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Introduction

Esophageal cancer, predominantly histological type—

esophageal squamous cell carcinoma (ESCC), ranked 

eighth in morbidity and sixth in mortality worldwide in 
2020 according to Cancer Today-IARC data. A series of 
genomic studies of ESCC have been published since 2014 
(1-3). Some studies about the relevance of gene mutations 
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in prognosis have been investigated (4,5). However, 
investigations were confined to single gene mutations, 
such as ZNF750 and EP300 mutations (6,7). Additionally, 
other genes were found to be correlated with prognosis (8).  
Additionally, some studies based on gene expression to 
make prediction models have been published (9,10). Gene 
expression is a continuous variable that is commonly used in 
prediction models. Continuous variables can better obtain 
the cutoff value. In Professor Cui’s study, they successfully 
constructed a new 3 autophagy-related gene prognostic 
model based on their real sequencing data and GSE53624 
dataset (11). After rigorous validation, the area under the 
curve (AUC) value was good, and the prediction model 
showed potential to improve the ability of individualized 
prognosis prediction in ESCC (11).

In the clinic, we can easily obtain esophageal biopsies 
and gene mutation status with the development of the 
sequencing technique. We cannot determine which gene 
mutation can better predict prognosis, including overall 
survival (OS) and progression-free survival (PFS). However, 
mutation models predicting prognosis have not been 
established. Thus, we sought to investigate several gene 
mutations as markers to discriminate prognosis based 
on mutation state. Notably, the gene mutation status is 
a categorical variable that is different from continuous 
variables such as gene expression.

In our previous study, whole-exome sequencing (WES) 
for 78 patients and targeted sequencing for 316 patients (78 
included) were used to depict the landscape of ESCC (12). 
Detailed gene mutation and authentic clinical data of all 
sequenced samples were collected. In this study, we aimed 
to develop and validate a model based on ESCC mutation 
status to predict the OS and PFS of resected patients with 
ESCC. The established prognostic nomogram was based 
on the clinicopathological parameters and gene mutations. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-915/rc).

Methods

Patients

A total of 316 locally advanced patients with ESCC 
underwent esophagectomy at Fudan University Shanghai 
Cancer Center from September 2007 to June 2011. Of 
these, 312 patients with complete clinical and gene somatic 
mutation information were enrolled in the study, of 

which, 88.1% (275 patients) were male. The proportions 
of cigarette and alcohol consumption were 64.7% (202 
patients) and 44.2% (138 patients), respectively. Middle 
and low differentiation occupied 56.6% (179 patients) and 
32.4% (101 patients) in the dataset, respectively. More than 
half of the patients were stage II, accounting for 57.4% 
(179 patients), and 38.8% (121 patients) were stage III. 
Patients were further randomly stratified into a training 
cohort (156 patients) and validation cohort (156 patients) at 
a 1:1 ratio. The International Cancer Genome Consortium 
(ICGC) contains public data, including sequencing and 
clinical information of various cancers. We chose ESCA-
CA, including 263 Chinese ESCC donors, as the external 
validation set.

Primary tumor tissues and corresponding adjacent non-
tumor tissues (located 5 cm from the tumors) were collected 
from patients with ESCC who received radical operation at 
Fudan University Shanghai Cancer Center. Surgical tissues 
were snap frozen in liquid nitrogen immediately and stored 
at −80 ℃. The clinicopathological characteristics, including 
age, sex, cigarette consumption, alcohol use history, tumor 
location, differentiation, and tumor/node/metastasis (TNM) 
stage, were collected from inpatient medical records. The 
pathological features were evaluated independently by 
two separate pathologists according to the TNM staging 
system of the American Joint Committee on Cancer 
(AJCC 7th edition). All patients were followed up after 
primary treatment at intervals that increased from three 
months to one year until death. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by ethics board of Fudan 
University Shanghai Cancer Center (No. 050432-4-1212B) 
and informed consent was taken from all the patients. 

WES and targeted sequencing, data processing, and 
mutation calling

The methods have been described previously (12). Genomic 
DNA was extracted from the frozen tissues. Then, DNA 
was sheared to short fragments. DNA fragments were 
end repaired, and an adenylate blocker was added at the 
3' ends. Adaptors with barcode sequences were then 
ligated to both ends of the fragments. E-Gel was used 
to select DNA fragments of the targeted size. Whole-
exome capture was performed using the TruSeq Exome 
Enrichment kit (Illumina) according to the manufacturer’s 
protocol. We included 283 “cancer-related genes” in the 
target enrichment panel. Briefly, these genes included 
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high-priority genes in COSMIC and genes related to drug 
sensitivity. Targeted gene enrichment was performed with 
TruSeq Custom Enrichment kits (Illumina).

