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response in patients with esophageal cancer

Shaojin Zhu1^, Gengxin Zhang1, Qi You1, Fei Li1, Boying Ding1, Feng Liu2, De Bi3, Lan Jiang1,4,5,6^

1Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 

Wuhu, China; 2Department of Thoracic Surgery, Lishui Branch of Zhongda Hospital Affiliated to Southeast University, Nanjing, China; 3Suzhou 

Polytechnic Institute of Agriculture, Suzhou, China; 4Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education 

Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China; 5Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, 

China; 6Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wuhu, China

Contributions: (I) Conception and design: L Jiang, S Zhu; (II) Administrative support: L Jiang, S Zhu; (III) Provision of study materials or patients: 

L Jiang, S Zhu; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: L Jiang, S Zhu; (VI) Manuscript writing: All 

authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Lan Jiang. Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, The First 

Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China. Email: jianglanhi@163.com; De Bi. 

Suzhou Polytechnic Institute of Agriculture, Suzhou, China. Email: bide1125@vip.163.com.

Background: Extensive research has indicated that tumor stemness promotes tumor progression. However, 
the underlying role of stemness-related genes (SRGs) in esophageal cancer (ESCA) remains unclear.
Methods: This study identified differentially expressed stemness-related (DESR) messenger RNAs 
(mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) in ESCA, and correlated them 
with the clinical features of patients with ESCA to develop a prognostic risk assessment model. Functional 
analysis, protein-protein interaction (PPI) analysis, competing endogenous RNA (ceRNA) networks, and 
tumor-infiltrating immune cell analyses were performed to corroborate the results obtained from the model.
Results: Correlation analysis of the stemness enrichment scores revealed 1,106 DESR genes (DESRGs), 
84 DESRmiRNAs, and 320 DESRlncRNAs were identified from The Cancer Genome Atlas Esophageal 
Carcinoma (TCGA-ESCA) dataset. Network clustering was performed and the top 20 connection points 
were identified, including CDC20 that connects to 136 adjacent nodes. A ceRNA network was constructed, 
including 17 DESRmiRNAs, 44 DESRlncRNAs, and 55 DESRGs.
Conclusions: NCAPG [log2fold change (FC) =1.81; q value =2.68×10−11] was significantly upregulated in 
ESCA and positively correlated with resting natural killer (NK) cells, suggesting that human NK cells rest 
via the overexpression of NCAPG in ESCA. hsa-miR-1269a is significantly upregulated in ESCA patients 
with poor prognostic features. CD4+ resting memory T cells (P<0.01) were significantly negatively correlated 
with hsa-miR-1269a. The insights presented in this study will contribute to the development of innovative 
therapeutics for the treatment of patients with ESCA.
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Introduction

Esophageal cancer (ESCA) is the second deadliest 
gastrointestinal cancer. Patients generally have poor 
prognosis, with a 5-year survival rate of 40% for early-
stage patients (1). There are two pathological types 
of ESCA that show regional specificities because of 
differences in living habits and genetic backgrounds. 
Esophageal squamous cell carcinoma is more prevalent 
in Southeast Asia, while esophageal adenocarcinoma is 
more frequent in Europe and America (2). Patients with 
ESCA can be divided into resectable patients and those 
who are inoperable (3). Traditional treatments such as 
surgery, radiotherapy, chemotherapy, immunotherapy, and 
targeted therapy, have limited efficacy in both patients 
with resectable and those with inoperable ESCA, leading 
to poor outcomes (4). In patients with advanced metastatic 
ESCA, nanoparticles AbraxaneTM and DoxilTM can be used 
as treatment options (3). Carboplatin and paclitaxel are the 
most common preoperative treatment agents for ESCA 
(5), while capecitabine and fluorouracil are administered 
postoperatively (6). Minimally invasive esophagectomy 
is a common surgical method for patients with operable 
ESCA to reduce postoperative morbidity. For patients 
with inoperable ESCA, cebox and cisplatin are used in 
combination to prolong survival (3). PembrolizumabTM, 
which targets specific genetic features, has been approved by 
the Food and Drug Administration (FDA) for the treatment 
of advanced ESCA (7). Therefore, current research on 
ESCA should be continuously adjusted to develop more 
effective treatment strategies.

Cancer stem cells (CSCs) are highly relevant for 
tumorigenesis, progression, recurrence, and metastasis 
of various cancers (8). The messenger RNA (mRNA) 
expression-based stemness index (mRNAsi) is used to evaluate 
the unique characteristics of CSCs and to assess tumor 
development (9). There is mounting evidence to support 
the existence of CSCs in lung adenocarcinoma (10), breast 
cancer (11), colorectal cancer (12), and prostate cancer (13),  
as well as their roles in metastasis, drug resistance, and cancer 
adaptation to changing microenvironments. For instance, 
single-cell transcriptome analysis revealed the landscape 
of intra-tumoral heterogeneity and stemness-related 
subpopulations of liver cancer cells (14).

Stemness-related genes (SRGs) have been identified 
in numerous cancers, such as cervical squamous cell 
carcinoma (15), colorectal cancer (16), renal clear cell 
carcinoma (17), lung cancer (18), gastric cancer (19), 

and ESCA (20). Moreover, SRGs have been shown to 
promote the formation, progression, and metastasis of 
different cancers (21). The AGR3 gene has been shown to 
promote the stemness of CSCs by upregulating SRGs via 
Frizzled 4 (FZD4), which is involved in the Wnt/β-catenin 
signaling pathway (22). Study examining ESCA stemness 
and clinical characteristics have indicated that higher-
stage and metastatic tumors feature great phenotypic 
dedifferentiation (20). This study examined how SRGs 
promote ESCA formation, progression, and metastasis. 
The differentially expressed stemness-related (DESR) 
genes (DESRGs), DESR microRNAs (DESRmiRNAs), 
and DESR long non-coding RNAs (DESRlncRNAs) were 
firstly identified and functional analyses were performed. 
CSCs could change tumor microenvironment into 
immunosuppressive (23). Tumors with significant positive 
DESRGs, DESRlncRNAs, and DESRmiRNAs expression 
may exist higher immune infiltration in the tumor 
microenvironment (21). The DESRGs, DESRmiRNAs, 
and DESRlncRNAs were used to develop a prognostic 
risk assessment model and to construct a protein-protein 
interaction (PPI) network and a competing endogenous 
RNA (ceRNA) network, which together with the tumor-
infiltrating immune cell analyses, corroborated the 
model results (Figure 1). Potential stemness-related 
prognostic markers for ESCA were identified. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-22-1723/rc).

