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Background: The TYMP gene encodes an important nucleoside metabolism enzyme which is a rate-
limiting enzyme for chemotherapeutic drug metabolism. Previous studies have shown that TYMP is highly
expressed in many different tumors, promoting invasiveness and progression, and that it helps to predict the
response to chemotherapeutic drugs. However, the role of TYMP in tumor immunity and prognosis remains
largely unclear. The purpose of this pan-cancer analysis was to acquire more data on the function of TYMP
function and its clinical significance.

Methods: To access the TYMP expression, we accessed datasets from The Cancer Genome Atlas (TCGA),
Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Cancer Cell Line Encyclopedia
(CCLE) databases, and analyzed its differential expression between paired tumor and normal samples. We
employed PrognoScan and Kaplan-Meier plotter for survival analyses. 7YMP mutations were analyzed
using cBioPortal. Correlations of TYMP with tumor stage, tumor mutational burden (TMB), microsatellite
instability (MSI), immune checkpoint genes (ICGs), and immune cell infiltration were estimated via
bioinformatics tools and methods. The CellMiner database was used to predict drug response. Gene set
enrichment analysis (GSEA) was applied to explore the biological functions of TYMP in different tumors.
Results: Our results indicated that TYMP was overexpressed and also significantly associated with a worse
prognosis in several human cancers, such as kidney clear cell carcinoma (KIRC) and lower grade glioma
(LGG). TYMP was also associated with TMB, MSI, and ICGs across a variety of malignancies. TYMP was
most significantly correlated with immune cell infiltration in five tumors, namely, breast cancer (BRCA),
cervical cancer (CESC), KIRC, skin cutaneous melanoma (SKCM), and stomach adenocarcinoma (STAD).
Moreover, TYMP expression predicted sensitivity to chemotherapy drugs and also influenced relevant
biological pathways, according to enrichment analysis.

Conclusions: According to the results of this comprehensive analysis, TYMP is associated with prognosis

and tumor immunology, which might make it be a potential therapeutic target for cancer treatment.
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Introduction 2020), in 2020 there were 19.3 million new cancer diagnoses
Cancer is major cause of death worldwide, the incidence and about 10 million cancer deaths (1). Most cancer deaths
and mortality rates of which are rapidly rising globally. are due to metastasis and no effective treatment currently
According to Global Cancer Statistics (GLOBOCAN exists for cancer (2). Fortunately, in recent years, cancer
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immunotherapy including immune checkpoint inhibitors
has become an increasingly successful strategy (3,4).
Therefore, new therapeutic targets and sensitive tumor
biomarkers are required for the diagnosis and treatment of
cancer.

The TYMP gene encoding thymidine phosphorylase
(TP) is located on chromosome 22q13.33 (5). TP is an
enzyme involved in nucleoside metabolism in the salvage
pathway of pyrimidine nucleosides. It is also known as
platelet-derived endothelial cell growth factor (PD-ECGF),
which plays an important role in cell proliferation and
angiogenesis (6). Mutations in 7YMP have been found to
cause mitochondrial neurogastrointestinal encephalopathy
(MNGIE) (7). Also, much evidence has suggested that
TYMP is expressed in several human tumors, such as in lung
cancer (8), head and neck cancer (HNSC) (9), esophageal
squamous cell carcinoma (10), gastric carcinoma (11),
and colorectal cancer (12). Moreover, TYMP is also suggested
to play multiple roles in tumor progression and response
to therapy. On the one hand, TYMP promotes cell
proliferation, enhances the epithelial to mesenchymal
transition, as well as angiogenesis, activities which all
accelerate tumor invasiveness and progression (13). On the
other hand, because the TYMP gene encodes TP which is
an important rate-limiting enzyme in thymidine catabolism
involved in the 5-fluorouracil (5-FU) activation pathway,
quantification of TYMP expression will be extremely useful
in predicting the effects of chemotherapeutic drugs, such as
5-FU and capecitabine (14). In addition, 7YMP is a target
of anti-cancer drugs to inhibit its expression and promote
the suppression of angiogenesis and enhance apoptosis.

Several studies have reported that increased TYMP
expression in different cancers is linked to poor outcomes
(11,15,16). Furthermore, tumor cells and stromal cells
express TYMP in the tumor microenvironment (TME) (13)
and a previous study suggested that 7YMP may be a target
for immunotherapy in solid tumors (17). Taken together,
available evidence suggests that TYMP influences cancer
prognosis, and may potentially represent a useful prognostic
biomarker.

Nevertheless, the significance of TYMP for tumor
immunity and prognosis in many diverse malignancies
remains unclear, and a comprehensive pan-cancer study
on the relationship between TYMP expression and cancer
biology has not yet been conducted. Therefore, we
performed such a pan-cancer analysis to better understand
the role of TYMP in cancer. In our investigation, we
examined the TYMP expression profiles in tumors and
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cancer cell lines by leveraging the The Cancer Genome
Atlas (TCGA), Oncomine, Gene Expression Profiling
Interactive Analysis (GEPIA), and Cancer Cell Line
Encyclopedia (CCLE) databases. Additionally, the
expression of TYMP and its connection with cancer
prognosis was investigated using PrognoScan and
Kaplan-Meier Plotter. We also performed a genetic
mutation analysis, and microsatellite instability (MSI),
tumor mutational burden (TMB), and immune scores
were calculated to study their relationships with TYMP
expression in tumors. Subsequently, co-expression analyses
of ICGs and TYMP, drug sensitivity analysis, and gene
set enrichment analyses (GSEAs) were carried out. Our
findings suggest that 7YMP may be a predictive factor in a
variety of malignancies and a critical in tumor immunity, but
further laboratory evidence is needed in future. We present
the following article in accordance with the REMARK
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-22-502/rc).

Methods
Data acquisition and TYMP expression analysis

Gene expression data was downloaded using the UCSC
Xena platform (https://xena.ucsc.edu) including RNA
sequencing, somatic mutation, and related clinical data for
33 cancer types from TCGA. TYMP gene expression data
were obtained from datasets and converted into a gene
expression matrix for analysis using a Perl script written
in Strawberry Perl for Windows (version 5.32.1; available
at https://strawberryperl.com/). The Oncomine (https://
www.oncomine.org/) database was searched for differences
in TYMP expression between around 20 cancer types and
paired normal tissue. TYMP expression was compared
between human malignant tumors and associated normal
tissue using the GEPIA database (http://gepia.cancer-pku.
cn/). Further, we accessed TYMP expression levels in 33
different cancer cell lines, through the CCLE database
(https://sites.broadinstitute.org/ccle). TYMP expression data
from TCGA were compared in normal tissue and tumor
tissue among 33 cancer entities by Wilcoxon testing, and
a P value of <0.05 was regarded as significant. R software
v4.05 (https://www.r-project.org/) was used to perform
the statistical analysis, and box plots was drawn with the
“ggpubr” package of R software. The study was conducted
in accordance with the Declaration of Helsinki (as revised
in 2013).
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Analysis of correlations between TYMP expression and
prognosis of tumor patients

Survival data of patients using 10,121 tumor samples
from 33 tumors were downloaded from TCGA. The
relationships between TYMP expression and patient
prognosis, including overall survival (OS), disease-specitic
survival (DSS), disease-free interval (DFI), and progression-
free interval (PFI) were investigated. Cox proportional
hazard regression analysis and the Kaplan-Meier method
were used for survival analysis, presented as forest plots
and Kaplan-Meier survival curves, using the R packages
“survival” and “forestplot”, survival” and “survminer”
packages, respectively.