Read pairs (FASTQ format) were trimmed and filtered 
with fastq-mcf. The resulting high-quality reads were 
aligned to the human reference genome (GRCh37/hg19) 
using Burrows-Wheeler Aligner (BWA 0.7.12). We then 
used several popular callers, including Muse, MuTect2, 
SomaticSniper, Radia, and VarScan2, to identify somatic 
point mutations. Only mutations reported by at least two 
callers were used in further analyses. Somatic mutations 
were annotated using Oncotator. MutSigCV (V1.4) was 
applied to identify significantly mutated genes with default 
covariate tables. Genes with q (FDR) <0.1 were significantly 
mutated. The WES and targeted-sequencing data have 
been deposited in the NCBI Sequence Read Archive (SRA) 
under Bioproject (accession number: PRJNA399748). 

Statistical analysis

The least absolute shrinkage and selection (LASSO) 
method was used to screen high-dimensional data in the 
regression analysis with the highest efficiency and least 
redundancy based on the 283 mutated genes. LASSO 
is a popular machine learning algorithm that has been 
extensively utilized in medical studies (13-16). The 
coefficient of each variable in the regression model was 
recorded and used to calculate the risk score of each patient. 
The most significantly mutated genes were identified from 
the training cohort. The risk score of each patient was 
calculated via a linear combination of these gene mutation 
statuses. A multimarker classifier was identified to predict 
the OS and PFS of patients with ESCC in the training set. 
Progression was defined as the recurrence of the primary 
tumor, progression of local and regional lymph nodes, and 
distant metastasis. LASSO Cox regression model analysis 
with factors included in the optimal model was conducted 
by the ‘glmnet’ package using R software (17). The risk 
score of each patient was thus estimated by the identified 
model for further analysis.

The optimum cutoff point was defined using X-tile plots 
based on the balanced number and significant difference 
in survival between the compared groups overall. X-tile 
plots provide an assessment of every possible way of 
dividing a population into different subgroups. The X-tile 
software allows the user to move a cursor across the grid 
and provides an “on-the-fly” histogram of the resulting 
population subsets along with an associated Kaplan-

Meier curve. Survival analysis was conducted with SPSS 
software. Kaplan-Meier curves and the log-rank method 
were used to compare survival between different groups. 
Receiver operating characteristic (ROC) analysis was used 
to investigate the prognostic performance of the gene 
mutation-based model. Univariate and multivariate Cox 
regression analyses were conducted to identify independent 
prognostic predictors. Cox regression coefficients were used 
to construct a nomogram for predicting the probability of 
OS and PFS. Calibration plots were also derived based on 
the regression analysis. Calibration plots that are drawn 
by observed probabilities against predicted probabilities 
calculated with the nomogram. The X-axis is the probability 
of positive prediction by the model, and the Y-axis is the 
probability of true positive. Decision curve analysis (DCA) 
was used to assess the clinical utility of the established 
nomogram. The graph shows the clinical net benefit 
according to various threshold probabilities. The X-axis is 
the threshold probability, and the Y-axis is the net benefit, 
which is the subtraction of the proportion of all patients 
who are false-positive from the proportion who are true-
positive weighted by the relative harm of a false-positive 
and a false-negative result. The nomogram and calibration 
plots were constructed using the ‘rms’ R package. Statistical 
analysis was performed with R software (version 3.2.0). 
Statistical levels were two-sided, and statistical significance 
was set at 0.05.

Results

Population characteristics

The study flowchart is illustrated in Figure S1. In our 
previous study, 78 patients with ESCC received WES. 
As a validation cohort, another cohort of 316 patients, 
including 78, underwent targeted sequencing to confirm 
the WES results. Of 316 patients, 312 patients were chosen 
for the present study. The training and validation sets were 
randomized at a ratio of 1:1 using a random table. The 
clinical characteristics of the current analyzed patients 
and ICGC donors (public dataset as external validation) 
are summarized in Table 1. Clinical features of ICGC data 
mainly included age, sex, TNM stage, and survival time of 
donors. However, information on cigarette consumption, 
alcohol consumption history, tumor differentiation, tumor 
location, and progression status was not supplied.