Methods

Data collection and analysis of differential gene expression

The ESCA gene expression profile was obtained from The 
Cancer Genome Atlas-ESCA (TCGA-ESCA) database 
containing 11 normal tissues and 152 tumor tissues, and 
analyzed using the R package TCGA biolinks (24). Among 
these, 145 tumor tissues had complete clinical information, 
including age, sex, survival status, and tumor, node, metastasis 
(TNM)  stage. The read counts were converted to transcripts 
per kilobase million (TPM) to compare the relative gene 
expression level between samples, while the miRNA data 
were converted to reads per kilobase million (RPKM) (25).

Differential gene expression between tumor and 
normal tissue samples was analysis using the R package 
DESeq2 (26). The significant threshold for the mRNA 
and lncRNA differential expression was defined as the 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1723/rc
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The mRNA, lncRNA, miRNA expression data, clinical information and survival data of 
esophageal cancer were downloaded from TCGA
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Figure 1 Flowchart showing the process involved in this study. mRNA, messenger RNA; lncRNA long non-coding RNA; miRNA, 
microRNA; TCGA, The Cancer Genome Atlas; GSEA, gene set enrichment analysis; ssGSEA, single-sample GSEA; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; ceRNA, competing endogenous RNA.

log2 of the absolute fold change (FC) value greater than 
1 (log2FC >1) and adjusted P value less than 0.05 (q value 
<0.05). The threshold to determine differentially expressed 
miRNA was set as log2FC >0.5 and q value <0.05. The 
differential analysis results are displayed as heat maps using 
the R package pheatmap (https://CRAN.R-project.org/
package=pheatmap) and as volcano maps using the ggplot2 
R package (27). The DESRGs were obtained using the gene 
set enrichment analysis (GSEA) (https://www.gsea-msigdb.
org/gsea/index.jsp) tool of the GSEA software (28). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Construction of the PPI network and the ceRNA network

The single-sample GSEA (ssGSEA) method (29) was used 

to obtain the enrichment score for cell stemness of each 
sample based on the ESCA expression data and the DESRG 
set. To identify the DESRmiRNAs and DESRlncRNAs, 
corre lat ion analys i s  was  performed between the 
differentially expressed mRNA and the lncRNA or miRNA 
levels. Significant correlation coefficient greater than 0.2 
(ρ>0.2; P<0.05) indicated strong positive correlation.

To construct the PPI network, the STRING database 
(https://string-db.org/),  containing 2,031 species,  
9.6 million proteins, and 1.38 million PPIs was used. 
Our PPI analysis included experimental results, text-
mined results from PubMed abstracts, and synthesized 
and predicted results from bioinformatics analyses (30). A 
correlation coefficient above 0.7 (ρ>0.7; P<0.05) indicated 
a strong association between the differentially expressed 
genes and cell stemness. The PPI results were exported 

https://CRAN.R-project.org/package=pheatmap
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from the STRING database and visualized using the 
Cytoscape StringApp (31). In addition, the molecular 
complex detection (MCODE) plugin from Cytoscape was 
used to analyze hub genes in the PPI network.

MiRcode (https ://bio.tools/miRcode)  provides 
transcriptome-wide human miRNA target predictions based on 
comprehensive GENCODE gene annotations (https://www.
gencodegenes.org/), including 10,000 lncRNA genes (32).  
Therefore, MiRcode was used to identify the miRNAs and 
lncRNAs in our dataset. The TargetScan database was used 
to predict the biological targets of the identified miRNAs 
by searching for the presence of conserved 6mer-8mer sites 
on the mRNA sequences matching the seed region of each 
miRNA (33). The miRDB database (http://mirdb.org/) was 
used to confirm the predicted miRNA targets and functional 
annotations by implementing its MirTarget tool, which uses 
thousands of miRNA-target interactions (MTIs) from high-
throughput sequencing experiments (34). miRTarBase (https://
mirtarbase.cuhk.edu.cn) is an experimentally validated MTI 
database that has accumulated more than 360,000 MTIs 
obtained from natural language processing after a manual 
survey of relevant literature (35). For the analysis using 
miRTarBase, research articles were systematically screened to 
collect those related to miRNA functional studies. The MTIs 
from TargetScan, miRDB, and miRTarBase analysis were 
combined with the identified DESRGs, DESRmiRNAs, and 
DESRlncRNAs to construct a ceRNA network, which was 
visualized using Cytoscape.

Functional analysis

Gene Ontology (GO) analysis is a standard method for 
large-scale functional enrichment studies that includes 
terms related to biological processes (BPs), molecular 
functions (MFs), and cellular components (CCs) (36). The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) is a 
widely used database for storing information on genomes, 
biological pathways, diseases, and drugs (37). GO and 
KEGG pathway enrichment analyses of DESRGs were 
performed using the clusterProfiler (38) R package, with 
a cutoff value of false discovery rate (FDR) <0.05 for 
statistical significance.