Genetic alteration analysis

Genetic alterations of TYMP were analyzed in cancers
via cBioPortal (https://www.cbioportal.org/) using data
from TCGA (18). Applying cBioPortal, we investigated
the frequency, mutation type, and copy number alteration
(CNA) of TYMP in all TCGA cancers. These results can
be obtained from the ‘Cancer Types Summary’ tab. We
explored the TYMP mutation sites in pan-cancer and also
compared clinical outcomes in TCGA cancer samples with
or without 7YMP gene mutations.

Associations analysis of TYMP expression with tumor
stage, TMB and MSI

Clinical information on pathological tumor stage of all the
tumor samples derived from TCGA was downloaded and
associations of TYMP with tumor stage analyze using the
R-packages “limma” and “ggpubr”. The total amount of
mutations in tumor cells is referred to as TMB, and is used
to predict responsiveness to immune checkpoint inhibitor
therapy (19). MSI in tumor cells is related to defects in
the DNA mismatch repair system (20). We downloaded
mutation data from TCGA of 33 tumors from 10,114
samples and then calculated TMB scores for each sample.
TCGA provided data on somatic mutations of tumor
samples and the calculated MSI scores. Finally, the link
between TYMP expression and TMB, as well as MSI, was
investigated using Spearman’s rank correlation testing.
TMB and MSI correlation radar maps were created using
the R-package “fmsb”.
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Correlations between TYMP expression and immunity

In all tumor samples, immune scores and stromal scores
were estimated by the ESTIMATE (estimation of
stromal and immune cells in malignant tumor tissues
using expression) algorithm method. This can assist
in determining the level of stromal and immune cell
infiltration (21). To assess the association between TYMP
expression and these two scores, we further applied
the R packages “estimate” and “limma”. Moreover, we
used CIBERSORT, a computational approach, to study
tumor cell infiltration abundance among 33 human
malignancies (22). We also used “ggplot2”, “ggpubr”,
and “ggExtra” to examine associations between TYMP
expression and the degree of infiltration of immune cells
into each cancer. Finally, we generated a heatmap of
connections between TYMP expression and 47 ICGs across
33 human cancers using the R-package “limma”, “reshape2”
and “RColorBrewer”.

Drug sensitivity analysis

The CellMiner database (https://discover.nci.nih.gov/
cellminer/) contains molecular and pharmacological
datasets for the 60 different National Cancer Institute (NCI)
human tumor cell lines from nine cancer types (NCI-
60 cell lines) (23). Relationships between TYMP mRNA
expression and drug sensitivity were also investigated using
Pearson correlations. Data processing and correlation
analysis visualization were conducted through the
“impute”, “limma”, “ggplot2”, and “ggpubr” packages, with
significance set to P<0.05.

GSEA based on TYMP expression in tumors

GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) of
TYMP was performed to gain insight into tumor biology.

Enrichment analyses were carried out via the “limma”, “org.
Hs.eg.db”, “clusterProfiler” and “enrichplot” packages.

Statistical analysis

TYMP expression was log,-transformed and TYMP
expression was analyzed using the “limma” package and the
Student’s #-test. Survival analyses adopted the Kaplan-Meier
method, log-rank testing, and Cox proportional hazard
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regression analysis. Correlations between two variables were
determined using Pearson’s or Spearman’s correlation test.
R software (version 4.0.5) was used to conduct statistical
analysis and data visualizations. P<0.05 is regarded as
statistically significant.

Results

Pan-cancer analysis of expression profiles of TYMP from
different databases

To determine TYMP expression in different cancer types,
TYMP levels in tumor and normal samples from the
Oncomine database were analyzed. This revealed that
TYMP expression was significantly increased in bladder
cancer (BLCA), brain and central nervous system (CNS)
cancer, breast cancer (BRCA), cervical cancer (CESC),
gastric cancer, HNSC, kidney cancer, leukemia, lung cancer,
lymphoma, ovarian cancer (OV), and other cancer types
(Figure 1A4). We next analyzed TYMP expression levels in
all 33 cancers in the TCGA database. TYMP expression was
detectable in different cancers and matched normal tissues
(Figure 1B). Compared with matched non-tumor tissue,
differential TYMP expression was present in 16 of the 33
cancer types. TYMP expression was higher in cancer tissues
versus normal tissues in BLCA, BRCA, CESC, bile duct
cancer (CHOL), esophageal cancer (ESCA), glioblastoma
(GBM), HNSC, kidney clear cell carcinoma (KIRC), kidney
papillary cell carcinoma (KIRP), liver cancer (LIHC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSQ), rectal cancer (READ), stomach adenocarcinoma
(STAD), and endometrioid cancer (UCEC). The expression
of TYMP in CESC showed the greatest difference between
tumor tissues and non-tumor tissues. In contrast to most
tumors, lower levels of TYMP were also observed in
tumor tissues versus normal tissues in pancreatic cancer
(PAAD). Finally, no significant differences in TYMP
levels were discernible between colon cancer (COAD),
prostate adenocarcinoma (PRAD), pheochromocytoma
and paraganglioma (PCPG), and thyroid cancer (THCA).
Furthermore, TYMP expression profiles were analyzed
using the GEPIA database, confirming that the majority
of tumor types exhibited significant upregulation of 7YMP
expression, except adrenocortical cancer (ACC), kidney
chromophobe (KICH), and THCA (Figure 1C). Figure
ID displays gene expression of TYMP across human cell
lines and ranks them from low to high based on CCLE
data. The results of differential expression analysis across
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cancer types further confirmed that TYMP expression was
generally upregulated in cancer, suggesting that it may play
an important role in carcinogenesis, and warranting more
detailed analyses in further.

