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Stemness-related gene signature for predicting therapeutic
response in patients with esophageal cancer
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Background: Extensive research has indicated that tumor stemness promotes tumor progression. However,
the underlying role of stemness-related genes (SRGs) in esophageal cancer (ESCA) remains unclear.
Methods: This study identified differentially expressed stemness-related (DESR) messenger RNAs
(mRNAs), microRNAs (miRNAs), and long non-coding RNAs (IncRNAs) in ESCA, and correlated them
with the clinical features of patients with ESCA to develop a prognostic risk assessment model. Functional
analysis, protein-protein interaction (PPI) analysis, competing endogenous RNA (ceRNA) networks, and
tumor-infiltrating immune cell analyses were performed to corroborate the results obtained from the model.
Results: Correlation analysis of the stemness enrichment scores revealed 1,106 DESR genes (DESRGs),
84 DESRmiRNAs, and 320 DESRIncRNAs were identified from The Cancer Genome Atlas Esophageal
Carcinoma (TCGA-ESCA) dataset. Network clustering was performed and the top 20 connection points
were identified, including CDC20 that connects to 136 adjacent nodes. A ceRNA network was constructed,
including 17 DESRmiRNAs, 44 DESRIncRNAs, and 55 DESRGs.

Conclusions: NCAPG [log,fold change (FC) =1.81; q value =2.68x10™"'] was significantly upregulated in
ESCA and positively correlated with resting natural killer (NK) cells, suggesting that human NK cells rest
via the overexpression of NCAPG in ESCA. hsa-miR-1269a is significantly upregulated in ESCA patients
with poor prognostic features. CD4" resting memory T cells (P<0.01) were significantly negatively correlated
with hsa-miR-1269a. The insights presented in this study will contribute to the development of innovative
therapeutics for the treatment of patients with ESCA.
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Introduction

Esophageal cancer (ESCA) is the second deadliest
gastrointestinal cancer. Patients generally have poor
prognosis, with a 5-year survival rate of 40% for early-
stage patients (1). There are two pathological types
of ESCA that show regional specificities because of
differences in living habits and genetic backgrounds.
Esophageal squamous cell carcinoma is more prevalent
in Southeast Asia, while esophageal adenocarcinoma is
more frequent in Europe and America (2). Patients with
ESCA can be divided into resectable patients and those
who are inoperable (3). Traditional treatments such as
surgery, radiotherapy, chemotherapy, immunotherapy, and
targeted therapy, have limited efficacy in both patients
with resectable and those with inoperable ESCA, leading
to poor outcomes (4). In patients with advanced metastatic
ESCA, nanoparticles Abraxane™ and Doxil™ can be used
as treatment options (3). Carboplatin and paclitaxel are the
most common preoperative treatment agents for ESCA
(5), while capecitabine and fluorouracil are administered
postoperatively (6). Minimally invasive esophagectomy
is a common surgical method for patients with operable
ESCA to reduce postoperative morbidity. For patients
with inoperable ESCA, cebox and cisplatin are used in
combination to prolong survival (3). Pembrolizumab"",
which targets specific genetic features, has been approved by
the Food and Drug Administration (FDA) for the treatment
of advanced ESCA (7). Therefore, current research on
ESCA should be continuously adjusted to develop more
effective treatment strategies.

Cancer stem cells (CSCs) are highly relevant for
tumorigenesis, progression, recurrence, and metastasis
of various cancers (8). The messenger RNA (mRNA)
expression-based stemness index (mRINAsi) is used to evaluate
the unique characteristics of CSCs and to assess tumor
development (9). There is mounting evidence to support
the existence of CSCs in lung adenocarcinoma (10), breast
cancer (11), colorectal cancer (12), and prostate cancer (13),
as well as their roles in metastasis, drug resistance, and cancer
adaptation to changing microenvironments. For instance,
single-cell transcriptome analysis revealed the landscape
of intra-tumoral heterogeneity and stemness-related
subpopulations of liver cancer cells (14).

Stemness-related genes (SRGs) have been identified
in numerous cancers, such as cervical squamous cell
carcinoma (15), colorectal cancer (16), renal clear cell
carcinoma (17), lung cancer (18), gastric cancer (19),
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and ESCA (20). Moreover, SRGs have been shown to
promote the formation, progression, and metastasis of
different cancers (21). The AGR3 gene has been shown to
promote the stemness of CSCs by upregulating SRGs via
Frizzled 4 (FZD4), which is involved in the Wnt/B-catenin
signaling pathway (22). Study examining ESCA stemness
and clinical characteristics have indicated that higher-
stage and metastatic tumors feature great phenotypic
dedifferentiation (20). This study examined how SRGs
promote ESCA formation, progression, and metastasis.
The differentially expressed stemness-related (DESR)
genes (DESRGs), DESR microRNAs (DESRmiRNAs),
and DESR long non-coding RNAs (DESRIncRNAs) were
firstly identified and functional analyses were performed.
CSCs could change tumor microenvironment into
immunosuppressive (23). Tumors with significant positive
DESRGs, DESRIncRNAs, and DESRmiRNAs expression
may exist higher immune infiltration in the tumor
microenvironment (21). The DESRGs, DESRmiRNAs,
and DESRIncRNAs were used to develop a prognostic
risk assessment model and to construct a protein-protein
interaction (PPI) network and a competing endogenous
RNA (ceRNA) network, which together with the tumor-
infiltrating immune cell analyses, corroborated the
model results (Figure 1). Potential stemness-related
prognostic markers for ESCA were identified. We present
the following article in accordance with the TRIPOD
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-22-1723/rc).

Methods

Data collection and analysis of differential gene expression

The ESCA gene expression profile was obtained from The
Cancer Genome Atlas-ESCA (TCGA-ESCA) database
containing 11 normal tissues and 152 tumor tissues, and
analyzed using the R package TCGA biolinks (24). Among
these, 145 tumor tissues had complete clinical information,
including age, sex, survival status, and tumor, node, metastasis
(TNM) stage. The read counts were converted to transcripts
per kilobase million (TPM) to compare the relative gene
expression level between samples, while the miRNA data
were converted to reads per kilobase million (RPKM) (25).
Differential gene expression between tumor and
normal tissue samples was analysis using the R package
DESeq2 (26). The significant threshold for the mRNA
and IncRNA differential expression was defined as the
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The mRNA, IncRNA, miRNA expression data, clinical information and survival data of
esophageal cancer were downloaded from TCGA
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Figure 1 Flowchart showing the process involved in this study. mRNA, messenger RNA; IncRNA long non-coding RNA; miRNA,
microRNA; TCGA, The Cancer Genome Atlas; GSEA, gene set enrichment analysis; ssGSEA, single-sample GSEA; GO, Gene Ontology;

KEGG, Kyoto Encyclopedia of Genes and Genomes; ceRNA, competing endogenous RNA.

log, of the absolute fold change (FC) value greater than
1 (log,FC >1) and adjusted P value less than 0.05 (q value
<0.05). The threshold to determine differentially expressed
miRNA was set as log,FC >0.5 and q value <0.05. The
differential analysis results are displayed as heat maps using
the R package pheatmap (https://CRAN.R-project.org/
package=pheatmap) and as volcano maps using the ggplot2
R package (27). The DESRGs were obtained using the gene
set enrichment analysis (GSEA) (https://www.gsea-msigdb.
org/gsea/index.jsp) tool of the GSEA software (28). The
study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013).

