
immunotherapy.

E2F1/E2F4 inhibitor HLMO006474 has been preclinically
applied to treat several kinds of cancers. Rouaud ez /. (83)
demonstrated that HLMO006474 had an anti-proliferative
effect on melanoma cells. Some relevant E2F1 target
genes, such as BIRC5, CDC6, or BRCAI were inhibited
by HLM006474. Moreover, HLM006474 could induce
cell cycle arrest in the G2/M phase, apoptosis via caspase-3
and p53, and senescence. Meanwhile, it proved that
HLMO006474 could reduce the viability of lung cancer
cell lines (84) and potentially alter the progression of
myelodysplastic syndrome into acute myeloid leukemia (85).
Meanwhile, Sheldon (86) indicated that in breast cancer,
arsenic trioxid could inhibit the dissociation of E2F1 from
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the tumor suppressor, retinoblastoma protein (pRB) due to
changes in pRB phosphorylation which leads to decreased
E2F1 transcriptional activity. There are also a few studies
about E2F1 inhibitors for hepatocellular carcinoma.
The small molecule BTYNB could interfere with E2F-
driven gene expression and tumor growth in experimental
mouse tumor models (87). Liu er al. (88) reported that
hepatocellular carcinoma tissues with embryonic stem cell-
like signature were sensitive to HLMO006474. Although
preliminary data strengthen the hypothesis that E2F
inhibitors could be useful as a new therapeutic approach
for hepatocellular carcinoma, there is still a long way to go
prior to clinical application.

Notably, one limitation of this study is that only
bioinformatic methods were adopted to integrate and
analyze numerous data. Further wet-lab verification is
needed to make the findings more solid.

Conclusions

Bioinformatic analysis indicated that, as a hub gene, E2F1
was overexpressed in LIHC and related to poor prognosis.
Amplification and ceRNAs regulation may contribute to
the overexpression of E2F1. E2FI could affect immune
microenvironment. Together, this study indicated that E2F1
is one of the key genes and could be used as a potential
prognostic biomarker and therapeutic target for LIHC.
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Figure S1 The relationship between E2F1 expression and survival in subgroups of LIHC. (A-I) The Kaplan-Meier overall survival curves in

subgroups of male, Asian, Caucasian, cancer stage 1, cancer stage 1 & 2, cancer stage 2 & 3, tumor grade 2, No hepatitis virus infection, No

alcohol consumption.
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