The prognostic signature of TYMP in buman cancers

We investigated the relationships of TYMP expression
and survival in terms of OS, DSS, DFI, and PFI in each
cancer type using the datasets from TCGA. Initially, we
employed Cox proportional hazards modeling to evaluate
associations between TYMP expression and patient
prognosis (OS, DSS, DFI, and PFI) across different
tumors. Notably, analysis of OS showed that TYMP
could classified as a high-risk gene in ACC, GBM, KIRC,
lower grade glioma (LGG), PAAD, thymoma (THYM),
and uveal melanomas (UVM). However, it could be
classified as a low-risk gene in patients with BRCA and
skin cutaneous melanoma (SKCM), as shown in Figure 2A.
From the forest plot in Figure 2B, in the DSS survival
analysis, elevated TYMP expression was correlated with
poor clinical outcome in patients with COAD (P=0.033),
GBM (P=0.027), KIRC (P=0.001), LGG (P<0.001),
PAAD (P=0.042), and UVM (P<0.001). In contrast, gene
expression of TYMP was positively correlated with patient
prognosis in BRCA (P=0.010) and SKCM (P<0.001).
Furthermore, an association between TYMP expression and
DFI was only seen in patients with PRAD (P=0.016; hazard
ratio =1.610) as shown in Figure 2C. Regarding associations
between TYMP expression and PFI, Cox regression analysis
indicated that high levels of TYMP were related to poor
PFI in GBM (P=0.005), KIRC (P=0.031), LGG (P<0.001),
PAAD (P=0.036), PRAD (P=0.002), THYM (P=0.025), and
UVM (P=0.009) (Figure 2D).

Next, we employed Kaplan-Meier survival analysis to
investigate associations between TYMP expression and
cancer patient prognosis. Kaplan-Meier survival estimates
showed that high TYMP expression was associated with
worse OS than low levels of TYMP in 5 malignancies,
namely, ACC (P=0.013), LGG (P<0.001), KIRC (P=0.005),
THYM (P=0.049), and UVM (P<0.001), while SKCM
patients with high levels of TYMP survived longer (P=0.009)
(Figure 2E). Low TYMP expression correlated with
poor DSS in patients with BRCA (P=0.009) and SKCM
(P<0.001). However, for patients with KIRC (P=0.020),
LGG (P<0.001), ACC (P=0.014), THYM (P=0.021),
and UVM (P<0.001), increased TYMP expression was
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Figure 1 TYMP gene expression levels in normal tissues, tumor tissues, and cancer cell lines (A) TYMP expression in different cancers and
matched normal tissues, assessed using the Oncomine database. (B) Differential expression of 7YMP in 33 human cancer types based on the
TCGA database. (*P<0.05; **P<0.01; ***P<0.001). (C) The level of TYMP expression in different cancers and paired normal tissues from the
GEPIA database (*P<0.05). (D) TYMP expression in different cancer lines, from the CCLE database. CNS, central nervous system; ACC,
adrenocortical cancer; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical cancer; CHOL, bile duct cancer; COAD, colon cancer;
DLBC, large B-cell lymphoma; ESCA, esophageal cancer; GBM, glioblastoma; HNSC, head and neck cancer; KICH, kidney chromophobe;
KIRC, kidney clear cell carcinoma; KIRP, kidney papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma;
LIHC, liver cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian cancer;
PAAD, pancreatic cancer; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectal cancer; SARC,
sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular cancer; THCA, thyroid cancer; THYM,
thymoma; UCEC, endometrioid cancer; UCS, uterine carcinosarcoma; UVM, uveal melanomas; TPM, transcripts per million; TCGA, The
Cancer Genome Atlas; GEPIA, Gene Expression Profiling Interactive Analysis; CCLE, Cancer Cell Line Encyclopedia.
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Figure 2 The correlation between the expression of TYMP and patient prognosis using R software. (A) Forest plot of OS across cancers.
(B) Forest plot of DSS in pan-cancer. (C) Forest plot of DFI in pan-cancer. (D) Forest plot of PFI in pan-cancer. (E) Kaplan-Meier
survival analysis for OS and TYMP expression. The P value of each tumor: ACC: P=0.013; LGG: P<0.001; KIRC: P=0.005; THYM:
P=0.049; SKCM: P=0.009; UVM: P<0.001. ACC, adrenocortical cancer; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical
cancer; CHOL, bile duct cancer; COAD, colon cancer; DLBC, large B-cell lymphoma; ESCA, esophageal cancer; GBM, glioblastoma;
HNSC, head and neck cancer; KICH, kidney chromophobe; KIRC, kidney clear cell carcinoma; KIRP, kidney papillary cell carcinoma;
LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; MESO, mesothelioma; OV, ovarian cancer; PAAD, pancreatic cancer; PCPG, pheochromocytoma and paraganglioma; PRAD,
prostate adenocarcinoma; READ, rectal cancer; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
TGCT, testicular cancer; THCA, thyroid cancer; THYM, thymoma; UCEC, endometrioid cancer; UCS, uterine carcinosarcoma; UVM,

uveal melanomas; OS, overall survival; DSS, disease-specific survival; DFI, disease-free interval; PFI, progression-free interval.
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Figure 3 Correlations of TYMP expression and DSS determined by Kaplan-Meier analysis using R software. (A-G) Kaplan-Meier survival
analysis for DSS and TYMP expression. The P value of each tumor: BRCA: P=0.009; SKCM: P<0.001; KIRC: P=0.020; LGG: P<0.001;
ACC: P=0.014; THYM: P=0.021; UVM: P<0.001. BRCA, breast cancer; SKCM, skin cutaneous melanoma; KIRC, kidney clear cell
carcinoma; LGG, lower grade glioma; ACC, adrenocortical cancer; THYM, thymoma; UVM, uveal melanomas; DSS, disease-specific

survival.
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significantly related to shorter DSS (Figure 3). In addition,
estimates indicated a negative association between TYMP
expression and DFI in LUAD (P=0.045) and PRAD
(P=0.003) (Figure 44,4B). An analysis of TYMP and
PFI showed that in patients with ACC (P=0.032), GBM
(P=0.022), LGG (P<0.001), KIRC (P=0.020), PRAD
(P=0.017) and UVM (P=0.005), high TYMP expression had
poor PFI (Figure 4C-4H). Collectively, these results imply
that upregulation of the 7YMP gene in multiple but not all
cancers predicts a poor prognosis.

TYMP mutations in tumors

Mutations of the TYMP gene in different cancers were
investigated further in the TCGA. Ovarian serous
cystadenocarcinoma had the highest frequency of TYMP
mutations (>10%), which was linked to “deep deletion”
(Figure 5A). Not only in ovarian serous cystadenocarcinoma,
but also in diffuse large B-cell lymphoma, UCEC, stomach
adenocarcinoma, bladder urothelial carcinoma, LUAD,
sarcoma (SARC), LUSC, and others, the most common
type of CNA was “deep deletion”. Figure 5B depicts the
types, sites, and numbers of cases with TYMP genetic
alterations. However, TYMP mutations had no significant
influence on OS and DSS, but there were some statistically
significant differences of DFS and PFS between patients
with tumors harboring TYMP gene mutants versus wild-
type TYMP (Figure 5C).