Construction of the PPI network and the ceRNA network

The single-sample GSEA (ssGSEA) method (29) was used
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to obtain the enrichment score for cell stemness of each
sample based on the ESCA expression data and the DESRG
set. To identify the DESRmiRNAs and DESRIncRNAs,
correlation analysis was performed between the
differentially expressed mRINA and the IncRNA or miRINA
levels. Significant correlation coefficient greater than 0.2
(p>0.2; P<0.05) indicated strong positive correlation.

To construct the PPI network, the STRING database
(https://string-db.org/), containing 2,031 species,
9.6 million proteins, and 1.38 million PPIs was used.
Our PPI analysis included experimental results, text-
mined results from PubMed abstracts, and synthesized
and predicted results from bioinformatics analyses (30). A
correlation coefficient above 0.7 (p>0.7; P<0.05) indicated
a strong association between the differentially expressed
genes and cell stemness. The PPI results were exported
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from the STRING database and visualized using the
Cytoscape StringApp (31). In addition, the molecular
complex detection (MCODE) plugin from Cytoscape was
used to analyze hub genes in the PPI network.

MiRcode (https://bio.tools/miRcode) provides
transcriptome-wide human miRINA target predictions based on
comprehensive GENCODE gene annotations (https://www.
gencodegenes.org/), including 10,000 IncRNA genes (32).
Therefore, MiRcode was used to identify the miRNAs and
IncRNAs in our dataset. The TargetScan database was used
to predict the biological targets of the identified miRNAs
by searching for the presence of conserved 6mer-8mer sites
on the mRNA sequences matching the seed region of each
miRNA (33). The miRDB database (http://mirdb.org/) was
used to confirm the predicted miRINA targets and functional
annotations by implementing its MirTarget tool, which uses
thousands of miRNA-target interactions (M'TTs) from high-
throughput sequencing experiments (34). miRTarBase (https://
mirtarbase.cuhk.edu.cn) is an experimentally validated MTT
database that has accumulated more than 360,000 MTTs
obtained from natural language processing after a manual
survey of relevant literature (35). For the analysis using
miRTarBase, research articles were systematically screened to
collect those related to miRNA functional studies. The MTIs
from TargetScan, miRDB, and miRTarBase analysis were
combined with the identified DESRGs, DESRmiRNAs, and
DESRIncRNAs to construct a ceRNA network, which was

visualized using Cytoscape.

Functional analysis

Gene Ontology (GO) analysis is a standard method for
large-scale functional enrichment studies that includes
terms related to biological processes (BPs), molecular
functons (MFs), and cellular components (CCs) (36). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
widely used database for storing information on genomes,
biological pathways, diseases, and drugs (37). GO and
KEGG pathway enrichment analyses of DESRGs were
performed using the clusterProfiler (38) R package, with
a cutoff value of false discovery rate (FDR) <0.05 for
statistical significance.

To investigate the differences in enriched BPs between
normal and tumor tissues, GSEA was performed based on
the TCGA gene expression profiling dataset of patients
with ESCA (39). For GSEA analysis, the control “c2.
cp.kegg.v7.1.entrez” dataset used was downloaded from the
MsigDB database and compared with the gene expression
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profiling dataset of patients with ESCA (FDR <0.25).

Development and validation of a prognostic risk assessment
model

Univariate Cox (uni-Cox) regression analysis (P<0.05)
was performed for the DESRGs, DESRmiRNAs, and
DESRIncRNAs to estimate ESCA prognosis. The uni-Cox
results were visualized using forest plot. Survival analysis
was performed on the DESRGs, DESRmiRNAs, and
DESRIncRNAs and the results were displayed using the R
package survminer (40).

Least absolute shrinkage and selection operator (LASSO)
regression analysis was performed to filter the DESRGs,
DESRmiRNAs, and DESRIncRNAs with a 10-fold cross-
validation. Furthermore, the DESRGs, DESRmiRNAs,
and DESRIncRNAs screened by the LASSO method
were used for multivariate Cox (multi-Cox) proportional
hazards regression and risk model construction. The
LASSO glmnet package (41) was used to divide the TCGA
samples with complete clinical information into a training
set and a validation set at a ratio of 1:1. The training dataset
was composed of the DESRGs, DESRmiRNAs, and
DESRIncRNAs (single factor P<0.05). The accuracy of the
final model was verified through the validation set. The R
package ggrisk (https://CRAN.R-project.org/package=ggrisk)
was used to display the risk factor and perform the survival
analysis on the risk scores of the training and validation
sets. The R package pROC was used to obtain the receiver
operating characteristic (ROC) curve, nomogram, and
standard curve, showing the accuracy of the model. Finally,
multi-Cox analysis with clinical traits was used to determine
whether the risk score is independent of other traits.

Tumor-infiltrating immune cells analyses

CIBERSORT (https://cibersort.stanford.edu/index.php)
was used to analysis 22 tumor-infiltrating immune cell
types in each tissue, using the LM22 signature matrix with
1,000 permutations (42). The gene expression matrix data
(TPM) was uploaded to CIBERSORT combined with the
LM22 eigengene matrix, and the immune cell infiltration
matrix was derived. A histogram was drawn showing the
distribution of the 22 infiltrating immune cells in each
sample. The R package corrplot (https://github.com/taiyun/
corrplot) was used to calculate and display the correlation
between the prognosis-related mRNA, IncRNA, miRNA,
and the 22 tumor-infiltrating immune cell types.
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Table 1 Baseline data of TCGA patients with ESCA

Type Alive (n=98) Deceased (n=46) P value
Tumor grade, n (%) 0.238
G1 16 (16.3) 2(4.3)
G2 38 (38.8) 19 (41.3)
G3 21 (21.4) 12 (26.1)
GX 23 (23.5) 13 (28.3)
Gender, n (%) 0.448
Female 17 (17.3) 5(10.9)
Male 81 (82.7) 41 (89.1)
Age (years), n (%) 0.912
<60 43 (43.9) 19 (41.3)
260 55 (56.1) 27 (58.7)
Stage, n (%) 0.0011
| 17 (17.3) 3 (6.5)
[ 48 (49.0) 14 (30.4)
Il 31(31.6) 22 (47.8)
\Y% 2 (2.0) 7(15.2)
T staging, n (%) 0.191
T1 18 (18.4) 9 (19.6)
T2 25 (25.5) 9 (19.6)
T3 55 (56.1) 26 (56.5)
T4 0(0.0) 2 (4.3)
M staging, n (%) 0.00238
MO 86 (87.8) 34 (73.9)
M1 1(1.0) 7(15.2)
MX 11 (11.2) 5(10.9)
N staging, n (%) 0.00909
NO 48 (49.0) 11 (23.9)
N1 33 (33.7) 28 (60.9)
N2 6 (6.1) 4(8.7)
N3 6 (6.1) 0(0.0)
NX 5 (5.1) 3 (6.5)

TCGA, The Cancer Genome Atlas; ESCA, esophageal cancer.

