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Introduction

Triple-negative breast cancer (TNBC) comprises 10–20% 
of all breast cancers (BCs). TNBC is characterized by the 
lack of estrogen receptor (ER) and progesterone receptor 
(PR) expression and absence of human epidermal growth 
factor receptor 2 (HER2) gene amplification (1). Thus, 
hormone therapy and drugs that target HER2 cannot be 

used to treat TNBC. Chemotherapy, radiation therapy, 
and surgery remain the mainstays of TNBC treatment, 
although the outcomes are poor (2-4). Recurrence and 
metastases into other organs are common in TNBC 
patients and often lead to death from the disease (5). 
Patients with TNBC have worse survival than non-
TNBC patients (6). TNBC tissues harbor mutations in 
TP53 (80%)—a tumor suppressor gene involved in tumor 
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occurrence and progression—more frequently than other 
BC subtype tissues (7,8). To date, there are no Food and 
Drug Administration-approved targeted therapies targeted 
at treating tumors harboring these mutations. Furthermore, 
TNBC is a highly heterogeneous tumor, and the absence 
of well-defined molecular targets results in difficulty in 
treatment (9). Therefore, it is critical to explore key genes 
and pathways that play an important role in the progression 
and prognosis of TNBC.

Integra t ing  and  reana lyz ing  the  increa s ing ly 
accumulating microarray data in many databases, could 
provide valuable information for the discovery of candidate 
genes and pathways involved in tumor progression, which 
in turn could lead to new hypotheses regarding cancer 
diagnosis, treatment, and prognosis. Nowadays, use of 
gene expression profile to define as prognostic biomarkers 
of TNBC patients have been still under-investigation. 
Although other studies found the genes related to poor 
prognosis, those finding have not applied in clinical practice 
(10-13). To develop the new prognostic indicators, more 
detailed research is required owing to the complex tumor 
heterogeneity and complicated molecular regulatory 
mechanism of TNBC. This might benefit to the clinical 
management of this disease. In this study, we identified 
overlapping DEGs which are unique gene expressions in 
both upregulated and downregulated and associated with 
poor TNBC prognosis through integrated bioinformatics. 
For this purpose, differentially expressed genes (DEGs) 
were analyzed in TNBC patients (compared with non-
TNBC and normal breast tissues). Then, the overlapping 
DEGs across two comparisons were selected for Gene 
Ontology (GO) and pathway enrichment analyses. 
Expression and survival analysis of all overlapping DEGs 
was performed using UALCAN and Kaplan-Meier plotter. 
We present the following article in accordance with the 
REMARK reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-662/rc).

Methods 

Microarray data collection 

The overall workflow of this study is presented in Figure 1.  
The gene expression dataset analyzed in this study were 
obtained from the Gene Expression Omnibus database 
(https://www.ncbi.nlm.nih.gov/geo/). A total of 141 samples 
were downloaded from the GSE65194 dataset, including 
41 TNBC samples, 89 non-TNBC samples, and 11 

normal breast tissue samples. All gene expression profiles 
were based on the GPL570 platform (Affymetrix Human 
Genome U133 Plus 2.0 Array) and were freely available 
online. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
has been approved by Human Research Ethics Committee 
(HREC), Faculty of Medicine, Prince of Songkla University, 
Thailand (No. REC.65-180-4-2). 

Data preprocessing and identification of DEGs

To identify DEGs in TNBC, the microarray data were 
normalized and log-transformed using the Robust Multi-
Array Average procedure (14). Then, DEGs associated with 
TNBC, non-TNBC, and normal breast tissues (TNBC vs. 
non-TNBC, TNBC vs. normal breast tissue) were analyzed 
using the “Limma” package (version 3.46.0) (15). Genes 
that met the following cutoff criteria: adjusted P<0.05 and 
|logFC|>2, were considered DEGs. Venn diagrams (Venny 
version 2.1 https://bioinfogp.cnb.csic.es/tools/venny/index.
html) were generated to display the overlapping DEGs 
between two comparisons (16). Additionally, an online 
tool, Heatmapper (http://www.heatmapper.ca), was used to 
draw the heatmap of up- and downregulated overlapping  
DEGs (17).