To investigate the differences in enriched BPs between 
normal and tumor tissues, GSEA was performed based on 
the TCGA gene expression profiling dataset of patients 
with ESCA (39). For GSEA analysis, the control “c2.
cp.kegg.v7.1.entrez” dataset used was downloaded from the 
MsigDB database and compared with the gene expression 

profiling dataset of patients with ESCA (FDR <0.25).

Development and validation of a prognostic risk assessment 
model

Univariate Cox (uni-Cox) regression analysis (P<0.05) 
was performed for the DESRGs, DESRmiRNAs, and 
DESRlncRNAs to estimate ESCA prognosis. The uni-Cox 
results were visualized using forest plot. Survival analysis 
was performed on the DESRGs, DESRmiRNAs, and 
DESRlncRNAs and the results were displayed using the R 
package survminer (40).

Least absolute shrinkage and selection operator (LASSO) 
regression analysis was performed to filter the DESRGs, 
DESRmiRNAs, and DESRlncRNAs with a 10-fold cross-
validation. Furthermore, the DESRGs, DESRmiRNAs, 
and DESRlncRNAs screened by the LASSO method 
were used for multivariate Cox (multi-Cox) proportional 
hazards regression and risk model construction. The 
LASSO glmnet package (41) was used to divide the TCGA 
samples with complete clinical information into a training 
set and a validation set at a ratio of 1:1. The training dataset 
was composed of the DESRGs, DESRmiRNAs, and 
DESRlncRNAs (single factor P<0.05). The accuracy of the 
final model was verified through the validation set. The R 
package ggrisk (https://CRAN.R-project.org/package=ggrisk) 
was used to display the risk factor and perform the survival 
analysis on the risk scores of the training and validation 
sets. The R package pROC was used to obtain the receiver 
operating characteristic (ROC) curve, nomogram, and 
standard curve, showing the accuracy of the model. Finally, 
multi-Cox analysis with clinical traits was used to determine 
whether the risk score is independent of other traits.

Tumor-infiltrating immune cells analyses

CIBERSORT (https://cibersort.stanford.edu/index.php) 
was used to analysis 22 tumor-infiltrating immune cell 
types in each tissue, using the LM22 signature matrix with 
1,000 permutations (42). The gene expression matrix data 
(TPM) was uploaded to CIBERSORT combined with the 
LM22 eigengene matrix, and the immune cell infiltration 
matrix was derived. A histogram was drawn showing the 
distribution of the 22 infiltrating immune cells in each 
sample. The R package corrplot (https://github.com/taiyun/
corrplot) was used to calculate and display the correlation 
between the prognosis-related mRNA, lncRNA, miRNA, 
and the 22 tumor-infiltrating immune cell types.

https://bio.tools/miRcode
https://www.gencodegenes.org/
https://www.gencodegenes.org/
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Statistical analyses

All statistical analyses were performed using R software 
version 4.1.3 (https://www.r-project.org/). The ROC curves 

assessed the accuracy of the risk score in estimating the 
prognosis by calculating the area under the ROC curve 
(AUC). Spearman’s correlation (ρ) was used to determine 
all correlations between two samples. All statistical analyses 
were two-sided, with a significance of P<0.05.

Results

Differential expression analyses

DESeq2 was used to analyze the differential expression 
between TCGA-ESCA tumors [152] and normal tissues [11]. 
Baseline data of TCGA patients with ESCA was detected 
in Table 1. A total of 3,504 differentially expressed mRNAs 
(including 1,900 upregulated and 1,604 downregulated 
mRNAs; Figure 2A), 1,564 differentially expressed lncRNAs 
(including 993 upregulated and 571 downregulated 
lncRNAs; Figure 2B), and 209 differentially expressed 
miRNAs (including 130 upregulated and 79 downregulated 
miRNAs; Figure 2C) were identified. Heatmaps were used to 
identify the most significant differentially expressed mRNAs, 
lncRNAs, and miRNAs (Figure 2D-2F).

Stemness-related ceRNA network

Correlation analysis of the stemness enrichment scores 
revealed 1,106 DESRGs, 84 DESRmiRNAs, and 320 
DESRlncRNAs (Figure 3A). Network clustering was 
performed (Figure 3B-3D) and the top 20 connection 
points were identified, including CDC20 that connects 
to 136 adjacent nodes (Figure 3E). A ceRNA network 
was constructed,  including 17 DESRmiRNAs, 44 
DESRlncRNAs, and 55 DESRGs (Figure 3F).

Functional analysis of the DESRGs

GO enrichment analysis for the DESRGs (Figure 4A,4B) 
identified nuclear division, organelle fission, mitotic nuclear 
division, DNA-dependent DNA replication, and DNA 
replication as enriched initiation terms. KEGG pathway 
enrichment analysis revealed that the DESRGs were mainly 
enriched in biological pathways such as cell cycle, DNA 
replication, human papillomavirus infection, Cushing 
syndrome, and protein digestion and absorption (Figure 4C). 
GSEA functional analysis revealed that the DESRGs were 
enriched in the following KEGG pathways: cytokine-cytokine 
receptor interaction, cell cycle, calcium signaling pathway, 
neuroactive ligand-receptor interaction, fatty acid metabolism, 

Table 1 Baseline data of TCGA patients with ESCA

Type Alive (n=98) Deceased (n=46) P value

Tumor grade, n (%) 0.238

G1 16 (16.3) 2 (4.3)

G2 38 (38.8) 19 (41.3)

G3 21 (21.4) 12 (26.1)

GX 23 (23.5) 13 (28.3)

Gender, n (%) 0.448

Female 17 (17.3) 5 (10.9)

Male 81 (82.7) 41 (89.1)

Age (years), n (%) 0.912

<60 43 (43.9) 19 (41.3)

≥60 55 (56.1) 27 (58.7)

Stage, n (%) 0.0011

I 17 (17.3) 3 (6.5)

II 48 (49.0) 14 (30.4)