There were 80 events (deaths) over a median follow-up 
time of 35.5 months in the training set and 88 events in the 
validation set.

https://cdn.amegroups.cn/static/public/TCR-22-915-Supplementary.pdf
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Table 1 Clinicopathological parameters of the study participants

Parameters

OS analysis PFS analysis

Training set Validation set ICGC Training set Validation set

Low High Low High Low High Low High Low High

Sex

Male 20 (90.9) 117 (87.3) 15 (88.2) 123 (88.5) 136 (79.5) 76 (82.6) 93 (86.9) 44 (89.8) 90 (90.9) 48 (84.2)

Female 2 (9.1) 17 (12.7) 2 (11.8) 16 (11.5) 35 (20.5) 16 (17.4) 14 (13.1) 5 (10.2) 9 (9.1) 9 (15.8)

Age

≤50 2 (9.1) 15 (11.2) 2 (11.8) 16 (11.5) 19 (11.1) 12 (13.0) 13 (12.1) 4 (8.2) 12 (12.1) 6 (10.5)

51–60 12 (54.5) 58 (43.3) 10 (58.8) 61 (43.9) 75 (43.9) 38 (41.3) 42 (39.3) 28 (57.1) 46 (46.5) 25 (43.9)

>60 8 (36.4) 61 (45.5) 5 (29.4) 62 (44.6) 77 (45.0) 42 (45.7) 52 (48.6) 17 (34.7) 41 (41.4) 26 (45.6)

Smoking

Yes 13 (59.1) 89 (66.4) 12 (70.6) 88 (63.3) 66 (61.7) 36 (73.5) 64 (64.6) 36 (63.2)

No 9 (40.9) 45 (33.6) 5 (29.4) 51 (36.7) 41 (38.3) 13 (26.5) 35 (36.4) 21 (36.8)

Alcohol

Yes 13 (59.1) 58 (43.3) 9 (52.9) 58 (41.7) 46 (43.0) 25 (51.0) 45 (45.5) 22 (38.6)

No 9 (40.1) 76 (56.7) 8 (47.1) 81 (58.3) 61 (57.0) 24 (49.0) 54 (54.5) 35 (61.4)

Family history

Yes 2 (9.1) 25 (18.7) 4 (23.5) 19 (13.7) 20 (18.7) 7 (14.3) 21 (21.2) 52 (91.2)

No 20 (90.9) 109 (81.3) 11 (64.7) 112 (80.6) 87 (81.3) 42 (85.7) 78 (78.8) 5 (8.8)

T stage

T1 2 (9.1) 5 (3.7) 1 (5.9) 5 (3.6) 12 (7.0) 2 (2.2) 5 (4.7) 2 (4.1) 6 (6.1) 0 (0)

T2 11 (50.0) 55 (41.0) 9 (52.9) 59 (42.4) 49 (28.7) 10 (10.9) 44 (41.1) 22 (44.9) 46 (46.5) 22 (38.6)

T3 9 (40.9) 74 (55.2) 7 (41.2) 75 (54.0) 110 (64.3) 80 (87.0) 58 (54.2) 25 (51.0) 47 (47.5) 35 (61.4)

N stage

N0 9 (40.9) 45 (33.6) 10 (58.8) 50 (36.0) 121 (70.8) 29 (31.5) 39 (36.4) 15 (30.6) 42 (42.4) 18 (31.6)

N1 11 (50.0) 55 (41.0) 6 (35.3) 59 (42.4) 31 (18.1) 31 (33.7) 44 (41.1) 22 (44.9) 42 (42.4) 23 (40.4)

N2 2 (9.1) 24 (17.9) 1 (5.9) 19 (13.7) 17 (9.9) 27 (29.3) 18 (16.8) 8 (16.3) 10 (10.1) 10 (17.5)

N3 0 (0) 10 (7.5) 0 (0) 11 (7.9) 2 (1.2) 5 (5.4) 6 (5.6) 4 (8.2) 5 (5.1) 6 (10.5)

Differentiation

High 1 (4.5) 19 (14.2) 4 (23.5) 8 (5.8) 10 (9.3) 10 (20.4) 7 (7.1) 5 (8.8)

Middle 15 (68.2) 72 (53.7) 10 (58.8) 82 (59.0) 62 (57.9) 25 (51.0) 62 (62.6) 30 (52.6)

Low 6 (27.3) 43 (32.1) 3 (17.6) 49 (35.3) 35 (32.7) 14 (28.6) 30 (30.3) 22 (38.6)

Site/location (7th)

Upper thoracic 7 (31.8) 21 (15.7) 4 (23.5) 34 (24.5) 22 (20.6) 6 (12.2) 26 (26.3) 12 (21.1)

Middle thoracic 11 (50.0) 85 (63.4) 11 (64.7) 79 (56.8) 63 (58.9) 33 (67.3) 52 (52.5) 38 (66.7)

Low thoracic 4 (18.2) 28 (20.9) 2 (11.8) 26 (18.7) 22 (20.6) 10 (20.4) 21 (21.2) 7 (12.3)