Statistical analyses

All statistical analyses were performed using R software
version 4.1.3 (https://www.r-project.org/). The ROC curves
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assessed the accuracy of the risk score in estimating the
prognosis by calculating the area under the ROC curve
(AUC). Spearman’s correlation (p) was used to determine
all correlations between two samples. All statistical analyses
were two-sided, with a significance of P<0.05.

Results
Differential expression analyses

DESeq2 was used to analyze the differential expression
between TCGA-ESCA tumors [152] and normal tissues [11].
Baseline data of TCGA patients with ESCA was detected
in Table 1. A total of 3,504 differentially expressed mRINAs
(including 1,900 upregulated and 1,604 downregulated
mRNAs; Figure 2A), 1,564 differentally expressed IncRINAs
(including 993 upregulated and 571 downregulated
IncRNAs; Figure 2B), and 209 differentially expressed
miRNAs (including 130 upregulated and 79 downregulated
miRNAs; Figure 2C) were identified. Heatmaps were used to
identify the most significant differentially expressed mRNAs,
IncRNAs, and miRNAs (Figure 2D-2F).

Stemmness-related ceRNA network

Correlation analysis of the stemness enrichment scores
revealed 1,106 DESRGs, 84 DESRmiRNAs, and 320
DESRIncRNAs (Figure 34). Network clustering was
performed (Figure 3B-3D) and the top 20 connection
points were identified, including CDC20 that connects
to 136 adjacent nodes (Figure 3E). A ceRNA network
was constructed, including 17 DESRmiRNAs, 44
DESRIncRNAs, and 55 DESRGs (Figure 3F).

Functional analysis of the DESRGs

GO enrichment analysis for the DESRGs (Figure 44,4B)
identified nuclear division, organelle fission, mitotic nuclear
division, DNA-dependent DNA replication, and DNA
replication as enriched initiation terms. KEGG pathway
enrichment analysis revealed that the DESRGs were mainly
enriched in biological pathways such as cell cycle, DNA
replication, human papillomavirus infection, Cushing
syndrome, and protein digestion and absorption (Figure 4C).
GSEA functional analysis revealed that the DESRGs were
enriched in the following KEGG pathways: cytokine-cytokine
receptor interaction, cell cycle, calcium signaling pathway,
neuroactive ligand-receptor interaction, fatty acid metabolism,
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Figure 2 The DEGs. (A-C) The volcano plots show the DEmRNAs, DEIncRNAs, and DEmiRNAs, respectively. The red nodes represent
upregulated DEGs, the blue nodes represent downregulated DEGs, and the gray nodes represent DEGs that were not significantly different.

(D-F) The heatmaps show the gene expression in TCGA-ESCA tumors samples and normal tissues. DEGs, differentially expressed
genes; DEmRNAs, differentially expressed messenger RNAs; DEIncRNAs, differentially expressed long non-coding RNAs; DEmiRNAs,

differentially expressed microRNAs.

DNA replication, spliceosome, NOD-like receptor signaling
pathway, vascular smooth muscle contraction pathway, and
graft-versus-host disease (Figure 54). The most enhanced
pathways were cytokine-cytokine receptor interaction, cell
cycle, and DNA replication (Figure 5B), whereas the most
inhibited pathways were related to calcium signaling pathway,
neuroactive ligand-receptor interaction, and fatty acid

metabolism (Figure 5C).
Survival analysis of the DESRGs, DESRmiRNASs, and

DESRIncRNAs
Uni-Cox and survival analysis of the DESRGs,

© Translational Cancer Research. All rights reserved.

DESRmiRNAs, and DESRIncRNAs was performed to
identify the correlation on the survival of patients with
ESCA. The uni-Cox model (P<0.05) used 73 DESRGs,
7 DESRmiRNAs, and 23 DESRIncRNAs (Table S1).
The pseudogene MTRNR2LI13 and the chromosome 15
open reading frame 54 (C150rf54) were identified as high-
risk factors associated with patient mortality. Notably, the
centromere protein I (CENPI), PRICKLE?2 antisense RINA
1 (PRICKLE2-AS1), and human miRNAs hsa-miR-101-1
and hsa-miR-101-2 were found to negatively correlate
with patient mortality. Survival analysis revealed six highly
significant DESRGs, DESRmiRNAs, and DESRIncRNAs
(Figure S1).
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(E) Histogram depicting the PPI network nodes for the DESRGs. (F) A diagram of the stemness-related ceRNA network. Green presents
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coding RNA; mRNA, messenger RNA.

Construction and validation of the prognostic model

The TCGA-ESCA datasets were randomly divided into
training and validation sets, and univariate analysis was
performed to detect prognostic-related DESRGs. LASSO
regression was used to identify meaningful genes in the
uni-Cox analysis, including six DESRGs, namely, NCAPG,
HIST1H47, KIAA1456, SCUBE2, PCCA, and ARID3A, that
were selected to build the prediction model (Figure 6A).
The expression profiles of these selected genes were used to
calculate the risk scores in the training and validation sets
separately. The total risk score was calculated as follows:
expression level of (NCAPG x 0.0245 + HIST1H47x1.2293
+ KIAA1456 x 0.0358 + SCUBE2x 0.1375 + PCCA x 0.0738
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+ ARID3A x 0.0134). The distribution of risk scores in
patients with ESCA and the correlation between survival
time and risk score in the training set revealed that patients
with high scores were associated with a higher mortality
(Figure 6B), indicating that high-risk patients generally had
poor overall survival (OS). A similar trend was observed in
the validation set (Figure 6C). Based on the median value
of the risk scores, the patients were divided into a high-risk
group and a low-risk group. The survival rate of patients in
the high-risk group was significantly lower than that in the
low-risk group in both the training (P<0.0001; Figure 6D)
and validation sets (P=0.01; Figure 6E). The AUC for 1-,
2-, and 3-year survival rates in the training group were
0.995, 0.937, and 0.818, respectively (Figure 6F), while
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Figure 7 The landscape of immune infiltration in ESCA. (A) The difference in immune infiltration. (B) A correlation heat map of 22 types
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those for the validation group were 0.732, 0.838, and 0.955,
respectively (Figure 6G). These results indicated that the
DESRGsS selected as prognostic indicators have robust
potential for survival prediction in patients with ESCA.
Uni-Cox (Figure 6H) and multi-Cox (Figure 61)
regression analyses with clinical variables (risk score,
sex, age, grade, and stage) revealed that the risk score
and stage were independent prognostic indicators for
patients with ESCA. A nomogram combining risk score
and clinicopathological parameters was selected to predict
ESCA patient prognosis (Figure 67). Calibration curves
were used to compare the actual probabilities of survival and

© Translational Cancer Research. All rights reserved.

the predicted survival rates. The results showed a significant
correlation between the probability of OS and the actual
survival rates for 1, 2, and 3 years (Figure 6K).