III 31 (31.6) 22 (47.8)

IV 2 (2.0) 7 (15.2)

T staging, n (%) 0.191

T1 18 (18.4) 9 (19.6)

T2 25 (25.5) 9 (19.6)

T3 55 (56.1) 26 (56.5)

T4 0 (0.0) 2 (4.3)

M staging, n (%) 0.00238

M0 86 (87.8) 34 (73.9)

M1 1 (1.0) 7 (15.2)

MX 11 (11.2) 5 (10.9)

N staging, n (%) 0.00909

N0 48 (49.0) 11 (23.9)

N1 33 (33.7) 28 (60.9)

N2 6 (6.1) 4 (8.7)

N3 6 (6.1) 0 (0.0)

NX 5 (5.1) 3 (6.5)

TCGA, The Cancer Genome Atlas; ESCA, esophageal cancer.

https://www.r-project.org/
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Figure 2 The DEGs. (A-C) The volcano plots show the DEmRNAs, DElncRNAs, and DEmiRNAs, respectively. The red nodes represent 
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genes; DEmRNAs, differentially expressed messenger RNAs; DElncRNAs, differentially expressed long non-coding RNAs; DEmiRNAs, 
differentially expressed microRNAs.

DNA replication, spliceosome, NOD-like receptor signaling 
pathway, vascular smooth muscle contraction pathway, and 
graft-versus-host disease (Figure 5A). The most enhanced 
pathways were cytokine-cytokine receptor interaction, cell 
cycle, and DNA replication (Figure 5B), whereas the most 
inhibited pathways were related to calcium signaling pathway, 
neuroactive ligand-receptor interaction, and fatty acid 
metabolism (Figure 5C).

Survival analysis of the DESRGs, DESRmiRNAs, and 
DESRlncRNAs

Uni-Cox  and  surv iva l  ana lys i s  o f  the  DESRGs, 

DESRmiRNAs, and DESRlncRNAs was performed to 
identify the correlation on the survival of patients with 
ESCA. The uni-Cox model (P<0.05) used 73 DESRGs,  
7 DESRmiRNAs, and 23 DESRlncRNAs (Table S1). 
The pseudogene MTRNR2L13 and the chromosome 15 
open reading frame 54 (C15orf54) were identified as high-
risk factors associated with patient mortality. Notably, the 
centromere protein I (CENPI), PRICKLE2 antisense RNA 
1 (PRICKLE2-AS1), and human miRNAs hsa-miR-101-1 
and hsa-miR-101-2 were found to negatively correlate 
with patient mortality. Survival analysis revealed six highly 
significant DESRGs, DESRmiRNAs, and DESRlncRNAs 
(Figure S1).

https://cdn.amegroups.cn/static/public/TCR-22-1723-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-1723-Supplementary.pdf
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Figure 3 The stemness-related ceRNAs. (A) A PPI network diagram of the DESRGs. Blue indicates high expression in tumor tissue, 
while red indicates low expression in tumor tissue. (B-D) Gene network maps of the hubs screened with the cytoscape plugin MCODE. 
(E) Histogram depicting the PPI network nodes for the DESRGs. (F) A diagram of the stemness-related ceRNA network. Green presents 
miRNA, purple presents lncRNA, and orange presents mRNA. ceRNA, competing endogenous RNA; PPI, protein-protein interaction; 
DESRGs, differentially expressed stemness-related genes; MCODE, molecular complex detection; miRNA, microRNA; lncRNA, long non-
coding RNA; mRNA, messenger RNA.
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Construction and validation of the prognostic model

The TCGA-ESCA datasets were randomly divided into 
training and validation sets, and univariate analysis was 
performed to detect prognostic-related DESRGs. LASSO 
regression was used to identify meaningful genes in the 
uni-Cox analysis, including six DESRGs, namely, NCAPG, 
HIST1H4J, KIAA1456, SCUBE2, PCCA, and ARID3A, that 
were selected to build the prediction model (Figure 6A). 
The expression profiles of these selected genes were used to 
calculate the risk scores in the training and validation sets 
separately. The total risk score was calculated as follows: 
expression level of (NCAPG × 0.0245 + HIST1H4J ×1.2293 
+ KIAA1456 × 0.0358 + SCUBE2 × 0.1375 + PCCA × 0.0738 

+ ARID3A × 0.0134). The distribution of risk scores in 
patients with ESCA and the correlation between survival 
time and risk score in the training set revealed that patients 
with high scores were associated with a higher mortality 
(Figure 6B), indicating that high-risk patients generally had 
poor overall survival (OS). A similar trend was observed in 
the validation set (Figure 6C). Based on the median value 
of the risk scores, the patients were divided into a high-risk 
group and a low-risk group. The survival rate of patients in 
the high-risk group was significantly lower than that in the 
low-risk group in both the training (P<0.0001; Figure 6D)  
and validation sets (P=0.01; Figure 6E). The AUC for 1-, 
2-, and 3-year survival rates in the training group were 
0.995, 0.937, and 0.818, respectively (Figure 6F), while 
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Figure 4 Enrichment functional analysis of the DESRGs. (A,B) GO analysis showing enrichment of the DESRGs in the BP, CC, and MF. 
The network graph shows the overall enrichment. (C) KEGG analysis of the DESRGs. BP, biological process; CC, cellular component; MF, 
molecular function; DESRGs, differentially expressed stemness-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes.