Table 1 (continued)
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Development of the gene mutation-based prognostic model

We identified potential predictive prognostic markers, 
including OS and PFS, using the LASSO Cox regression 
model (Figure S2). Regarding OS, nine prognostic markers 
(ADCY8, ALK, ARID1A, CDK8, DICER1, EPC1, ERBB2, 
MED12, TSC1) in the training cohort were identified 
through regression analysis. These gene mutation types and 
frequencies are summarized in Table S1. According to the 
mutation status of the nine genes, we derived a formula to 
calculate risk score (Table S1). In this formula, wild type 
equals 0, and mutated type equals 1. The optimum cutoff 
value of the nine-gene mutation model was defined as −0.13 
by the X-tile plot approach (Table S2).

Using this formula, patients in the training set were 
classified into low- and high-risk subgroups. Patients with 
a risk score of −0.13 or higher were divided into the high-
risk group, whereas those with a risk score lower than −0.13 
were enrolled in the low-risk group. According to the risk 
score, 156 patients in the training cohort were further 
stratified into a high-risk group (135 patients, 86.5%) and a 
low-risk group (21 patients, 13.5%). Patients with lower risk 
scores have better 5-year OS. The 5-year OS was 41.0% 
in the high-risk group and 67.5% in the low-risk group 
(P=0.02; Figure 1A). The difference was the same in both 
the whole cohort and the validation set. In the validation 
cohort, we classified patients into a high-risk group (139 
patients, 89.1%) and low-risk group (17 patients, 10.9%). 

The 5-year OS was 38.8% for the high-risk group and 
65.5% for the low-risk group (P=0.04; Figure 1B). In the 
whole cohort, the 5-year OS was 40% in the high-risk 
group (274 patients) and 56.4% in the low-risk group (38 
patients) (P=0.004; Figure 1C).

The survival difference was verified repeatedly in ICGC 
data (Figure S3A). The survival advantage was significant in 
the low-risk group (171 patients) compared to the high-risk 
group (92 patients, P<0.01). Additionally, a consistent result 
was verified in The Cancer Genome Atlas (TCGA) data 
(Figure S3B, P<0.01).

Regarding PFS, 21 gene mutation-based models were 
developed (Figure S2B). These gene mutation types, 
frequencies, and risk score formulas are summarized in 
Table S1. Then, we sought to set up different risk score 
groups according to the risk score. The cutoff risk value of 
the risk score was defined as 0.04 through X-tile (Table S2).  
There were 207 patients in the low-risk group with a risk 
value <0.04 (range, −0.91 to 0). A total of 105 patients 
were divided into a high-risk group with a risk value 
>0.04. Additionally, the training and validation sets were 
randomized at a ratio of 1:1. The patient characteristics are 
shown in Table 1. In the training set, the 3-year PFS was 
16.2% in the high-risk group (49 patients) and 52.1% in the 
low-risk group (107 patients). PFS was significantly better in 
the low-risk group than in the high-risk group in the training 
set (P<0.01, Figure 1D). The result was identified in both the 
validation set and the whole cohort. In the validation set, the 

Table 1 (continued)

Parameters

OS analysis PFS analysis

Training set Validation set ICGC Training set Validation set

Low High Low High Low High Low High Low High

TNM stage

I 2 (9.1) 6 (4.5) 2 (11.8) 2 (1.4) 69 (40.4) 4 (4.3) 4 (3.7) 4 (8.2) 3 (3.0) 1 (1.8)

II 14 (63.6) 71 (53.0) 12 (70.6) 82 (59.0) 59 (34.5) 24 (26.1) 61 (57.0) 24 (49.0) 67 (67.7) 27 (47.4)

III 6 (27.3) 57 (42.5) 3 (17.6) 55 (39.6) 43 (25.1) 64 (69.6) 42 (39.3) 21 (42.9) 29 (29.3) 29 (50.9)

Nerve invasion

Yes 1 (4.5) 27 (20.1) 1 (5.9) 20 (14.4) 21 (19.6) 7 (14.3) 13 (13.1) 8 (14.0)

No 21 (95.5) 107 (79.9) 16 (94.1) 119 (85.6) 86 (80.4) 42 (85.7) 86 (86.9) 49 (86.0)

Vessel invasion

Yes 2 (9.1) 26 (19.4) 1 (5.9) 30 (21.6) 18 (16.8) 10 (20.4) 18 (18.2) 13 (22.8)

No 20 (90.9) 108 (80.6) 16 (94.1) 109 (78.4) 89 (83.2) 39 (79.6) 81 (81.8) 44 (77.2)

Data are shown as n (%). OS, overall survival; PFS, progression free survival; ICGC, International Cancer Genome Consortium.
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Figure 1 Comparison of the Kaplan-Meier OS and PFS curves in high-risk vs. low-risk patients stratified by gene-mutation signatures. (A) 
Training cohort for OS; (B) validation cohort for OS; (C) whole cohort for OS; (D) training cohort for PFS; (E) validation cohort for PFS; (F) 
whole cohort for PFS. OS, overall survival; PFS, progression free survival.