A prognostic model for the DESRIncRNAs and
DESRmiRNAs was constructed and validated. The
regression analysis identified SCOC-AS1, RP11-626E13.1,
RP1-136B1.1, and RP11-16E23.3 as meaningful IncRNAs
for the prediction model. The risk score for DESRIncRNAs
was calculated as follows: expression level of SCOC-
AS1 x 0.7209 + expression level of RP11-626E13.1 x
2.2361 + expression level of RPI-136B1.1 x 1.4229 +
expression level of RP11-16E23.3 x 6.7802. Furthermore,
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the miRNAs selected for the risk analysis were hsa-miR-
269a, hsa-miR-214, hsa-miR-3652, and hsa-miR-503.
The DESRmiRNAs risk score was calculated as follows:
expression level of hsa-miR-1269a x 0.003 + expression
level of hsa-miR-214 x 0.03181 + expression level of hsa-
miR-3652 x 0.1195 + expression level of hsa-miR-503 x
0.04297. The risk score results for the DESRIncRNAs
(Figure S2) and DESRmiRNAs (Figure S3) showed that the
model provided high accuracy in predicting the prognosis
of patients with ESCA.

Tumor-infiltrating immune cells

"To analyze the effect of tumor-infiltrating immune cells
on the model, the CIBERSORT algorithm was used to
calculate the degree of infiltration of 22 types of infiltrating
cells and display their overall distribution scores (Figure 74)
and correlations (Figure 7B). The correlation heatmap
of the 22 types of infiltrating cells revealed that activated
and resting natural killer (NK) cells, activated and resting
mast cells, resting MO macrophages, and CD4" memory T
cells had significant negative correlations. Monocytes were
positively correlated with resting dendritic cells.

The association between infiltrating levels of the
immune cells and the expression of DESRGs (Figure 7C),
DESRIncRNAs (Figure 7D), and DESRmiRNAs (Figure 7E)
from patients with ESCA was analyzed. ARID3A was found
to be positively correlated with infiltrating levels of immune
cells, including follicular helper T cells (P<0.001) and activated
CD4" memory T cells (P<0.01). KIAA1456 expression was
positively correlated with gamma delta (y8) T cells (P<0.01)
and negatively correlated with activated mast cells (P<0.01).
The expression of NCAPG was positively correlated with
resting NK cells (P<0.01). The expression of PCCA was
positively correlated with resting CD4" memory T cells
(P<0.01) and plasma cells (P<0.01), and negatively correlated
with activated CD4" memory T cells (P<0.01). SCUBE2
expression was negatively correlated with activated dendritic
cells (P<0.01). RPI-136B1.1 levels were positively correlated
with activated NK cells (P<0.001) and CD8" T cells (P < 0.01),
and negatively correlated with follicular helper T cells (P<0.01),
resting NK cells (P<0.001), and M0 macrophage (P<0.001).
Finally, hsa-miR-1269a expression was negatively correlated
with resting CD4" memory T cells (P<0.01).

Discussion

To the best of our knowledge, this is the first study to

© Translational Cancer Research. All rights reserved.
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perform a comprehensive characterization of ESCA
stemness based on combined analyses of mRINA, miRNA,
and IncRNA expression in ESCA tumors and normal
tissues. A total of 1,106 DESRGs, 84 DESRmiRNAs, and
320 DESRIncRNAs were identified using the TCGA-
ESCA dataset.

Non-coding RNAs, including miRNAs and IncRNAs, play
important roles in transcriptional and translational regulation
in several cancers (43). IncRNAs act as miRNA sponges to
reduce their regulatory abilities (44). Interactions between
IncRNAs, miRNAs, and mRNAs form ceRNA networks (45).
Understanding the role of ceRNA networks in pan-cancer
analysis is crucial (46). However, to date, no such study
has been conducted on stemness-related ceRNA networks
in ESCA. In this present investigation, we constructed a
stemness-related ceRNA network based on 55 DESRGs,
17 DESRmiRNAs, and 44 DESRIncRNAs, and analyzed
its correlation with the survival data of patients with ESCA.
PRICKLE2-AS1, FAM13A4-AS1, C150rf54, and LINC00304
were identified as high-risk DESRIncRNAs that correlated
with high ESCA severity. Previous study has demonstrated
that LINC00304 directly promotes cell proliferation and
cell cycle progression in prostate cancer (47). PRICKLE2-
AST has been shown to be differentially methylated in vulvar
squamous cell carcinoma (48) and FAM13A4-AS1 is involved
in regulating RNA splicing and mRINA processing in thyroid
cancer (49). Herein, PRICKLE2-AS1, FAM13A-AS1, and
LINC00304 were shown to be downregulated in ESCA
tumors, whereas C1 50154 was upregulated (log,FC =1.51; q
value =0.02). CI507f54 is known to be positively associated
with high-grade gastric cancer (50) and indeed, C150734 may
be a potential biomarker for ESCA prognosis.

NCAPG is one of the DESRGs selected to build the
prediction model. Increased expression of NCAPG promotes
oncogenesis in non-small cell lung cancer (51), glioma (52),
lung adenocarcinoma (53), prostate cancer (54), and
esophageal squamous cell carcinoma (55). NCAPG (log,FC
=1.81; q value =2.68x10-11) was significantly upregulated
in ESCA and positively correlated with resting NK cells,
suggesting that human NK cells rest via the overexpression of
NCAPG in ESCA. Candidate DESRGs, DESRIncRNAs, and
DESRmiRNAs that show significant positive correlations
with immune infiltration cells, increased expression of SRGs
and increased immune infiltration may be related to poor
prognosis. Notably, the oncogene NCAPG in prostate cancer
is directly targeted by the antitumor hsa-miR-145-3p, which is
associated with cancer pathogenesis (54). In the present study,
we found that hsa-miR-1269a was significantly upregulated
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in ESCA tumors (log,FC =3.98; q value =2.92x10™") with
poor prognostic features. Additionally, the number of resting
CD4" memory T cell as negatively corrected with hsa-miR-
1269a (P<0.01). hsa-miR-145-3p is known as a diagnostic
and oncogenic marker in hepatocellular carcinoma (56),
colorectal cancer (57), and non-small cell lung cancer (58),
and it may be involved in the molecular pathogenesis of
various cancers, including ESCA (55).

ARID3A acts as an oncogene, and its overexpression
affects the development of colorectal cancer (59), ovarian
cancer (60), gastric cancer (61), hepatocellular carcinoma (62),
and rectal cancer (63). This report revealed that ARID3A
was upregulated and positively associated with infiltrating
follicular helper T cells and activated CD4" memory T cells,
and thus, may play an immunological role in ESCA. Follicular
helper T cells are a subset of T-helper cells, which provide
critical support to B cells and are essential for maintaining
humoral immune responses (64), such as germinal center
formation, affinity maturation, and the development of high-
affinity antibodies (65). Therefore, ARID3A is a promising
independent prognostic biomarker corresponding to follicular
helper T cells and activated CD4" memory T cells.

A previous report showed that a de novo variant in the
human HIST1H47 gene causes a syndrome analogous to
HIST1H4C-associated neurodevelopmental disorder (66).
Furthermore, HIST1H47 is the strongest negative predictor
of ovarian cancer (67) and an important prognostic
and chemoresistance predictor of ESCA (68). Herein,
upregulation expression of HISTIH47 (log,FC =1.39; q
value =1.87x107") was observed in patients with ESCA.