Associations between TYMP expression levels and
clinicopathology, TMB, and MSI in pan-cancer

We subsequently examined 7YMP expression among tumor
at different stages. TYMP expression was linked to clinical
tumor stage in 12 different cancers, as shown in Figure 6A4.
We also found that changes in TYMP expression were not
consistent across tumor stages in different tumors. Notably,
TYMP expression increased from early stages (stage 1/1I)
to advanced stages (stage I1I/IV) in ACC, BLCA, KIRC,
and STAD, as shown in Figure 64 (P<0.05). For instance,
TYMP expression levels in ACC at stage IV were higher
than at stage II. Conversely, TYMP levels decreased from
early stages (stage I/I) to advanced stages (stage III/IV) in
KIRP, LUAD, and testicular cancer (TGCT) (P<0.05). For
example, TYMP expression was generally higher in stage
II LUAD than in stage III LUAD. We also probed any
possible links between TYMP expression and TMB and MSI
in these tumor samples. TYMP expression was significantly
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correlated with TMB in 15 tumors such as BRCA, COAD,
ESCA, and KIRC (Figure 6B) and was also closely linked
with MSI in 10 tumors, such as THCA, TGCT, READ,
and PAAD (Figure 6C).

Associations between TYMP expression and the TME

The TME is composed of tumor cells, immune cells and
stromal cells. Its constitution affects therapeutic responses
and clinical outcomes (24). Hence, in the present study, we
analyzed relationships between immune and stromal scores,
and TYMP expression. Using the ESTIMATE algorithm,
scores for stromal and immune cells were calculated for 33
tumor types, and correlations between them and TYMP
expression were analyzed. In KICH, OV, PCPG, SARC,
and TGCT, TYMP and immune scores were positively
correlated according to this analysis. The most significant
associations between TYMP expression and stromal scores
were observed in GBM, KICH, LGG, PCPG, and UVM.
Figure 7 displays the results for the top 5 tumor types
with the highest correlation coefficients, and results of the
remaining cancers can be found in Figures S1,52.

Associations between TYMP expression and immune cell
infiltration and immune checkpoint gene (ICG) expression

We explored TYMP expression in relation to the degree of
infiltration of 22 immune cell types. TYMP expression was
closely linked with the levels of immune cell infiltration in
numerous malignancies according to this analysis (Table S1).
As presented in Table 1, we selected five tumors that had
the most meaningful correlation between TYMP expression
and infiltrating immune cells for the next analysis, namely
BRCA (n=13), CESC (n=13), KIRC (n=13), SKCM (n=14),
and STAD (n=13). In these five tumors, infiltrating CD8
T cells, activated CD4 memory T cells, activated NK
cells, and M1 macrophages all had a substantial positive
correlation with TYMP expression, while TYMP expression
was found to be inversely linked with infiltrating resting
CD4 memory T cells. There was also no link between
naive CD4 T cell infiltration and TYMP expression. TYMP
expression was also linked to a variety of macrophage
subgroups. For instance, infiltrating M1 macrophages
were positively associated with TYMP expression in these
five tumors, but infiltrating MO macrophages (except
in BRCA) and infiltrating M2 macrophages (except in
CESC and STAD) were negatively correlated with TYMP
expression. Additionally, differential associations between
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Figure 4 Correlations between TYMP expression and DFI and PFI by Kaplan-Meier analysis using R software. (A,B) Kaplan-Meier survival
analysis for DFI and TYMP expression. (C-H) Kaplan-Meier survival analysis for PFT and expression. The P value of each tumor: LUAD:
P=0.045; PRAD: P=0.003; ACC: P=0.032; GBM: P=0.022; LGG: P<0.001; KIRC: P=0.020; PRAD: P=0.017; UVM: P=0.005. LUAD, lung
adenocarcinoma; PRAD, prostate adenocarcinoma; ACC, adrenocortical cancer; GBM, glioblastoma; LGG, lower grade glioma; KIRC,
kidney clear cell carcinoma; UVM, uveal melanomas; DFI, disease-free interval; PFI, progression-free interval.
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Figure 5 Genetic mutations of TYMP and survival across different cancers as assessed by cBioPortal tool analysis. (A) Frequency of TYMP
mutations in different tumor types. (B) Types, sites and number of case with TYMP genetic alterations in pan-cancer from cBioPortal. (C)
Kaplan-Meier curves of OS, DSS, DFS, and PFS in cancers with genetic alterations in 7YMP. TCGA, The Cancer Genome Atlas; OS,

overall survival; DSS, disease-specific survival; DFS, disease-free survival; PFS, progress-free survival.

© Translational Cancer Research. All rights reserved.

Transi Cancer Res 2022;11(9):3187-3208 | https://dx.doi.org/10.21037/tcr-22-502



3198

A Cancer: ACC
Stage I Stage | & Stage Il & Stage Il & Stage IV
12.5 A 0.1
0.0098
0.87
- 10.0 1 0.52
3 . 0.64
a 0.34
g 754 — .
g
X . .
L 5.0 ’
Q U7
§ . . o
g =Yl
0.0 . : - .
Stage | Stage Il Stage lll Stage IV
Stage
Cancer: KICH
Stage &3 Stage | & Stage Il & Stage Ill & Stage IV
0.018
4 0.019
8 0.89
5 — e
@ 0.05
3 6 0.042
o
2 i . .
(V)
Q .
S .,[ , N
= kO i
’ Lo
% L) . .
T T T T
Stage | Stage Il Stage Il Stage IV
Stage
Cancer: ESCA
Stage =1 Stage | & Stage |l = Stage Ill &3 Stage IV
12.5 A — 096
5 10.0 -
1]
1%
<
g 75
3 .
a
S
= 5.0+
2.5 4
T T T T
Stage | Stage Il Stage lll Stage IV
Stage
Cancer: STAD
Stage £ Stage | &3 Stage Il & Stage Il Stage IV
125 - 0.073
c
© 10.0
a
<
g 75
(0]
a
S 50
2.5

Stage | Stage Il Stage Il Stage IV
Stage

TYMP expression

TYMP expression

© Translational Cancer Research. All rights reserved.