3-year PFS was 21.9% in the high-risk group (57 patients) 
and 43.8% in the low-risk group (99 patients) (P<0.01,  
Figure 1E). In the whole cohort, the 3-year PFS was 19.7% in 
the high-risk group (105 patients) and 48.4% in the low-risk 
group (207 patients) (P<0.01, Figure 1F).

Genes expression in the prediction model

Seventy-four paired ESCC tumor and adjacent normal 
tissues were subjected to RNA-Seq. In the OS prediction 
model, expression of ALK, CDK8, EPC1, and ERBB2 
was significantly decreased in tumor tissue (P<0.05). The 
expression differences of the other four genes were not 
significant. In the PFS prediction model, significantly 
increased expression of MAP3K13, TSHR, PMS1, MSH2, 
PMS2, AP3B2, PTCH1, FANCF, and PIK3CA was observed 
in tumor tissue in comparison to normal tissue, while 
significantly decreased expression of CS, EPC1, LAMA2, 
ALK, ERCC5, and PDZRN4 was observed in tumor tissue. 

Other gene expression was not significant. The expression 
of all genes included in the prediction model is summarized 
in Table S3. The top two genes with upregulated expression 
in tumors were MSH2 and AP3B2, and the top two genes 
with downregulated expression were PDZRN4 and LAMA2 
(Figure S4).

Predictive value of the established model

To determine whether the prognostic prediction model 
was an independent variable in comparison with other 
clinicopathological features, univariate and multivariate Cox 
regression analyses were performed. In univariate analysis, 
stage, risk score, sex, differentiation, and vessel invasion 
were found to be influencing factors of OS, while other 
clinicopathological factors showed no statistically significant 
differences (Figure 2A). Multivariate analysis showed 
that only stage and mutation-based classifiers remained 
independent predictors of OS (Figure 2B). Moreover, the 
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time-dependent ROC curve showed that the area under 
the ROC curve was 0.599, which was similar to that of the 
TNM stage (AUC =0.654). Furthermore, the combination 
of the gene mutation-based prediction model and TNM 
stage showed better performance for predicting OS than 
TNM stage alone (P=0.00013). Thus, the gene mutation-
based model could add prognostic value to TNM stage 
in predicting OS (Figure S5A). In ICGC data, the gene-
mutation model was better, with an area under the ROC of 
0.654 in the prediction of OS. In combination with stage, 
the prediction efficiency reached 0.672 (Figure S5B).

Only stage, risk score, and vessel invasion were found to be 
significant in PFS univariate analysis (P<0.05) (Figure 3A). In 
multivariate analysis, stage and risk score were independent 
factors of PFS (P<0.01, Figure 3B). In ROC curve analysis, 
the AUC of the gene mutation-based model was 0.590, and 

the TNM stage value was 0.654. Combined with the risk 
score and TNM stage analysis, a better prediction of PFS was 
observed with AUC =0.694 (Figure S5C).

Nomogram construction and its clinical utility

To establish an applicable method to predict OS and PFS 
probabilities, we constructed a nomogram plot integrating 
gene mutations and multiple clinicopathological features. 
The nomogram was generated based on multivariate analysis. 
The independent predictors of multiple analyses, including 
sex, vessel invasion, differentiation, risk score, and stage, 
were included in the prediction model for OS (Figure 4A).  
A nomogram model based on the ICGC database, including 
stage and risk score, is shown in Figure 4B. The independent 
predictors of multiple analyses, including vessel invasion, 

Figure 2 Univariate analysis and multivariate analysis of clinicopathological parameters and risk score in predicting OS. (A) Univariate 
analysis; (B) multivariate analysis. OS, overall survival; PFS, progression free survival.
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Figure 4 Nomogram for predicting 1-, 3-, and 5-year OS and PFS probabilities of patients with ESCC. (A) OS; (B) OS with ICGC 
database; (C) PFS. The length of each line such as stage, risk score, differentiation, sex and vessel invasion benchmarked to the ‘points’ line 
corresponding to a point, respectively. Then each point was summarized together to get the total point. The ‘total points’ line was matched 
with survival line. ESCC, esophageal squamous cell carcinoma; OS, overall survival; PFS, progression free survival; ICGC, International 
Cancer Genome Consortium.
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risk score, and stage, were included in the prediction model 
for PFS (Figure 4C). In all analyses, the risk model showed 
better predictive value and high consistency.