Hsa-miR-1269a serves as a diagnostic and oncogenic
marker in hepatocellular carcinoma (56), colorectal
cancer (57) and non - small cell lung cancer (58). Our
investigations showed that hsz-miR-1269a is significantly
upregulated in ESCA patients with poor prognostic
features. CD4" resting memory T cells (P<0.01) were
significantly negatively correlated with hsa-miR-1269a.

This is the first study to perform a comprehensive
characterization of ESCA stemness based on a combined
analysis of mRNA, miRNA, and IncRNA expression, and
correlation with prognosis prediction. SRG network will
facilitate improved treatment regimens for patients with
ESCA and may promote the development of innovative
therapeutics in the future.

Acknowledgments

We thank the editor and the four anonymous reviewers for

© Translational Cancer Research. All rights reserved.

Zhu et al. SRGs in ESCA

their thoughtful comments.

Funding: This project was supported by the Talent
Scientific Research Start-Up Foundation of Yijishan
Hospital, Wannan Medical College (Grant Nos. YR202001
and YR201806), the Opening Foundation of the Key
Laboratory of Non-Coding RNA Transformation Research
of the Anhui Higher Education Institution (Grant No.
RNA202004), and the Key Projects of Natural Science
Research of Universities in Anhui Province (Grant No.
KJ2020A0622).

Footnote

Reporting Checklist: The authors have completed the
TRIPOD reporting checklist. Available at https://ter.
amegroups.com/article/view/10.21037/tcr-22-1723/rc

Conflicts of Interest: All authors have completed the ICMJE
uniform disclosure form (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-22-1723/coif). The authors
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved. The study was
conducted in accordance with the Declaration of Helsinki (as
revised in 2013).

Open Access Statement: This is an Open Access article
distributed in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with
the strict proviso that no changes or edits are made and the
original work is properly cited (including links to both the
formal publication through the relevant DOI and the license).
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Lundberg E, Lagergren P, Mattsson F, et al. Life
Expectancy in Survivors of Esophageal Cancer Compared
with the Background Population. Ann Surg Oncol
2022;29:2805-11.

2. LiK, Chen]J, Lou X, et al. HNRINPA2BI Affects the
Prognosis of Esophageal Cancer by Regulating the miR-
17-92 Cluster. Front Cell Dev Biol 2021;9:658642.

Transl Cancer Res 2022;11(7):2359-2373 | https://dx.doi.org/10.21037/ter-22-1723


https://tcr.amegroups.com/article/view/10.21037/tcr-22-1723/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1723/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1723/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1723/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/

Translational Cancer Research, Vol 11, No 7 July 2022

10.

11.

12.

13.

14.

15.

© Translational Cancer Research. All rights reserved.

Li X, Chen L, Luan S, et al. The development and
progress of nanomedicine for esophageal cancer diagnosis
and treatment. Semin Cancer Biol 2022. [Epub ahead of
print]. doi: 10.1016/j.semcancer.2022.01.007.

Zayac A, Almhanna K. Esophageal, gastric cancer and
immunotherapy: small steps in the right direction? Transl
Gastroenterol Hepatol 2020;5:9.

Ai D, YeJ, Wei S, et al. Comparison of 3 Paclitaxel-
Based Chemoradiotherapy Regimens for Patients With
Locally Advanced Esophageal Squamous Cell Cancer:

A Randomized Clinical Trial. JAMA Netw Open
2022;5:¢220120.

Shim YM, Yun J, Im YH, et al. The efficacy of adjuvant
chemotherapy with capecitabine and cisplatin after surgery
in locally advanced esophageal squamous cell carcinoma:
a multicenter randomized phase III trial. Dis Esophagus
2022;35:doab040.

Harada K, Yamamoto S, Kato K. Pembrolizumab for the
treatment of advanced esophageal cancer. Future Oncol
2022;18:2311-9.

Najafi M, Farhood B, Mortezaee K. Cancer stem cells
(CSCs) in cancer progression and therapy. ] Cell Physiol
2019;234:8381-95.

Chen D, Liu J, Zang L, et al. Integrated Machine
Learning and Bioinformatic Analyses Constructed a Novel
Stemness-Related Classifier to Predict Prognosis and
Immunotherapy Responses for Hepatocellular Carcinoma
Patients. IntJ Biol Sci 2022;18:360-73.

Zeng H, Ji], Song X, et al. Stemness Related Genes
Revealed by Network Analysis Associated With Tumor
Immune Microenvironment and the Clinical Outcome in
Lung Adenocarcinoma. Front Genet 2020;11:549213.

Yin P, Bai Y, Wang Z, et al. Non-canonical Fzd7 signaling
contributes to breast cancer mesenchymal-like stemness
involving Col6al. Cell Commun Signal 2020;18:143.

Wei R, Quan J, Li S, et al. Development and Validation
of a Unique Signature of Cancer Stemness-Related Genes
for Predicting the Overall Survival of Colorectal Cancer
Patients. SSRN 2020. doi: 10.2139/ssrn.3772767.
Zhuang ], Li M, Zhang X, et al. Construction of Bone
Metastasis-Specific Regulation Network Based on
Prognostic Stemness-Related Signatures in Prostate
Cancer. Dis Markers 2022;2022:8495923.

Ho DW, Tsui YM, Sze KM, et al. Single-cell
transcriptomics reveals the landscape of intra-tumoral
heterogeneity and stemness-related subpopulations in liver
cancer. Cancer Lett 2019;459:176-85.

Guo H, Wang S, Ju M, et al. Identification of

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

2371

Stemness-Related Genes for Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma by
Integrated Bioinformatics Analysis. Front Cell Dev Biol
2021;9:642724.

Wang W, Xu C, Ren Y, et al. A Novel Cancer Stemness-
Related Signature for Predicting Prognosis in

Patients with Colon Adenocarcinoma. Stem Cells Int
2021;2021:7036059.

LiuY, Wang J, Li L, et al. AC010973.2 promotes cell
proliferation and is one of six stemness-related genes that
predict overall survival of renal clear cell carcinoma. Sci
Rep 2022;12:4272.

Jiang W, Xie N, Xu C. Characterization of a prognostic
model for lung squamous cell carcinoma based on

eight stemness index-related genes. BMC Pulm Med
2022;22:224.

Lu Y], Lian L, Shen XM, et al. A bioinformatics analysis
to evaluate the prognostic value of stemness-related genes
in gastric cancer. Transl Cancer Res 2021;10:174-83.

Yi L, Huang P, Zou X et al. Integrative stemness
characteristics associated with prognosis and the immune
microenvironment in esophageal cancer. Pharmacol Res
2020;161:105144.

Hong L, Zhou Y, Xie X, et al. A stemness-based eleven-
gene signature correlates with the clinical outcome of
hepatocellular carcinoma. BMC Cancer 2021;21:716.
Chi J, Zhang H, Hu ], et al. AGR3 promotes the stemness
of colorectal cancer via modulating Wnt/ -catenin
signalling. Cell Signal 2020;65:109419.