TYMP expression

Yang et al. A pan-cancer analysis of TYMP in human cancers

Cancer: BLCA

Stage 1 Stage | &1 Stage |l & Stage Ill & Stage IV
0.22

Stage | Stage Il Stage Il Stage IV
Stage
Cancer: KIRP
Stage & Stage | &1 Stage Il Stage Il &3 Stage IV
0.42
10.0
7.5
5.0
2.5
T . T T T
Stage | Stage Il Stage Il Stage IV
Stage
Cancer: TGCT
Stage & Stage | & Stage Il &3 Stage Il
0.027
8 -
j
o
g 6-
a
X
[}
Q4
S 4
S
2 -
T T T
Stage | Stage Il Stage I
Stage
Cancer: PAAD

Stage & Stage | & Stage Il &3 Stage Il &3 Stage IV

10.0

~
[6;]
1

Stage | Stage Il Stage Il Stage IV
Stage

Transl Cancer Res 2022;11(9):3187-3208 | https://dx.doi.org/10.21037/tcr-22-502

Cancer: KIRC

Stage 1 Stage | & Stage Il &3 Stage Il &3 Stage IV

12.5 o 0.17
0.b48

c 0.38
£ 10.0 ~ 0.00011
] 0.0015
L
g 7.5
[0}
Q
S 501

2.5 -

Stage | Stage Il Stage Ill Stage IV

Stage
Cancer: LUAD

Stage & Stage | & Stage Il & Stage Il & Stage IV
0.81

—_
o
Il

(o]
Il

(o2}
Il

TYMP expression

3
S

Stage | Stage Il Stage Ill Stage IV

Stage

Cancer: COAD
Stage =3 Stage | &3 Stage |l &2 Stage Il &3 Stage IV
0.031

TYMP expression

T T T T
Stage | Stage Il Stage Il Stage IV
Stage

Cancer: THCA
Stage & Stage | & Stage Il & Stage Il &3 Stage IV
0.51

TYMP expression

Stage | Stage Il Stage Ill Stage IV

Stage



Translational Cancer Research, Vol 11, No 9 September 2022 3199

B C
BLCA ACC uvMm BLCA ACC uvMm
BRCA*** ucs* BRCA ucs
CESC* 0.4 UCEC™ CESC 05 UCEC
CHOL THYM* CHOL™ THYM
-3 025
COAD™™ THCA*™* COAD™* THCA"
0
DLBC TGCT DLBC TGCT™*
ESCA* STAD ESCA™ STAD
GBM SKCM GBM SKCM
HNSC SARC* HNSC SARC
KICH READ KICH READ**
KIRC*™ PRAD KIRC PRAD*
KIRP* PCPG KIRP PCPG
LAML* PAAD LAML PAAD*
LGG™* ov LGG oV
HHC | uap LuscMESO HHC | yapLusc MBSO

Figure 6 Relationship between TYMP expression and tumor stage in cancer patients based on TCGA represented by stage plots (A),
relationship between TYMP expression TMB (B) in cancer patients based on TCGA represented by radar maps (*P<0.05; **P<0.01;
***P<0.001; meaningful P values in cancers, BRCA: P=0.0003, CESC: P=0.023; COAD: P=6.99372605004755¢-06; ESCA: P=0.012; KIRC:
P=0.0003; KIRP: P=0.0147; LAML: P=0.0028; LGG: P=7.80820021923056¢-07; LUSC: P=0.0308; SARC: P=0.036; TGCT: P=0.0150;
THCA: P=0.0007; THYM: P=0.0090; UCEC: P=0.0076; UCS: P=0.0386). Relationship between TYMP expression MSI (C) in cancer
patients based on T'CGA represented by radar maps. (*P<0.05; **P<0.01; ***P<0.001; meaningful P values in cancers, CHOL: P=0.0080;
COAD: P=5.22958938728024¢-06; ESCA: P=0.0027; LUAD: P=0.0498; OV: P=0.0092; PAAD: P=0.0346; PRAD: P=0.0326; READ;
P=0.0091; TGCT: P=5.22958938728024¢-06; THCA: P=0.0140). ACC, adrenocortical cancer; BLCA, bladder cancer; KIRC, kidney clear
cell carcinoma; KICH, kidney chromophobe; KIRP, kidney papillary cell carcinoma; LUAD, lung adenocarcinoma; ESCA, esophageal
cancer; TGCT, testicular cancer; COAD, colon cancer; STAD, stomach adenocarcinoma; PAAD, pancreatic cancer; THCA, thyroid cancer;
BRCA, breast cancer; CESC, cervical cancer; CHOL, bile duct cancer; DLBC, large B-cell lymphoma; GBM, glioblastoma; HNSC, head
and neck cancer; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver cancer; LUSC, lung squamous cell carcinoma;
MESO, mesothelioma; OV ovarian cancer; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectal
cancer; SARC, sarcoma; SKCM, skin cutaneous melanoma; THYM, thymoma; UCEC, endometrioid cancer; UCS, uterine carcinosarcoma;
UVM, uveal melanomas; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; MSI, microsatellite instability.

TYMP expression levels and distinct subgroups of tumor-
infiltrating NK cells were also observed. The level of

Associations of TYMP with drug sensitivity in pan-cancer

A Pearson correlation analysis was performed to explore

infiltrating activated NK cells was strongly associated with ’ ) o
relationships between TYMP expression in the NCI-60

TYMP expression. Except in patients with BRCA, TYMP

expression was found to be negatively correlated with tumor cell lines and susceptibility to 263 antitumor drugs,

invading resting NK cells. Finally, co-expression analysis in order to evaluate potential drug responsiveness. As shown

was conducted to explore the relationships between TYMP
expression and ICGs across 33 tumors. As illustrated in
Figure 8, we assessed 47 ICGs and found that among all the
significant associations, TYMP expression was positively
correlated with CTLA4, CD200R1, HAVCR2, PDCDILG2,
VSIR, CD86, and TNFRSF9 in multiple cancer types, but
negatively associated with VV'TCN1 and CD200 in multiple
cancers.

© Translational Cancer Research. All rights reserved.

in Figure 9, displaying all significant results, we found that
TYMP expression correlated positively with susceptibility
to 8 antitumor drugs, namely SCH-900776, EPZ-015666,
alectinib, VE-822, LDK-378, vismodegib, CCT-251545,
and itraconazole. However, there was a significant negative
association with sensitivity to ARQ-087. Taken together,
these findings suggest that TYMP could be useful for
predicting drug response.
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Figure 7 Relationships between TYMP expression and the tumor immune microenvironment. The top 5 tumors with the highest immune
cell scores or stromal cell scores calculated by the ESTIMATE algorithm method. (A) Correlations of TYMP expression and immune cell
scores in KICH, OV, PCPG, SARC, and TGCT. (B) Correlations of TYMP expression and stromal cell scores in GBM, KICH, LGG,
PCPG, and UVM. KICH, kidney renal clear cell carcinoma; OV, ovarian cancer; PCPG, pheochromocytoma and paraganglioma; SARC,
sarcoma; TGCT, testicular; GBM, glioblastoma; LGG, lower grade glioma; UVM, uveal melanomas.
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Table 1 Association between TVMP expression and immune cell infiltration in human cancers