Figure 5 GSEA analysis. (A) The general enrichment pathway of the Mountain Map Exhibition. (B) The most significant top three 
pathways activated in ESCA. (C) The top three pathways most significantly inhibited in ESCA. NES, normalize enrichment score; GSEA, 
gene set enrichment analysis; ESCA, esophageal cancer.
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Figure 6 Construction and validation of the DESRG prognostic model. (A) LASSO regression analysis plot of meaningful genes in uni-
Cox analysis. (B) A risk factor plot for the training set. (C) A risk factor plot for the validation set. The Kaplan-Meier survival curve 
analysis revealed an OS in the high-risk group from the training set (D) and the validation set (E). The red line represents the high-risk 
group. The green line represents the low-risk group. Survival-dependent ROC curves validated the prognostic significance of DESRGs as 
prognostic indicators in the training set (F) and the validation set (G). The green line represents the 1-year AUC; the blue line represents 
the 2-year AUC; and the red line represents the 3-year AUC. A forest plot showing the uni-Cox (H) and multi-Cox (I) regression analyses. 
(J) A nomogram for predicting the survival probability of ESCA patients for predicting 1-, 2-, and 3-year survival outcomes of ESCA. (K) 
Calibration curves of the OS-nomogram. *, P<0.05; **, P<0.01; ***, P<0.001. AUC, area under the ROC curve; ROC, receiver operating 
characteristic; CI, confidence interval; OS, overall survival; DESRG, differentially expressed stemness-related gene; LASSO, least absolute 
shrinkage and selection operator; uni-Cox, univariate Cox; multi-Cox, multivariate Cox; ESCA, esophageal cancer.
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Figure 7 The landscape of immune infiltration in ESCA. (A) The difference in immune infiltration. (B) A correlation heat map of 22 types 
of immune cells. Red represents a positive correlation, blue represents a negative correlation. Candidate DESRGs (C), DESRlncRNAs 
(D), and DESRmiRNAs (E) that show significant positive correlations with immune infiltration cells are shown in red, whereas that show 
negative correlations with immune infiltration cells are shown in blue. NK, natural killer; ESCA, esophageal cancer; DESRG, differentially 
expressed stemness-related genes; DESRlncRNA, differentially expressed stemness-related long non-coding RNA; DESRmiRNA, 
differentially expressed stemness-related microRNA.

those for the validation group were 0.732, 0.838, and 0.955, 
respectively (Figure 6G). These results indicated that the 
DESRGs selected as prognostic indicators have robust 
potential for survival prediction in patients with ESCA.

Uni-Cox (Figure 6H) and multi-Cox (Figure 6I) 
regression analyses with clinical variables (risk score, 
sex, age, grade, and stage) revealed that the risk score 
and stage were independent prognostic indicators for 
patients with ESCA. A nomogram combining risk score 
and clinicopathological parameters was selected to predict 
ESCA patient prognosis (Figure 6J). Calibration curves 
were used to compare the actual probabilities of survival and 

the predicted survival rates. The results showed a significant 
correlation between the probability of OS and the actual 
survival rates for 1, 2, and 3 years (Figure 6K).

A prognostic model for the DESRlncRNAs and 
DESRmiRNAs was constructed and validated. The 
regression analysis identified SCOC-AS1, RP11-626E13.1, 
RP1-136B1.1, and RP11-16E23.3 as meaningful lncRNAs 
for the prediction model. The risk score for DESRlncRNAs 
was calculated as follows: expression level of SCOC-
AS1 × 0.7209 + expression level of RP11-626E13.1 × 
2.2361 + expression level of RP1-136B1.1 × 1.4229 + 
expression level of RP11-16E23.3 × 6.7802. Furthermore, 
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the miRNAs selected for the risk analysis were hsa-miR-
269a, hsa-miR-214, hsa-miR-3652, and hsa-miR-503. 
The DESRmiRNAs risk score was calculated as follows: 
expression level of hsa-miR-1269a × 0.003 + expression 
level of hsa-miR-214 × 0.03181 + expression level of hsa-
miR-3652 × 0.1195 + expression level of hsa-miR-503 × 
0.04297. The risk score results for the DESRlncRNAs 
(Figure S2) and DESRmiRNAs (Figure S3) showed that the 
model provided high accuracy in predicting the prognosis 
of patients with ESCA.

Tumor-infiltrating immune cells

To analyze the effect of tumor-infiltrating immune cells 
on the model, the CIBERSORT algorithm was used to 
calculate the degree of infiltration of 22 types of infiltrating 
cells and display their overall distribution scores (Figure 7A)  
and correlations (Figure 7B). The correlation heatmap 
of the 22 types of infiltrating cells revealed that activated 
and resting natural killer (NK) cells, activated and resting 
mast cells, resting M0 macrophages, and CD4+ memory T 
cells had significant negative correlations. Monocytes were 
positively correlated with resting dendritic cells.

The association between infiltrating levels of the 
immune cells and the expression of DESRGs (Figure 7C), 
DESRlncRNAs (Figure 7D), and DESRmiRNAs (Figure 7E) 
from patients with ESCA was analyzed. ARID3A was found 
to be positively correlated with infiltrating levels of immune 
cells, including follicular helper T cells (P<0.001) and activated 
CD4+ memory T cells (P<0.01). KIAA1456 expression was 
positively correlated with gamma delta (γδ) T cells (P<0.01) 
and negatively correlated with activated mast cells (P<0.01). 
The expression of NCAPG was positively correlated with 
resting NK cells (P<0.01). The expression of PCCA was 
positively correlated with resting CD4+ memory T cells 
(P<0.01) and plasma cells (P<0.01), and negatively correlated 
with activated CD4+ memory T cells (P<0.01). SCUBE2 
expression was negatively correlated with activated dendritic 
cells (P<0.01). RP1-136B1.1 levels were positively correlated 
with activated NK cells (P<0.001) and CD8+ T cells (P < 0.01), 
and negatively correlated with follicular helper T cells (P<0.01), 
resting NK cells (P<0.001), and M0 macrophage (P<0.001). 
Finally, hsa-miR-1269a expression was negatively correlated 
with resting CD4+ memory T cells (P<0.01).