The calibration curve was also investigated and showed 
favorable consistency between the predicted OS and PFS and 
the actual observation (Figure 5A,5B). In survival analysis of 
external validation set—ICGC data, good consistency was 
also shown between prediction and actual events (Figure 5C). 
DCA was used to assess the potential clinical application of 
the mutation-based model by quantifying the net benefits. 
In the current analysis, DCA exhibited satisfactory positive 
net benefits of the nomogram at the threshold probabilities 
for 5-year OS and PFS (Figure 6A,6B). The benefit was 
verified repeatedly in ICGC validation (Figure 6C). These 
results indicated that our 9-gene-based and 21-gene-based 
prediction models performed well and were capable of 
distinguishing different patients with ESCC with high or low 
risk of survival and PFS.

Discussion

Previous studies have demonstrated the genetic landscape 

and many different single prognostic biomarkers for ESCC 
(2,3,6). TNM stage is mainly used to assess the prognosis 
of ESCC; however, more accurate prediction models 
integrating additional genomic and clinical parameters are 
needed. Some risk score systems have been estimated for 
ESCC, such as the 6-IHC marker-based classifier model (18). 
However, it was based on IHC markers, not gene mutation 
status. Another classifier was a single gene as a prognostic 
biomarker (19). Thus, we sought to develop a postoperative 
prediction model that would practically promote prognostic 
value in comparison with a single biomarker.

In the present study, gene mutation information came 
from WES and target sequencing samples to maximize 
model accuracy. Additionally, a large sample size of 316 
patients with ESCC were enrolled for analysis. Using 
the LASSO method, we established a 9-gene-based and 
21-gene-based prediction model for ESCC prognosis. This 
prognostic model was successfully validated in either the 
internal or external validation cohorts, which indicated 
excellent power to classify patients with ESCC into 
different risk subgroups.

Based on this prognostic model, patients with ESCC 

0.6

0.5

0.4

0.3

0.2

0.1

O
bs

er
ve

d 
fr

ac
tio

n 
ov

er
al

l 
su

rv
iv

al
 p

ro
ba

bi
lit

y

0.2                   0.3                   0.4                   0.5
Nomogram predicted overall survival probability

0.6

0.5

0.4

0.3

0.2

0.1

0.0

O
bs

er
ve

d 
fr

ac
tio

n 
pr

og
re

ss
io

n-
fr

ee
 p

ro
ba

bi
lit

y

0.2                   0.3                   0.4                   0.5
Nomogram predicted progression-free probability

0.7

0.6

0.5

0.4

0.3

0.2

0.1O
bs

er
ve

d 
fr

ac
tio

n 
ov

er
al

l 
su

rv
iv

al
 p

ro
ba

bi
lit

y

0.25       0.30       0.35       0.40       0.45       0.50       0.55       0.60
Nomogram predicted overall survival probability

A B

C

Figure 5 Calibration curves of the nomogram predicting OS and PFS. (A) OS; (B) PFS; (C) OS with ICGC database. X-axis is the 
probability of positive predicted by the model, and Y-axis is the probability of true positive. The blue dotted line represented the predicted 
survival probability and the red solid line represented the true survival probability. The closer the two lines are, the higher predictive value 
of nomogram model there is. OS, overall survival; PFS, progression free survival; ICGC, International Cancer Genome Consortium.
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could be divided into high- and low-risk subgroups. In the 
current analysis, we observed that the high-risk subgroup 
had poor clinical outcomes, either OS or PFS, compared to 
those of the low-risk subgroup. Therefore, this prediction 
model may help identify patients with ESCC with poor 
prognosis and make appropriate clinical follow-up plans to 
prevent disease recurrence and progression.

In OS and PFS prediction models, CDK8 occurred 
repeatedly and was identified as correlated with suppression 
of ESCC (20). CDK8 regulates several transcription 
factors implicated in cancer (21,22). Regarding ARID1A, 
immunohistochemistry performed on an independent 
archival cohort demonstrated that ARID1A protein loss 
decreased from normal squamous epithelium to EAC. 
Enhanced cell growth, proliferation, and invasion were 
observed upon ARID1A knockdown in EAC cells (23). 
ERBB2 amplification variants mainly give rise to attention 
in breast cancer and head and neck tumors (24). Mutation 
is also correlated with worse prognosis in cancers (25). 