Miiller L, Tunger A, Plesca I, et al. Bidirectional Crosstalk
Between Cancer Stem Cells and Immune Cell Subsets.
Front Immunol 2020;11:140.

Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: an
R/Bioconductor package for integrative analysis of TCGA
data. Nucleic Acids Res 2016;44:e71.

Jiang L, Zhong M, Chen T, et al. Gene regulation
network analysis reveals core genes associated with
survival in glioblastoma multiforme. J Cell Mol Med
2020;24:10075-87.

Love MI, Huber W, Anders S. Moderated estimation

of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol 2014;15:550.

Wickham H, Chang W, Wickham MH. Package ‘ggplot2’.
2014. Available online: https://cran.microsoft.com/
snapshot/2015-01-06/web/packages/ggplot2/ggplot2.pdf
Subramanian A, Tamayo P, Mootha VK| et al. Gene set
enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl

Transi Cancer Res 2022;11(7):2359-2373 | https://dx.doi.org/10.21037/tcr-22-1723



2372

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

© Translational Cancer Research. All rights reserved.

Acad Sci U S A 2005;102:15545-50.

Hinzelmann S, Castelo R, Guinney J. GSVA: gene set
variation analysis for microarray and RNA-seq data. BMC
Bioinformatics 2013;14:7.

von Mering C, Huynen M, Jaeggi D, et al. STRING:

a database of predicted functional associations between
proteins. Nucleic Acids Res 2003;31:258-61.

Doncheva N'T, Morris JH, Gorodkin J, et al. Cytoscape
StringApp: Network Analysis and Visualization of
Proteomics Data. ] Proteome Res 2019;18:623-32.
Jeggari A, Marks DS, Larsson E. miRcode: a map of
putative microRINA target sites in the long non-coding
transcriptome. Bioinformatics 2012;28:2062-3.

McGeary SE, Lin KS, Shi CY, et al. The biochemical
basis of microRNA targeting efficacy. Science
2019;366:eaav1741.

Wong N, Wang X. miRDB: an online resource for
microRNA target prediction and functional annotations.
Nucleic Acids Res 2015;43:D146-52.

Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database
curates experimentally validated microRINA-target
interactions. Nucleic Acids Res 2011;39:D163-9.

Harris MA, Clark ], Ireland A, et al. The Gene Ontology
(GO) database and informatics resource. Nucleic Acids
yot02004;32:D258-61.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes
and genomes. Nucleic Acids Res 2000;28:27-30.

Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation
(Camb) 2021;2:100141.

Subramanian A, Kuehn H, Gould J, et al. GSEA-P: a
desktop application for Gene Set Enrichment Analysis.
Bioinformatics 2007;23:3251-3.

Kassambara A, Kosinski M, Biecek P, et al. Package
‘survminer’. 2017. Available online: https://cran.microsoft.
com/snapshot/2017-04-21/web/packages/survminer/
survminer.pdf

Friedman J, Hastie T, Tibshirani R. Regularization Paths
for Generalized Linear Models via Coordinate Descent. J
Stat Softw 2010;33:1-22.

Newman AM, Liu CL, Green MR, et al. Robust

enumeration of cell subsets from tissue expression profiles.

Nat Methods 2015;12:453-7.

Wang M, Mao C, Ouyang L, et al. Long noncoding
RINA LINCO00336 inhibits ferroptosis in lung cancer by
functioning as a competing endogenous RNA. Cell Death
Differ 2019;26:2329-43.

Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

Zhu et al. SRGs in ESCA

regulation of blood-brain barrier functions in central
nervous system disorders. Fluids Barriers CNS 2022;19:27.
Lin P, Wen DY, Li Q, et al. Genome-Wide Analysis of
Prognostic IncRNAs, miRNAs, and mRNAs Forming a
Competing Endogenous RNA Network in Hepatocellular
Carcinoma. Cell Physiol Biochem 2018;48:1953-67.
Zhang Y, Han P, Guo Q, et al. Oncogenic Landscape

of Somatic Mutations Perturbing Pan-Cancer IncRINA-
ceRNA Regulation. Front Cell Dev Biol 2021;9:658346.
Kumar S, Prajapati KS, Singh AK| et al. Long non-coding
RINA regulating androgen receptor signaling in breast and
prostate cancer. Cancer Lett 2021;504:15-22.

Dasgupta S, Ewing-Graham PC, Swagemakers SMA, et
al. Exploring Differentially Methylated Genes in Vulvar
Squamous Cell Carcinoma. Cancers (Basel) 2021;13:3580.
Rao Y, Liu H, Yan X, et al. In Silico Analysis Identifies
Differently Expressed IncRINAs as Novel Biomarkers for
the Prognosis of Thyroid Cancer. Comput Math Methods
Med 2020;2020:3651051.

Liu M, LiJ, Huang Z, et al. Gastric cancer risk-scoring
system based on analysis of a competing endogenous RNA
network. Transl Cancer Res 2020;9:3889-902.

Sun H, Zhang H, Yan Y, et al. NCAPG promotes the
oncogenesis and progression of non-small cell lung cancer
cells through upregulating LGALSI expression. Mol
Cancer 2022;21:55.

Zheng G, Han T, Hu X, et al. NCAPG Promotes Tumor
Progression and Modulates Immune Cell Infiltration in
Glioma. Front Oncol 2022;12:770628.

Wang X, Tian X, Sui X, et al. Increased expression of
NCAPG (Non-SMC condensing I complex subunit G)

is associated with progression and poor prognosis of lung
adenocarcinoma. Bioengineered 2022;13:6113-25.
Shimonosono M, Idichi T, Seki N, et al. Molecular
pathogenesis of esophageal squamous cell carcinoma:
Identification of the antitumor effects of miR-145-3p on
gene regulation. Int ] Oncol 2019;54:673-88.

Chen N, Zhang G, Fu J, et al. Identification of Key
Modules and Hub Genes Involved in Esophageal
Squamous Cell Carcinoma Tumorigenesis Using
WCGNA. Cancer Control 2020;27:1073274820978817.
Hu'Y, Dingerdissen H, Gupta S, et al. Identification

of key differentially expressed MicroRNAs in cancer
patients through pan-cancer analysis. Comput Biol Med
2018;103:183-97.

Qin S, Shi X, Wang C, et al. Transcription Factor and
miRNA Interplays Can Manifest the Survival of ccRCC
Patients. Cancers (Basel) 2019;11:1668.

Transl Cancer Res 2022;11(7):2359-2373 | https://dx.doi.org/10.21037/ter-22-1723



Translational Cancer Research, Vol 11, No 7 July 2022

58.

59.

60.

61.

62.

63.

Wang X, Jiang X, LiJ, et al. Serum exosomal miR-1269a
serves as a diagnostic marker and plays an oncogenic
role in non-small cell lung cancer. Thorac Cancer
2020;11:3436-47.

Tang J, Yang L, Li Y, et al. ARID3A promotes the

development of colorectal cancer by upregulating AURKA.

Carcinogenesis 2021;42:578-86.

Dausinas P, Pulakanti K, Rao S, et al. ARID3A and
ARID3B induce stem promoting pathways in ovarian
cancer cells. Gene 2020;738:144458.