Discussion

To the best of our knowledge, this is the first study to 

perform a comprehensive characterization of ESCA 
stemness based on combined analyses of mRNA, miRNA, 
and lncRNA expression in ESCA tumors and normal 
tissues. A total of 1,106 DESRGs, 84 DESRmiRNAs, and 
320 DESRlncRNAs were identified using the TCGA-
ESCA dataset.

Non-coding RNAs, including miRNAs and lncRNAs, play 
important roles in transcriptional and translational regulation 
in several cancers (43). lncRNAs act as miRNA sponges to 
reduce their regulatory abilities (44). Interactions between 
lncRNAs, miRNAs, and mRNAs form ceRNA networks (45). 
Understanding the role of ceRNA networks in pan-cancer 
analysis is crucial (46). However, to date, no such study 
has been conducted on stemness-related ceRNA networks 
in ESCA. In this present investigation, we constructed a 
stemness-related ceRNA network based on 55 DESRGs, 
17 DESRmiRNAs, and 44 DESRlncRNAs, and analyzed 
its correlation with the survival data of patients with ESCA. 
PRICKLE2-AS1, FAM13A-AS1, C15orf54, and LINC00304 
were identified as high-risk DESRlncRNAs that correlated 
with high ESCA severity. Previous study has demonstrated 
that LINC00304 directly promotes cell proliferation and 
cell cycle progression in prostate cancer (47). PRICKLE2-
AS1 has been shown to be differentially methylated in vulvar 
squamous cell carcinoma (48) and FAM13A-AS1 is involved 
in regulating RNA splicing and mRNA processing in thyroid 
cancer (49). Herein, PRICKLE2-AS1, FAM13A-AS1, and 
LINC00304 were shown to be downregulated in ESCA 
tumors, whereas C15orf54 was upregulated (log2FC =1.51; q 
value =0.02). C15orf54 is known to be positively associated 
with high-grade gastric cancer (50) and indeed, C15orf54 may 
be a potential biomarker for ESCA prognosis.

NCAPG is one of the DESRGs selected to build the 
prediction model. Increased expression of NCAPG promotes 
oncogenesis in non-small cell lung cancer (51), glioma (52),  
lung adenocarcinoma (53), prostate cancer (54), and 
esophageal squamous cell carcinoma (55). NCAPG (log2FC 
=1.81; q value =2.68×10−11) was significantly upregulated 
in ESCA and positively correlated with resting NK cells, 
suggesting that human NK cells rest via the overexpression of 
NCAPG in ESCA. Candidate DESRGs, DESRlncRNAs, and 
DESRmiRNAs that show significant positive correlations 
with immune infiltration cells, increased expression of SRGs 
and increased immune infiltration may be related to poor 
prognosis. Notably, the oncogene NCAPG in prostate cancer 
is directly targeted by the antitumor hsa-miR-145-3p, which is 
associated with cancer pathogenesis (54). In the present study, 
we found that hsa-miR-1269a was significantly upregulated 
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in ESCA tumors (log2FC =3.98; q value =2.92×10−4) with 
poor prognostic features. Additionally, the number of resting 
CD4+ memory T cell as negatively corrected with hsa-miR-
1269a (P<0.01). hsa-miR-145-3p is known as a diagnostic 
and oncogenic marker in hepatocellular carcinoma (56), 
colorectal cancer (57), and non-small cell lung cancer (58), 
and it may be involved in the molecular pathogenesis of 
various cancers, including ESCA (55).

ARID3A acts as an oncogene, and its overexpression 
affects the development of colorectal cancer (59), ovarian 
cancer (60), gastric cancer (61), hepatocellular carcinoma (62), 
and rectal cancer (63). This report revealed that ARID3A 
was upregulated and positively associated with infiltrating 
follicular helper T cells and activated CD4+ memory T cells, 
and thus, may play an immunological role in ESCA. Follicular 
helper T cells are a subset of T-helper cells, which provide 
critical support to B cells and are essential for maintaining 
humoral immune responses (64), such as germinal center 
formation, affinity maturation, and the development of high-
affinity antibodies (65). Therefore, ARID3A is a promising 
independent prognostic biomarker corresponding to follicular 
helper T cells and activated CD4+ memory T cells.

A previous report showed that a de novo variant in the 
human HIST1H4J gene causes a syndrome analogous to 
HIST1H4C-associated neurodevelopmental disorder (66). 
Furthermore, HIST1H4J is the strongest negative predictor 
of ovarian cancer (67) and an important prognostic 
and chemoresistance predictor of ESCA (68). Herein, 
upregulation expression of HIST1H4J (log2FC =1.39; q 
value =1.87×10−3) was observed in patients with ESCA.

Hsa-miR-1269a serves as a diagnostic and oncogenic 
marker in hepatocellular carcinoma (56), colorectal 
cancer (57) and non‐small cell lung cancer (58). Our 
investigations showed that hsa-miR-1269a is significantly 
upregulated in ESCA patients with poor prognostic 
features. CD4+ resting memory T cells (P<0.01) were 
significantly negatively correlated with hsa-miR-1269a.