3201

Cell type BRCA (P value/Cor) CESC (P value/Cor) KIRC (P value/Cor) SKCM (P value/Cor) STAD (P value/Cor)
Naive B cells ***/-0.10 ***/-0.26 ***/-0.22 0.012 ***/-0.18
Memory B cells **/0.17 **/0.17 **/0.17 0.047 */0.11
Plasma cells 0.053 -0.065 ***/0.24 **/0.15 **/0.16
CD8 T cells ***/0.26 **%/0.22 ***/0.45 ***/0.43 ***/0.3
Naive CD4 T cells 0 0 0 0 0
Resting CD4 memory T cells ***/-0.31 ***/-0.31 ***/-0.32 **/-0.29 ***/-0.48
Activated CD4 memory T cells ***/0.24 ***/0.24 ***/0.23 */0.32 ***/0.31
Follicular T helper cells **/0.081 ***/0.21 ***/0.37 0.076 ***/0.26
Regulatory T cells ***/0.22 0.027 ***/0.36 ***/0.26 **/0.14
Gamma delta T cells 0.019 -0.000007 0.015 **/-0.14 0
Resting NK cells 0 -0.058 **/-0.27 */-0.12 -0.084
Activated NK cells ***/0.34 ***/0.21 ***/0.29 **/0.27 ***/0.27
Monocytes **/0.09 0.095 0.014 */0.12 0.074
MO macrophages 0.034 ***/-0.20 -0.069 ***/-0.21 -0.044
M1 macrophages ***/0.20 ***/0.40 ***/0.16 **/0.15 ***/0.27
M2 macrophages ***/-0.13 ***/0.22 ***/-0.39 ***/-0.29 0.054
Resting dendritic cells -0.043 **/0.18 -0.02 0.059 -0.026
Activated dendritic cells ***/0.13 -0.011 -0.029 0.061 ***/0.27
Resting mast cells ***/-0.12 */0.13 ***/-0.34 */-0.11 0.047
Activated mast cells 0 */-0.13 0 -0.08 **/-0.19
Eosinophils 0 0 0 0 */-0.13
Neutrophils 0.0087 -0.04 -0.038 */0.12 0.087

*P<0.05; **P<0.01; **P<0.001. BRCA, breast cancer; CESC, cervical cancer; KIRC, kidney clear cell carcinoma; SKCM, skin cutaneous
melanoma; STAD, stomach adenocarcinoma.

GSEA

Finally, a GSEA analysis of TYMP expression in 33 types of
tumor tissues was performed to determine its biological role.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGGQG) analyses were conducted to explore
the functional equivalents of high or low TYMP expression
in cancers. Figure 10 depicts the major pathways identified
by GO and KEGG analyses for eight different cancer
types. GO enrichment terms revealed that TYMP positively
regulated biological processes including immune response
regulating signaling pathways and leukocyte migration
in ACC, GBM, KICH, and LGG. TYMP expression
was mainly associated with immunity-related activities

© Translational Cancer Research. All rights reserved.

in PRAD, as shown in Figure 10A4. Additionally, TYMP
was associated with intermediate filament, intermediate
filament cytoskeleton, RNA polymerase binding, and RNA
polymerase core enzyme binding in LIHC (Figure 10A).
At the same time, KEGG enrichment terms showed that
TYMP expression was mainly connected to immune-related
pathways, metabolic-related activities, and tumor biological
activity. Cytokine receptor interactions and chemokine
signaling pathways were positively regulated by TYMP in
ACC, LIHC, KICH, and GBM, and TYMP was involved in
the signaling pathways of T cell receptors in ACC, LGG,
and PCPG, TYMP also participated in the B cell receptor
signaling pathway in PCPG. However, TYMP expression

Transi Cancer Res 2022;11(9):3187-3208 | https://dx.doi.org/10.21037/tcr-22-502
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Figure 8 Relationship between TYMP expression and 47 ICGs depicted in a heatmap. *P<0.05; **P<0.01; ***P<0.001. ACC, adrenocortical

cancer; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical cancer; CHOL, bile duct cancer; COAD, colon

cancer; DLBC, large

B-cell lymphoma; ESCA, esophageal cancer; GBM, glioblastoma; HNSC, head and neck cancer; KICH, kidney chromophobe, KIRC,
kidney clear cell carcinoma; KIRP, kidney papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver

cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian cancer; PAAD, pancreatic

cancer; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectal cancer; SARC, sarcoma; SKCM,
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular cancer; THCA, thyroid cancer; THYM, thymoma; UCEC,

endometrioid cancer; UCS, uterine carcinosarcoma; UVM, uveal melanomas; ICGs, immune checkpoint genes.

was negatively correlated with several drug metabolic
enzymes in HNSC. In parallel, TYMP expression was
positively correlated with the JAK/STAT signaling pathway
in LGG and PRAD, and in LIHC, PCPG, and KICH,
TYMP expression was enriched in the Nod-like receptor
signaling pathway (Figure 10B).

© Translational Cancer Research. All rights reserved.

Discussion

Based on available studies, TYMP participates in the
metabolism of chemotherapeutic drugs such as 5-FU
and capecitabine, and is associated with chemoresistance,
as well possibly assisting in predicting susceptibility to
chemotherapeutic drugs (25-27). TYMP plays a vital role
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in promoting tumor progression, and overexpression of
TP enhanced viability and decreased apoptosis in human
cholangiocarcinoma cell lines, as well as promoting
angiogenesis in intrahepatic cholangiocarcinoma (28).
Furthermore, TYMP itself serves as a therapeutic target
in cancers and has been utilized in cancer treatment as a
TP inhibitor (13). However, its connection to the tumor
immune microenvironment remains unclear. Therefore,
the role of TYMP across human cancers in a pan-cancer
analysis was comprehensively explored here. We report
that TYMP expression is significantly increased in 15 types
of cancer in TCGA database, and is also highly expressed
in multiple tumor cells, especially in the PRAD, cervical,
pancreatic, and HNSC cells. TYMP expression levels
were higher in BLCA, BRCA, ESCA, KIRC, and LIHC,
consistent with the results of previous studies (16,29-32).
TYMP is a major enzyme in the 5-FU pathway and is
frequently mutated in gastric cancer (33). Upregulation of
TYMP, one of the most commonly altered genes leading
to 5-FU resistance, was found to be the origin of this
increased vasculogenic potential (34). Our Cox proportional
hazards analysis demonstrated that PAAD patients with
higher TYMP expression had a poorer OS, while in BRCA
patients it tended to be associated with a better outcome.
Similarly, high expression of TYMP predicted a longer
survival time in BRCA patients, and low TYMP expression
a higher OS in pancreatic adenocarcinoma, although not
statistically significant. These data are also similar to those
reported in previous studies, and are further supported
by assessments of prognostic value in our work (35,36).
Moreover, prognosis is also affected by TYMP expression
among multiple cancers reported in previous studies,
including gastric carcinoma, CESC, renal cell carcinoma,
and hepatocellular carcinoma (11,15,37,38). Overall, in
many types of cancer, TYMP expression is associated with
a poor prognosis. Additionally, TYMP expression was
shown to be associated with tumor stage among 12 types
of cancer. Of these, TYMP expression was associated with
the tumor stage in most malignant tumors, with a notable
difference between early and advanced cancers. In ACC,
BLCA, KIRC, the three types of cancer exhibited a trend
that TYMP expression was at a higher level in patients who
were in advanced stages. In contrast, TYMP expression was
higher in patients at the early stage of COAD, ESCA, and
KIRP. This information may help to improve therapies of
tumors based on the clinical characteristics of each cancer
type.