Xu G, Li K, Zhang N; et al. Screening Driving
Transcription Factors in the Processing of Gastric Cancer.
Gastroenterol Res Pract 2016;2016:8431480.

Wang X, Zhou Y, Dong K, et al. Exosomal IncRNA
HMMR-AS1 mediates macrophage polarization through
miR-147a/ARID3A axis under hypoxia and affects the
progression of hepatocellular carcinoma. Environ Toxicol
2022;37:1357-72.

Zhou D, Ji G, Wei G, et al. MiR-361-3p promotes

tumorigenesis of osteosarcoma cells via targeting ARID3A.

Tissue Cell 2022;76:101759.

Cite this article as: Zhu S, Zhang G, You Q, Li F, Ding B,

Liu F, Bi D, Jiang L. Stemness-related gene signature for

predicting therapeutic response in patients with esophageal
cancer. Transl Cancer Res 2022;11(7):2359-2373. doi: 10.21037/
ter-22-1723

© Translational Cancer Research. All rights reserved.

64.

65.

66.

67.

68.

2373

Zhang X, Ing S, Fraser A, et al. Follicular helper T cells:
new insights into mechanisms of autoimmune diseases.
Ochsner J 2013;13:131-9.

Ise W. Development and function of follicular helper T
cells. Biosci Biotechnol Biochem 2016;80:1-6.

Tessadori F, Rehman AU, Giltay JC, et al. A de

novo variant in the human HIST1H4J gene causes a
syndrome analogous to the HIST1H4C-associated
neurodevelopmental disorder. Eur ] Hum Genet
2020;28:674-8.

Bachmayr-Heyda A, Aust S, Auer K, et al. Integrative
Systemic and Local Metabolomics with Impact on Survival
in High-Grade Serous Ovarian Cancer. Clin Cancer Res
2017;23:2081-92.

Zhang G, Zhang Y, Yang H, et al. Genome-Wide Profiling
of a Prognostic RNA-Binding Protein Signature in
Esophageal Cancer. Research Square 2022. doi: 10.21203/
rs.3.15-1439005/v1.

(English Language Editor: J. Teoh)

Transi Cancer Res 2022;11(7):2359-2373 | https://dx.doi.org/10.21037/tcr-22-1723



Supplementary

Table S1 mRNA, IncRNA, miRNA for uni-Cox analysis

Type Gene HR Lower Upper P value
mRNA PODN 1.00324714 1.000381736 1.006120751 0.026317216
mRNA FCGR1B 1.225197756 1.087937253 1.379775843 0.000807375
mRNA S100A6 1.000132726 1.000020772 1.000244691 0.020144423
mRNA MFSD4 1.003896826 1.0010547 1.006747021 0.007172789
mRNA RD3 9.686973427 1.222493358 76.75907079 0.03154037
mRNA MAP1LC3C 9.909903301 2.448197547 40.11366793 0.001304158
mRNA LBH 1.002492379 1.000798014 1.004189613 0.003923848
mRNA PTH2R 1.024213254 1.00595957 1.042798162 0.009118662
mRNA GBX2 1.162964375 1.03895711 1.301772831 0.008683245
mRNA P2RY14 1.034625196 1.002493988 1.06778625 0.034454507
mRNA ECT2 1.000884699 1.000119407 1.001650577 0.023457019
mRNA NCAPG 1.009635496 1.003840711 1.015463733 0.001093683
mRNA MTRNR2L13 11.96603594 1.998156885 71.65904596 0.00656814
mRNA BRIX1 1.00601046 1.00209252 1.009943718 0.002613369
mRNA PLCXD3 1.006577701 1.001103146 1.012082193 0.018462868
mRNA ANXA2R 1.041780733 1.013337135 1.071022721 0.003755365
mRNA F2R 1.001167104 1.000163813 1.002171401 0.022597905
mRNA TMEM232 1.316746374 1.094985569 1.583419054 0.003452075
mRNA SOWAHA 1.033868334 1.003405156 1.065256367 0.029055336
mRNA ECI2 1.009864713 1.002134859 1.01765419 0.012281938
mRNA HIST1H4J 1.564509606 1.072090069 2.28310137 0.020290381
mRNA ATP6V1G2 1.4873922 1.04772262 2.111566091 0.026369744
mRNA FBXO5 1.013126265 1.002037096 1.024338153 0.020213059
mRNA STEAP1B 1.041449037 1.000369087 1.084215926 0.047935932
mRNA STK31 1.022053615 1.003115979 1.041348771 0.02225451
mRNA KIAA1456 1.024296663 1.009681504 1.039123378 0.001060423
mRNA MBOAT4 1.87459532 1.206266256 2.913210576 0.005211303
mRNA TEX15 1.039375982 1.005666937 1.074214922 0.021681647
mRNA ABRA 1.992266299 1.095058859 3.624576864 0.02398563
mRNA PSCA 1.001112083 1.000148391 1.002076704 0.023701718
mRNA TPM2 1.001297589 1.000140327 1.00245619 0.02796486
mRNA FNBP1 1.003245661 1.000449606 1.006049531 0.022867729
mRNA IFIT1 1.005054142 1.00065053 1.009477132 0.024434132
mRNA SviIP 1.003810442 1.000194377 1.007439581 0.038873821
mRNA MS4A4E 1.517375598 1.027378242 2.241072092 0.036107518
mRNA BANF1 1.00250939 1.000946599 1.004074621 0.001640415
mRNA CST6 1.023088654 1.004576641 1.041941801 0.014282239
mRNA CARNS1 1.012654989 1.000820463 1.024629456 0.036019953
mRNA NOX4 1.035195951 1.006147711 1.065082836 0.017218103
mRNA PCED1B 1.020595086 1.000004332 1.041609817 0.049951328
mRNA ADCY6 1.004574666 1.001432996 1.007726192 0.004290194
mRNA FAM19A2 1.04124358 1.009978676 1.07347632 0.009368428
mRNA FGD6 1.003877446 1.000994344 1.006768853 0.00835838
mRNA PXMP2 1.032804175 1.008270549 1.057934763 0.008502061
mRNA PCCA 1.009721838 1.001541774 1.017968713 0.019744437
mRNA RNASE4 1.058263055 1.014720652 1.103673894 0.008250202
mRNA CHRNA7 1.090171138 1.011816488 1.17459354 0.023289605
mRNA MYZAP 1.045775929 1.015019956 1.077463835 0.003294647
mRNA CPEB1 1.261233732 1.040651504 1.528571785 0.017971125
mRNA NETO2 1.008593485 1.002321789 1.014904424 0.007174012
mRNA CES5A 1.055968764 1.020003163 1.093202522 0.002068794
mRNA MT3 1.871944415 1.010177739 3.468870632 0.046355814
mRNA FOXL1 1.026298867 1.009175703 1.043712567 0.002494814
mRNA WSCD1 1.04274854 1.006289644 1.08052838 0.021152414
mRNA FBXO39 1.254608709 1.017668813 1.546714404 0.033672697
mRNA CLDN7 1.000861121 1.000009453 1.001713515 0.047509668
mRNA GRIN3B 1.040611102 1.008474328 1.07377197 0.012875002
mRNA GNG7 1.02878942 1.004691234 1.053465618 0.018926503
mRNA ZNF69 1.065589813 1.016451225 1.117103923 0.008354967
mRNA ZNF568 1.103815426 1.037505847 1.174363015 0.001779274
mRNA ZNF677 1.03702122 1.009900582 1.064870176 0.007175125
mRNA ZNF583 1.055045041 1.012046614 1.099870326 0.011602025
mRNA ZFP28 1.060267265 1.018434445 1.103818393 0.004380818
mRNA ZNF470 1.069066834 1.009432604 1.132224074 0.022575092
mRNA PCNA 1.00068121 1.000036564 1.001326271 0.038343032
mRNA FOXS1 1.081767842 1.019362105 1.147994083 0.009527507
mRNA CPNET1 1.000270287 1.0001006 1.000440003 0.001795694
mRNA OSM 1.076369433 1.004919899 1.152899009 0.035727969
mRNA PNPLA5 1.835240896 1.274827676 2.642011315 0.001090493
mRNA CSF2RA 1.005326399 1.001445725 1.00922211 0.007100766
mRNA REPS2 1.005841152 1.000026981 1.011689126 0.048943231
mRNA MTRNR2L10 1.475029014 1.075887699 2.022246928 0.015764606
IncRNA CENPI 0.956151986 0.91489512 0.999269315 0.046322293
IncRNA C150rf54 13.70002718 2.445218728 76.75826404 0.002911662
IncRNA FAM13A-AS1 1.164985633 1.049213514 1.293532256 0.004242355
IncRNA RP11-348N5.7 1.146861831 1.039238092 1.265631109 0.006420873
IncRNA RP11-182J1.17 3.783981949 1.414301714 10.1240911 0.008041888
IncRNA RP11-636021.1 2.195423447 1.203686861 4.004267447 0.01033054
IncRNA RP11-522B15.3 1.030207733 1.006233497 1.054753172 0.013240969
IncRNA ZFHX4-AS1 1.66609615 1.110198097 2.500343306 0.013713115
IncRNA RP11-510N19.5 1.030398167 1.005990913 1.055397588 0.014352505
IncRNA RP11-626E13.1 2.746290777 1.143831247 6.593728801 0.023779145
IncRNA RP11-462G2.1 1.007757162 1.001001925 1.014557987 0.024335659
IncRNA PRICKLE2-AS1 0.005377968 4.50E-05 0.642647288 0.032262757
IncRNA RP11-266N13.2 7.51993236 1.166039388 48.49697469 0.03388058
IncRNA RP1-136B1.1 1.398188357 1.024293439 1.908565073 0.034759448
IncRNA RP5-115904.1 1.079643763 1.005336208 1.159443623 0.035183321
IncRNA MAMDC2-AS1 1.221694334 1.009639103 1.478287679 0.039533938
IncRNA LINC00304 3.892700743 1.060305649 14.29127449 0.040539274
IncRNA RP6-7406.6 1.081829563 1.002939965 1.166924487 0.041755029
IncRNA RP11-325K4.2 1.118697393 1.003612719 1.246978874 0.042859978
IncRNA RP11-1399P15.1 1.94707145 1.009623778 3.754950422 0.04675119
IncRNA RP11-79H23.3 1.064936777 1.000740638 1.13325101 0.047333628
IncRNA RP3-42616.6 2.366105534 1.004367295 5.574111607 0.048846213
IncRNA RP11-139H15.7 3.133567638 1.004772391 9.772607439 0.049048698
miRNA hsa-miR-101-1 0.999662129 0.999343099 0.999981262 0.037984048
miRNA hsa-miR-101-2 0.999675281 0.999363188 0.999987472 0.041489546
miRNA hsa-miR-3074 1.058380837 1.010632503 1.108385089 0.01599622
miRNA hsa-miR-3651 1.084241971 1.026215504 1.145549493 0.003950585
miRNA hsa-miR-3652 1.08412749 1.006833747 1.167355005 0.032319846
miRNA hsa-miR-421 1.044978925 1.00639907 1.085037721 0.02188809
miRNA hsa-miR-503 1.030179924 1.007310327 1.053568743 0.009435251