ADCY8 catalyzes the formation of cyclic AMP from ATP. 
Increased expression of ADCY8 plays an important role 
in tumor differentiation (26). TSC1 is a tumor suppressor 
gene that encodes the growth inhibitory protein hamartin. 
TSC1 mutation reduces drug sensitivity and selectivity in 
bladder cancer (27).

The conventional prognostic factors of patients with 
ESCC who undergo surgical resection include TNM 
stage, differentiation, and metastatic lymph node status 
and number (7). To assess whether the gene mutation-
based model can be an independent factor of prognosis, 
we performed univariate and multivariate Cox regression 
analyses. In the entire cohort, the prediction model 
displayed an independent correlation with OS and PFS 
after adjusting for sex, TNM stage, tumor differentiation, 
and vessel invasion.

To evaluate the prediction accuracy of the gene mutation-
based model, we performed time-dependent ROC analysis 
and calculated AUCs at different cutoff times. The ROC 
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receiver either in OS or PSF analysis was not above 0.75 or 
not satisfactory, as in other studies (28,29). The reason may 
be that the model is based on gene mutation status, which 
is a categorical variable. The wild type is defined as 0, and 
the mutant status as 1. The risk score mode based on binary 
variables may not be more satisfactory than that based 
on continuous variables. Additionally, the AUC analysis 
focused mainly on the predictive accuracy of the model. 
In AUC analysis, false-positives and false negatives will be 
encountered. To find a way to maximize the net benefit 
in clinical utility, DCA is adopted. DCA incorporating 
doctors’ or patients’ preferences is a statistical method that 
can provide advice on whether patients could theoretically 
benefit from the chosen treatment (30). In the current study, 
favorable consistency was observed between the prediction 
model and actual observations in the calibration plot, which 
proved that the developed nomogram model was repeatable 
and reliable.

To the best of our knowledge, the present nomogram 
is the first one based on sequenced gene mutation status 
for predicting the survival of patients with ESCC after 
esophagectomy. Based on the scoring system, surgeons 
could conduct an individualized prediction of OS and 
PFS for different patients. Screening patients at high risk 
for poor prognosis might help to make rational physical 
examinations and follow-up periods.

Nevertheless, there are some limitations of the current 
study. This is a retrospective analysis which limits the 
established nomogram. The gene mutation status was based 
on WES. It is possible that some gene mutation statuses 
were not acquired through panel sequencing in the clinic. 
The gene mutation-based model failed to incorporate some 
high-frequency genes (e.g., TP53 mutation and NFE2L2 
mutation). In future research, we will select the genes with a 
high mutation rate in the risk model and combine them with 
other genes with a high mutation rate (more than 15%) to 
construct a smaller gene panel that can be sequenced more 
easily in the clinic. Additionally, clinical information of the 
external validation set from ICGC was not complete. Further 
efforts to collect nationwide multicenter clinical data would 
increase the applicability of the prediction model.

In conclusion, we developed and validated the first 
nomogram model that integrated gene mutation status 
and clinical features, which could be helpful for better 
predicting the prognosis of resected patients with ESCC. 
With this prediction model, patients were stratified into 
different subgroups that would be given individualized 
follow-up options.
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Figure S1 Study flow chart for our analysis.
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Figure S2 Establishment of the risk signature integrating the mutated genes. (A,B) OS; (C,D) PFS. The coefficients estimated by the Lasso 
regression method are presented. Each curve in the (A,C) represents the path of a lasso coefficient against the L1-norm (the penalty term 
for lasso) when λ changes. A coefficient that becomes non-zero when λ changes enters the LASSO regression model. (B,D) The coefficients 
estimated by the Lasso regression method are presented. OS, overall survival; PFS, progression free survival; LASSO, least absolute 
shrinkage and selection operator.
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Table S1 Gene mutation type, frequency and risk score formula included in the analysis 

Genes Point mutation Splice site Total Frequency (%) Coefficient (OS risk score) Coefficient (PFS risk score)