The TMB represents the number of mutations identified

© Translational Cancer Research. All rights reserved.
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in a tumor, with a higher TMB implying greater numbers
of potential tumor neoantigens, which correlates with a
better response to immune checkpoint inhibitors (39).
Recent studies demonstrated that the TMB can serve as a
biomarker to predict the effectiveness of immunotherapy
in colorectal cancer and gastric cancer (40,41). In addition,
the TMB predicts the prognosis of patients treated
by immunotherapy across multiple cancer types (42).
Currently, MSI also functions as a biomarker for PD1/PD-
L1-blockade. A previous review contended that MSI status
was helpful for deciding on cancer treatment because of its
predictive value (43). Colorectal cancer patients with high
MSI had a longer PFI when treated with pembrolizumab
than with chemotherapy (44). TYMP expression was
linked to the TMB in 15 tumor types and MSI in 10
tumor types, according to our findings. This implies that
TYMP expression influences the TMB and MSI of tumors
and affects how patients respond to immune checkpoint
inhibitors, and may thus represent a novel prognostic
biomarker for immunotherapies in many different tumors.
Features of the TME can be used to assess immune
responses to cancer, and assess influence on clinical
outcomes (24). Our results suggest that T7YMP is crucial for
cancer immunity. Regarding immune scores and stromal
scores, positive correlations between the former and TYMP
expression were identified in 32 tumor types, and for
stromal scores in 25 tumor types. The degree of immune
cell infiltration contributes to predicting cancer patient
prognosis (45,46). We also examined associations between
TYMP and immune cell infiltration in 33 different tumor
types, and found that TYMP expression was positively
associated with the presence of memory B cells and CD8
T cells. An earlier study had identified TYMP-positive
macrophages as promoters of angiogenesis and metastasis
in gastric cancer (47). In BRCA patients, TYMP expression
in macrophages had also been linked to tumor angiogenesis
and prognosis (48). Hence, we further conducted co-
expression analyses of TYMP and ICGs, most of which were
significantly related to TYMP. Results showed that TYMP
expression and tumor immunity were closely associated,
influencing cancer progression and the patient prognosis.
Moreover, our findings showed that 7YMP expression was
correlated to responses to a number of chemotherapeutic
drugs, such as SCH-900776, EPZ-015666, and alectinib.
A previous study had demonstrated that 7YMP expression
was substantially linked to the capecitabine response (26).
Finally, our GSEA indicated that 7YMP influenced many
biological processes in different tumors through pathways
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involving cell adhesion, immune response regulating
signaling pathway, leukocyte migration, T cell, and B cell
receptor pathways. Nonetheless, the molecular mechanisms
of TYMP involvement in tumorigenesis remain poorly
understood. GSEA can help uncover some important
biological processes.

In sum, we conclude that the TYMP gene expressed
at a higher level in the majority of tumors relative to the
respective normal tissues. We explored correlations between
TYMP expression, clinical prognosis and tumor stage. We
suggest that TYMP could be employed as a prognostic
marker for a range of malignancies. Moreover, in various
types of cancers, TYMP expression has been related to
TMB, MSI, and immune cell infiltration. Furthermore,
TYMP expression is associated with the effectiveness
of several chemotherapeutic drugs. These findings
reveal something of TYMP’s function in cancer etiology,
pathology and progression, and further contribute to
immunotherapeutic strategies. Validation will require future
experimental work.
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Figure S1 The significant results of correlation analyses of TYMP expression and immune cell scores in tumors. ACC, adrenocortical
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Figure S2 The significant results of correlations of TYMP expression and stromal cell scores in tumors. ACC, adrenocortical cancer; BLCA,
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Table S1 Association between TYMP expression and immune cell infiltration