This is the first study to perform a comprehensive 
characterization of ESCA stemness based on a combined 
analysis of mRNA, miRNA, and lncRNA expression, and 
correlation with prognosis prediction. SRG network will 
facilitate improved treatment regimens for patients with 
ESCA and may promote the development of innovative 
therapeutics in the future.
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Table S1 mRNA, lncRNA, miRNA for uni-Cox analysis

Type Gene HR Lower Upper P value

mRNA PODN 1.00324714 1.000381736 1.006120751 0.026317216

mRNA FCGR1B 1.225197756 1.087937253 1.379775843 0.000807375

mRNA S100A6 1.000132726 1.000020772 1.000244691 0.020144423

mRNA MFSD4 1.003896826 1.0010547 1.006747021 0.007172789

mRNA RD3 9.686973427 1.222493358 76.75907079 0.03154037

mRNA MAP1LC3C 9.909903301 2.448197547 40.11366793 0.001304158

mRNA LBH 1.002492379 1.000798014 1.004189613 0.003923848

mRNA PTH2R 1.024213254 1.00595957 1.042798162 0.009118662

mRNA GBX2 1.162964375 1.03895711 1.301772831 0.008683245

mRNA P2RY14 1.034625196 1.002493988 1.06778625 0.034454507

mRNA ECT2 1.000884699 1.000119407 1.001650577 0.023457019

mRNA NCAPG 1.009635496 1.003840711 1.015463733 0.001093683

mRNA MTRNR2L13 11.96603594 1.998156885 71.65904596 0.00656814

mRNA BRIX1 1.00601046 1.00209252 1.009943718 0.002613369

mRNA PLCXD3 1.006577701 1.001103146 1.012082193 0.018462868

mRNA ANXA2R 1.041780733 1.013337135 1.071022721 0.003755365

mRNA F2R 1.001167104 1.000163813 1.002171401 0.022597905

mRNA TMEM232 1.316746374 1.094985569 1.583419054 0.003452075

mRNA SOWAHA 1.033868334 1.003405156 1.065256367 0.029055336

mRNA ECI2 1.009864713 1.002134859 1.01765419 0.012281938

mRNA HIST1H4J 1.564509606 1.072090069 2.28310137 0.020290381

mRNA ATP6V1G2 1.4873922 1.04772262 2.111566091 0.026369744

mRNA FBXO5 1.013126265 1.002037096 1.024338153 0.020213059

mRNA STEAP1B 1.041449037 1.000369087 1.084215926 0.047935932

mRNA STK31 1.022053615 1.003115979 1.041348771 0.02225451

mRNA KIAA1456 1.024296663 1.009681504 1.039123378 0.001060423

mRNA MBOAT4 1.87459532 1.206266256 2.913210576 0.005211303

mRNA TEX15 1.039375982 1.005666937 1.074214922 0.021681647

mRNA ABRA 1.992266299 1.095058859 3.624576864 0.02398563

mRNA PSCA 1.001112083 1.000148391 1.002076704 0.023701718

mRNA TPM2 1.001297589 1.000140327 1.00245619 0.02796486

mRNA FNBP1 1.003245661 1.000449606 1.006049531 0.022867729

mRNA IFIT1 1.005054142 1.00065053 1.009477132 0.024434132

mRNA SVIP 1.003810442 1.000194377 1.007439581 0.038873821

mRNA MS4A4E 1.517375598 1.027378242 2.241072092 0.036107518

mRNA BANF1 1.00250939 1.000946599 1.004074621 0.001640415

mRNA CST6 1.023088654 1.004576641 1.041941801 0.014282239

mRNA CARNS1 1.012654989 1.000820463 1.024629456 0.036019953

mRNA NOX4 1.035195951 1.006147711 1.065082836 0.017218103

mRNA PCED1B 1.020595086 1.000004332 1.041609817 0.049951328

mRNA ADCY6 1.004574666 1.001432996 1.007726192 0.004290194

mRNA FAM19A2 1.04124358 1.009978676 1.07347632 0.009368428

mRNA FGD6 1.003877446 1.000994344 1.006768853 0.00835838

mRNA PXMP2 1.032804175 1.008270549 1.057934763 0.008502061

mRNA PCCA 1.009721838 1.001541774 1.017968713 0.019744437

mRNA RNASE4 1.058263055 1.014720652 1.103673894 0.008250202

mRNA CHRNA7 1.090171138 1.011816488 1.17459354 0.023289605

mRNA MYZAP 1.045775929 1.015019956 1.077463835 0.003294647

mRNA CPEB1 1.261233732 1.040651504 1.528571785 0.017971125

mRNA NETO2 1.008593485 1.002321789 1.014904424 0.007174012

mRNA CES5A 1.055968764 1.020003163 1.093202522 0.002068794

mRNA MT3 1.871944415 1.010177739 3.468870632 0.046355814

mRNA FOXL1 1.026298867 1.009175703 1.043712567 0.002494814

mRNA WSCD1 1.04274854 1.006289644 1.08052838 0.021152414

mRNA FBXO39 1.254608709 1.017668813 1.546714404 0.033672697

mRNA CLDN7 1.000861121 1.000009453 1.001713515 0.047509668

mRNA GRIN3B 1.040611102 1.008474328 1.07377197 0.012875002

mRNA GNG7 1.02878942 1.004691234 1.053465618 0.018926503

mRNA ZNF69 1.065589813 1.016451225 1.117103923 0.008354967

mRNA ZNF568 1.103815426 1.037505847 1.174363015 0.001779274

mRNA ZNF677 1.03702122 1.009900582 1.064870176 0.007175125

mRNA ZNF583 1.055045041 1.012046614 1.099870326 0.011602025

mRNA ZFP28 1.060267265 1.018434445 1.103818393 0.004380818

mRNA ZNF470 1.069066834 1.009432604 1.132224074 0.022575092

mRNA PCNA 1.00068121 1.000036564 1.001326271 0.038343032

mRNA FOXS1 1.081767842 1.019362105 1.147994083 0.009527507

mRNA CPNE1 1.000270287 1.0001006 1.000440003 0.001795694

mRNA OSM 1.076369433 1.004919899 1.152899009 0.035727969

mRNA PNPLA5 1.835240896 1.274827676 2.642011315 0.001090493

mRNA CSF2RA 1.005326399 1.001445725 1.00922211 0.007100766

mRNA REPS2 1.005841152 1.000026981 1.011689126 0.048943231

mRNA MTRNR2L10 1.475029014 1.075887699 2.022246928 0.015764606

lncRNA CENPI 0.956151986 0.91489512 0.999269315 0.046322293

lncRNA C15orf54 13.70002718 2.445218728 76.75826404 0.002911662

lncRNA FAM13A-AS1 1.164985633 1.049213514 1.293532256 0.004242355

lncRNA RP11-348N5.7 1.146861831 1.039238092 1.265631109 0.006420873