ADCY8 19 0 19 6.1 −0.35 –

ALK 5 0 5 1.6 0.07 0.27

ARID1A 12 4 16 5.1 0.13 −0.48 

CDK8 6 0 6 1.9 0.26 0.58

DICER1 14 1 15 4.8 −0.25 –

EPC1 5 0 5 1.6 0.027 –

ERBB2 7 0 7 2.2 0.07 –

MED12 11 0 11 3.5 0.11 –

TSC1 8 0 8 2.6 0.43 –

MAP3K13 10 0 10 3.2 – −0.91

BAP1 3 2 5 1.6 – −0.75

NCOR1 12 0 12 3.8 – −0.21

TSHR 9 0 9 2.9 – −0.17

CS 4 0 4 1.3 – −0.17

PMS1 3 0 3 1.0 – 0.036

MSH2 4 0 4 1.3 – 0.043

BCR 11 0 11 3.5 – 0.095

MLL2 58 14 72 23.1 – 0.14

EPC1 5 0 5 1.6 – 0.19

PMS2 5 0 5 1.6 – 0.20

LAMA2 22 0 22 7.1 – 0.22

AP3B2 6 0 6 1.9 – 0.30

PTCH1 11 6 17 5.4 – 0.34

ERCC5 7 0 7 2.2 – 0.42

FANCF 5 0 5 1.6 – 0.44

PIK3CA 21 1 22 7.1 – 0.47

PDZRN4 7 0 7 2.2 – 0.56

Risk score = sum up genes (coefficient*0/1); mutation =1, wild type =0. For example: OS risk score = -0.35*ADCY8+0.07*ALK+…
+0.43*TSC1.

Table S2 Cutoff values based on X-title in OS and PFS analysis

Overall survival (OS) Progression free survival (PFS)

Pt No. Events Range Pt No. Events Range

Low risk 38 13 −0.38 thru −0.13 207 117 −0.91 thru 0.00

High risk 274 155 0 thru 0.46 105 78 0.04 thru 1.19

Chi-Square 9.15 30.44

P value 0.002 <0.001



© Translational Cancer Research. All rights reserved. https://dx.doi.org/10.21037/tcr-22-915

Figure S3 Verification of the risk model in the public database. (A) Comparison of survival curves of high-risk and low-risk groups in ICGC 
data. (B) Risk score model verified in TCGA data. ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas.

A B

Table S3 Difference of gene expression in prediction model

Tag logFold change t P.Value adj.P.Value

MSH2 0.955421434 12.973787 3.55E–27 9.23E–26

PDZRN4 −2.797635282 −12.703337 2.29E–26 2.97E–25

PMS2 0.577708425 9.8023191 2.97E–18 2.58E–17

MAP3K13 0.683298236 8.47407183 1.10E–14 7.17E–14

PIK3CA 0.546798828 8.04385861 1.44E–13 7.49E–13

ERBB2 −0.940390979 −6.5502086 6.60E–10 2.86E–09

LAMA2 −0.921598582 −6.2652714 2.97E–09 1.10E–08

EPC1 −0.277881644 −4.8392592 2.91E–06 9.47E–06

PMS1 0.305496453 4.63025238 7.24E–06 1.93E–05

CDK8 −0.234367933 −4.6243013 7.43E–06 1.93E–05

ALK −0.590100126 −3.9464695 0.000116 0.00027418

FANCF 0.3410801 3.89951657 0.00013869 0.00030049

AP3B2 0.705142481 3.65231723 0.00034605 0.00069211

ERCC5 −0.21241243 −3.4774067 0.00064328 0.00119466

PTCH1 0.383879766 2.837049 0.0051087 0.00874771

TSHR 0.419768959 2.81949044 0.00538321 0.00874771

CS −0.141265076 −2.4226395 0.01646118 0.02517592

NCOR1 −0.077996044 −1.9835203 0.04892388 0.07066783

ARID1A 0.09669169 1.77274301 0.0780671 0.10682867

MED12 0.076218753 1.32440151 0.18715238 0.24329809

ADCY8 0.390736396 0.88031764 0.38176388 0.4511755

DICER1 −0.051965895 −1.1366515 0.25728809 0.31854716

BAP1 0.048765511 0.75285616 0.45258049 0.51161272

TSC1 −0.023436271 −0.5002885 0.61752071 0.66898077

BCR −0.037372671 −0.4154559 0.67833352 0.70546686

MLL2 −0.018561492 −0.3088409 0.75782179 0.75782179
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Figure S4 The expression of genes in PFS prediction model. PFS, progression free survival.

A B

C

Figure S5 ROC plots of the Lasso regression model. (A) Comparison of the prognostic value for the gene-mutation-based model and 
TNM stage in OS; (B) comparison of the prognostic value for the gene-mutation-based model and TNM stage in OS for ICGC data; (C) 
comparison of the prognostic value for the gene-mutation-based model and TNM stage in PFS. The green dashed line represents the ROC 
curve of the gene mutation model. The blue line represents the ROC curve of TNM stage. The red line represents the combination of the 
gene mutation model and TNM stage. ROC, Receiver Operating Characteristic; OS, overall survival; PFS, progression free survival; ICGC, 
International Cancer Genome Consortium. 