Cell type ACC BLCA CHOL COAD DLBC ESCA GBM HNSC KICH KIRP LAML LGG LIHC LUAD LUSC MESO ov PAAD PCPG PRAD READ SARC TGCT THCA THYM UCEC ucs UvM
(P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor) (P value/Cor)
Naive B cells -0.02 **/-0.15 -0.041 0.0068 ***/-0.53 ***/-0.35 0.12 -0.033 -0.27 0.019 ***/-0.4 0.069 -0.047 ***/-0.16 ***/-0.15 **/-0.32 -0.08 -0.037 -0.074 -0.035 -0.026 -0.074 -0.047 **/0.14 **/0.25 **/-0.14 -0.3 */-0.38
Memory B cells -0.08 */-0.11 0.2 -0.054 0.034 ***/0.32 -0.012 0.0075 0 -0.024 0.11 0.02 0 ***/0.15 */0.11 **/0.29 0.066 **/0.22 */0.25 **/0.16 0.017 0 -0.078 0.03 0.13 **/0.13 */0.35 0
Plasma cells 0.09 -0.047 0.2 0.071 0 -0.13 0.098 **/-0.14 0.18 */0.13 -0.093 0 0.021 0.045 0.01 0.15 ***/0.2 -0.1 */0.22 0.058 0.049 **/0.21 0.12 ***/0.4 ***/0.31 ***/0.21 0.06 -0.038
CD8 T cells 0.17 ***/0.21 0.14 **/0.34 */0.34 */0.2 0.12 ***/0.31 */0.33 ***/0.22 0.054 ***/0.31 0.076 ***/0.25 */0.11 ***/0.39 ***/0.33 -0.079 0.16 ***/0.2 **/0.23 ***/0.4 */0.2 ***/0.3 0.11 ***/0.26 -0.034 ***/0.66
Naive CD4 T cells 0 0 0 0 0 0 0 0 0 0 */-0.18 0 0 0 0 0 0 0 0 0 0 0 0 0 **/-0.32 0 0 0
Resting CD4 meory T cells **/-0.42 -0.0013 -0.2 **/-0.45 -0.12 ***/-0.38 **/0.25 “**/-0.23 0.054 ***/-0.23 ***/-0.41 ***/0.18 0.062 ***/-0.32 -0.063 ***/-0.49 “**/-0.21 **/-0.25 **/-0.37 ***/-0.24 ***/-0.38 ***/-0.3 0.025 ***/-0.19 ***/-0.32 “**/-0.32 0.027 -0.18
Activated CD4 memory T cells */0.34 ***/0.37 */0.35 -0.068 0.19 0.16 ***/0.29 ***/0.23 0 0.11 0.13 0 */0.15 **/0.17 ***/0.21 ***/0.36 **/0.17 -0.085 ***/0.36 ***/0.22 */-0.2 **/0.41 ***/0.41 ***/0.42 ***/0.37 0.089 0.32 ***/0.59
Follicular T helper cells **/0.42 */0.11 0.21 ***/0.23 -0.037 **/0.24 **/-0.21 ***/0.16 0.19 -0.0025 0 0.048 -0.01 **/0.14 0.04 0.078 0.0012 ***/0.26 0.16 -0.034 0.15 0.043 **/-0.22 **%/0.32 0.12 0.03 -0.3 **/0.47
Regulatory T cells 0.17 ***/-0.28 */0.35 **/0.13 -0.077 ***/-0.46 0 0.0094 0.13 ***/0.23 0 0 0.1 ***/0.15 ***/0.18 */0.28 ***/0.26 **/0.2 */0.25 ***/0.29 */0.16 **/0.27 0.095 **/0.15 -0.027 **/0.12 0.077 */0.37
Gamma delta T cells -0.2 */-0.11 0 0 0.25 0 0.1 0 -0.26 0 ***/-0.35 0 -0.11 **/-0.13 0 0 -0.11 0 0 0 0 -0.022 0 0.049 ***/0.34 -0.046 -0.019 0.22
Resting NK cells —-0.044 -0.0183 0 -0.048 0 0.012 -0.064 **/-0.14 -0.14 -0.11 -0.049 -0.088 **/-0.27 0 —-0.059 0 0 -0.071 0.18 0 -0.044 0 0 ***/-0.25 -0.12 -0.059 -0.15 -0.11
Activated NK cells -0.18 ***/0.26 -0.02 ***/0.27 */0.35 ***/0.3 -0.031 ***/0.36 ***/-0.59 -0.055 0.0042 -0.069 -0.12 ***/0.27 0.081 **/0.31 0.059 */0.2 **/-0.32 0.025 */0.2 0.067 */0.17 -0.0086 0.15 */0.11 0 -0.16
Monocytes 0.052 **/0.16 0.0037 0.048 */0.3 0.1 -0.084 0.073 0.29 -0.067 ***/0.68 **/-0.17 0.016 0.069 0.068 -0.15 0.044 -0.13 */-0.24 */0.13 -0.03 ***/0.22 **/0.24 0.062 0.049 /0.2 **/0.46 -0.19
MO macrophages */0.34 -0.018 -0.13 -0.063 0.25 -0.064 0.091 **/-0.26 0.08 ***/0.23 0 ***/0.26 0.04 0.073 **/-0.12 0.085 “**/-0.31 **/0.22 **/0.31 **/0.16 -0.086 -0.1 -0.12 ***/-0.32 /0.4 ***/-0.23 **/-0.44 -0.28
M1 macrophages 0.27 ***/0.34 -0.0053 ***/0.4 */0.35 ***/0.33 0.07 ***/0.39 0.076 -0.068 0 ***/0.37 **/0.18 ***/0.24 */0.1 ***/0.48 “**/0.27 0.089 0.21 0.0088 **/0.24 **/0.21 ***/0.29 ***/0.38 */0.23 ***/0.28 */0.42 ***/0.66
M2 macrophages -0.12 -0.021 -0.079 ***/0.16 0.17 0.12 **/-0.19 0.015 -0.12 -0.049 ***/0.28 ***/-0.22 -0.05 -0.038 -0.082 */-0.26 0.028 -0.0069 -0.029 -0.083 **/0.25 */-0.15 */-0.19 ***/-0.37 **/0.29 ***/0.18 0.27 ***/-0.59
Resting dendritic cells -0.024 -0.086 0.11 -0.046 -0.13 */0.19 0.062 0.034 -0.039 0.014 0 0.018 0.1 */-0.095 -0.051 0.012 **/0.17 -0.14 -0.095 */0.12 -0.016 0.11 **/0.25 0.06 ***/-0.41 0.024 0.26 0.23
Activated dendritic cells -0.22 -0.034 0.017 -0.00072 0.12 ***/0.31 0 0.035 -0.15 -0.079 0 0 0.091 -0.03 ***/0.15 **/0.32 -0.077 ***/0.31 -0.024 ***/0.22 0.033 **/0.19 -0.045 -0.098 ***/0.39 0.018 0.22 0
Resting mast cells -0.21 */-0.11 0.11 */0.11 -0.11 0.009 -0.052 */0.097 -0.29 -0.1 ***/-0.29 **/0.16 **/-0.18 -0.076 -0.023 0.2 0.072 */-0.2 */0.27 ***/-0.3 -0.043 **/-0.19 -0.041 ***/-0.18 0.14 -0.08 0.15 -0.33
Activatedmast cells 0.13 -0.077 -0.027 -0.08 0 —-0.082 0.044 ***/-0.24 0 0 0 ***/-0.28 0 0 0.011 0 **/-0.14 0 */-0.24 0 0.13 0 0 0 0 -0.073 0 0
Eosinophils 0.061 0.037 0 -0.048 0 0 -0.06 0 */0.33 0 ***/-0.35 **/0.17 0 */-0.11 **/-0.13 0 0 0 -0.11 0 */0.19 0 0 0 0 0 0 0
Neutrophils 0.22 ***/0.21 0.15 **/0.28 0 -0.13 **/0.23 0.06 0.3 ***/0.29 ***/0.32 0.099 */0.13 0.052 ***/0.2 0.13 0.073 0.15 -0.0031 0 ***/0.34 0 0 0 0 **/0.13 */0.34 0

*P<0.05; **P<0.01; ***P<0.001. ACC, adrenocortical cancer; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical cancer; COAD, colon cancer; DLBC, large B-cell ymphoma; ESCA, esophageal cancer; GBM, glioblastoma; HNSC, head and neck cancer; KIRC, kidney clear cell carcinoma; KIRP, kidney papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; MESO, mesothelioma; PAAD, pancreatic cancer; PRAD, prostate adenocarcinoma; READ, rectal cancer; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; THCA, thyroid cancer; THYM, thymoma; UCEC, endometrioid cancer; UCS, uterine carcinosarcoma; UVM, uveal melanomas.

© Translational Cancer Research. All rights reserved.

https://dx.doi.org/10.21037/tcr-22-502