lncRNA RP11-182J1.17 3.783981949 1.414301714 10.1240911 0.008041888

lncRNA RP11-636O21.1 2.195423447 1.203686861 4.004267447 0.01033054

lncRNA RP11-522B15.3 1.030207733 1.006233497 1.054753172 0.013240969

lncRNA ZFHX4-AS1 1.66609615 1.110198097 2.500343306 0.013713115

lncRNA RP11-510N19.5 1.030398167 1.005990913 1.055397588 0.014352505

lncRNA RP11-626E13.1 2.746290777 1.143831247 6.593728801 0.023779145

lncRNA RP11-462G2.1 1.007757162 1.001001925 1.014557987 0.024335659

lncRNA PRICKLE2-AS1 0.005377968 4.50E-05 0.642647288 0.032262757

lncRNA RP11-266N13.2 7.51993236 1.166039388 48.49697469 0.03388058

lncRNA RP1-136B1.1 1.398188357 1.024293439 1.908565073 0.034759448

lncRNA RP5-1159O4.1 1.079643763 1.005336208 1.159443623 0.035183321

lncRNA MAMDC2-AS1 1.221694334 1.009639103 1.478287679 0.039533938

lncRNA LINC00304 3.892700743 1.060305649 14.29127449 0.040539274

lncRNA RP6-74O6.6 1.081829563 1.002939965 1.166924487 0.041755029

lncRNA RP11-325K4.2 1.118697393 1.003612719 1.246978874 0.042859978

lncRNA RP11-1399P15.1 1.94707145 1.009623778 3.754950422 0.04675119

lncRNA RP11-79H23.3 1.064936777 1.000740638 1.13325101 0.047333628

lncRNA RP3-426I6.6 2.366105534 1.004367295 5.574111607 0.048846213

lncRNA RP11-139H15.7 3.133567638 1.004772391 9.772607439 0.049048698

miRNA hsa-miR-101-1 0.999662129 0.999343099 0.999981262 0.037984048

miRNA hsa-miR-101-2 0.999675281 0.999363188 0.999987472 0.041489546

miRNA hsa-miR-3074 1.058380837 1.010632503 1.108385089 0.01599622

miRNA hsa-miR-3651 1.084241971 1.026215504 1.145549493 0.003950585

miRNA hsa-miR-3652 1.08412749 1.006833747 1.167355005 0.032319846

miRNA hsa-miR-421 1.044978925 1.00639907 1.085037721 0.02188809

miRNA hsa-miR-503 1.030179924 1.007310327 1.053568743 0.009435251

mRNA, messenger RNA; lncRNA, long non-coding RNA; miRNA, microRNA; uni-Cox, univariate Cox; HR, hazard ratio.
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Figure S1 Survival analysis of the DESRGs (A), the DESRlncRNAs (B), and the DESRmiRNAs (C). Red indicates high expression group, 
light green indicates low expression group. DESRGs, differentially expressed stemness-related genes; DESRlncRNA, differentially expressed 
stemness-related long non-coding RNA; DESRmiRNA, differentially expressed stemness-related microRNA.
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Figure S2 Construction and validation of the DESRlncRNA prognostic model. (A) LASSO regression analysis plot of the meaningful genes in the uni-Cox analysis. (B) 
A risk factor plot for the training set. (C) A risk factor plot for the validation set. The Kaplan-Meier survival curve analysis revealed an OS in the high-risk group from 
the training set (D) and the validation set (E). The red line represents the high-risk group. The green line represents the low-risk group. Survival-dependent ROC 
curves validated the prognostic significance of DESRlncRNAs as prognostic indicators in the training set (F) and the validation set (G). The green line represents 
the 1-year AUC; the blue line represents the 2-year AUC; and the red line represents the 3-year AUC. A forest plot of the uni-Cox (H) and multi-Cox (I) regression 
analyses. (J) A nomogram for predicting the survival probability of ESCA patients for predicting 1-, 2-, and 3-year survival outcomes of ESCA. (K) Calibration 
curves of the OS-nomogram. ***, P<0.001. AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; OS, overall survival; 
DESRlncRNA, differentially expressed stemness-related long non-coding RNA; LASSO, least absolute shrinkage and selection operator; uni-Cox, univariate Cox; 
multi-Cox, multivariate Cox; ESCA, esophageal cancer.
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Figure S3 Construction and validation of the DESRmiRNA prognostic model. (A) A risk factor plot for the training set. (B) A risk factor plot for the validation set. The 
Kaplan-Meier survival curve analysis revealed an OS in the high-risk group from the training set (C) and the validation set (D). The red line represents the high-risk 
group. The green line represents the low-risk group. Survival-dependent ROC curves validated the prognostic significance of DESRmiRNAs as prognostic indicators in 
the training set (E) and the validation set (F). The green line represents the 1-year AUC; the blue line represents the 2-year AUC; and the red line represents the 3-year 
AUC. A forest plot of the uni-Cox (G) and multi-Cox (H) regression analyses. (I) A nomogram for predicting the survival probability of ESCA patients for predicting 1-, 2-, 
and 3-year survival outcomes of ESCA. (J) Calibration curves of the OS-nomogram. *, P<0.05. AUC, area under the ROC curve; ROC, receiver operating characteristic; 
CI, confidence interval; OS, overall survival; DESRmiRNA, differentially expressed stemness-related microRNA; LASSO, least absolute shrinkage and selection 
operator; uni-Cox, univariate Cox; multi-Cox, multivariate Cox; ESCA, esophageal cancer.
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