mRNA, messenger RNA; IncRNA, long non-coding RNA; miRNA, microRNA; uni-Cox, univariate Cox; HR, hazard ratio.
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Figure S1 Survival analysis of the DESRGs (A), the DESRIncRNAs (B), and the DESRmiRNAs (C). Red indicates high expression group,
light green indicates low expression group. DESRGs, differentially expressed stemness-related genes; DESRIncRNA, differentially expressed
stemness-related long non-coding RNA; DESRmiRNA, differentially expressed stemness-related microRNA.
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Figure S2 Construction and validation of the DESRIncRNA prognostic model. (A) LASSO regression analysis plot of the meaningful genes in the uni-Cox analysis. (B)
A risk factor plot for the training set. (C) A risk factor plot for the validation set. The Kaplan-Meier survival curve analysis revealed an OS in the high-risk group from
the training set (D) and the validation set (E). The red line represents the high-risk group. The green line represents the low-risk group. Survival-dependent ROC
curves validated the prognostic significance of DESRIncRNAs as prognostic indicators in the training set (F) and the validation set (G). The green line represents
the 1-year AUG; the blue line represents the 2-year AUGC; and the red line represents the 3-year AUC. A forest plot of the uni-Cox (H) and multi-Cox (I) regression
analyses. (J) A nomogram for predicting the survival probability of ESCA patients for predicting 1-, 2-, and 3-year survival outcomes of ESCA. (K) Calibration
curves of the OS-nomogram. ***; P<0.001. AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; OS, overall survival;

DESRIncRNA, differentially expressed stemness-related long non-coding RNA; LASSO, least absolute shrinkage and selection operator; uni-Cox, univariate Cox;
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multi-Cox, multivariate Cox; ESCA, esophageal cancer.
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Figure S3 Construction and validation of the DESRmiRNA prognostic model. (A) A risk factor plot for the training set. (B) A risk factor plot for the validation set. The
Kaplan-Meier survival curve analysis revealed an OS in the high-risk group from the training set (C) and the validation set (D). The red line represents the high-risk
group. The green line represents the low-risk group. Survival-dependent ROC curves validated the prognostic significance of DESRmiRNAs as prognostic indicators in
the training set (E) and the validation set (F). The green line represents the 1-year AUC; the blue line represents the 2-year AUGC; and the red line represents the 3-year
AUC. A forest plot of the uni-Cox (G) and multi-Cox (FH) regression analyses. (I) A nomogram for predicting the survival probability of ESCA patients for predicting 1-, 2-,
and 3-year survival outcomes of ESCA. (J) Calibration curves of the OS-nomogram. *, P<0.05. AUC, area under the ROC curve; ROC, receiver operating characteristic;
CI, confidence interval; OS, overall survival; DESRmiRNA, differentially expressed stemness-related microRNA; LASSO, least absolute shrinkage and selection

operator; uni-Cox, univariate Cox; multi-Cox, multivariate Cox; ESCA, esophageal cancer.
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