Functional and pathway enrichment analysis 

The Metascape software (http://metascape.org/) was 
then used for a functional enrichment analysis of the 
up- and downregulated overlapping DEGs. Functional 
enrichment was performed in three categories of GO 
terms, i.e., biological process, molecular function, and 
cellular component. Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment was also performed. Terms 
with a P<0.01, a minimum count of 3, and an enrichment 
factor >1.5 (the ratio between the observed counts and the 
counts expected by chance) were collected and grouped 
into clusters based on their membership similarities. 
More specifically, P values were calculated based on the 
cumulative hypergeometric distribution. In addition, 
q-values were calculated using the Benjamini-Hochberg 
procedure to account for multiple testing. Kappa scores 
were used as the similarity metric when performing 
hierarchical clustering of the enriched terms; sub-trees 
with a similarity of >0.3 were considered clusters. The 
most significant term within a cluster was selected as the 
one representing the cluster (18). 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-662/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-662/rc
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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Figure 1 Workflow of the process for identifying microarray datasets for integrated analysis. GEO, Gene Expression Omnibus; RMA, 
Robust Multi-array Average; DEGs, differentially expressed genes; FC, fold change; TNBC, triple-negative breast cancer; TCGA, The 
Cancer Genome Atlas.

Construction of a protein-protein interaction (PPI) 
network 

The interaction of PPI among the up- and downregulated 
DEGs were evaluated by the Search Tool for the Retrieval 
of Interacting Genes (STRING) database (STRING 

version 11; https://string-db.org/) under the default settings 
with a confidence of 0.4. (19). 
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overlapping DEGs were validated in online clinical samples 
across tumor and normal samples. The University of 
ALabama at Birmingham CANcer data analysis Portal 
(UALCAN) (http://ualcan.path.uab.edu/index.html) is an 
interactive web portal that offers gene expression analysis 
and survival analysis based on clinical data from The Cancer 
Genome Atlas (TCGA) (20). The Kaplan-Meier plotter 
(http://kmplot.com/analysis) was used to validate survival 
analyses of TNBC patients (21). Overall survival (OS) 
was analyzed based on high gene expression and low gene 
expression. Log-rank P<0.05 was calculated and considered 
to indicate a statistically significant difference.

Statistical analysis 

The results of mRNA expression are presented as mean ± 
standard error (SE). P<0.05 was considered a statistically 
significant difference. 

Results

Identification of DEGs

For the purposes of this study, the discovery dataset 
(GSE65194) was analyzed to identify DEGs including 
41 TNBC, 89 non-TNBC, and 11 normal tissues. Based 
on the criteria of adjusted P<0.05 and |logFC|>2, 
117 DEGs were identified from the TNBC samples, 
compared with non-TNBC, including 43 upregulated 
genes and 74 downregulated genes; 599 DEGs were 
identified from comparison between TNBC samples and 
normal breast tissues, including 393 upregulated genes 
and 206 downregulated genes (available online: https://
cdn.amegroups.cn/static/public/tcr-22-662-1.xlsx). 
Subsequently, Venn analysis was performed to obtain the 
intersection of the DEGs between the two comparisons. 
As shown in Figure 2A,2B, 21 upregulated genes and 
24 downregulated genes overlapped between the two 
comparisons. We constructed an expression heat map for all 
overlapped DEGs (Figure 2C,2D). 

Functional enrichment analyses of overlapping DEGs

The overlapping upregulated and downregulated DEGs 
were selected as the input for functional enrichment 
analysis using Metascape. The upregulated overlapping 
DEGs were significantly enriched in various biological 
processes, including the chromosome segregation, cell cycle 

phase transition, cell division, cell-substrate adhesion, and 
negative regulation of catalytic activity pathways (Figure 2E, 
available online: https://cdn.amegroups.cn/static/public/
tcr-22-662-2.xlsx). The 24 downregulated overlapping 
DEGs were mainly involved in multicellular organismal 
homeostasis, tissue homeostasis, negative regulation of cell 
population proliferation, response to xenobiotic stimulus, 
and cell-substrate adhesion and gland development. In 
Reactome Gene Sets, the DEGs were enriched in signaling 
by nuclear receptors (Figure 2F, available online: https://
cdn.amegroups.cn/static/public/tcr-22-662-2.xlsx). 

Construction of a PPI network of overlapping DEGs

To better understand the role of both upregulated and 
downregulated overlapping DEGs in TNBC, PPI analysis 
was constructed with STRING tools. A total of 21 nodes and 
19 edges were identified upregulated of DEGs in the PPI 
network with PPI-enrichment P<1.4e-09 which involved in 
chromosome segregation, mitotic cell cycle, and regulation 
of cell cycle process. According to downregulated of DEGs, 
23 nodes and 18 edges were identified with PPI-enrichment 
P<1.0e-16 which protein involved in extracellular region and 
extracellular space (Figure 3, available online: https://cdn.
amegroups.cn/static/public/tcr-22-662-3.xlsx).

mRNA expression and survival analysis of key genes

The UALCAN database, which contains BC patient data, 
was used to verify the expression levels of all up- and 
downregulated overlapping DEGs. The mRNA expression 
levels of all upregulated overlapping DEGs were all 
significantly higher in TNBC samples, compared with non-
TNBC subtypes and normal samples (Figure S1). The 
upregulated CENPW and HORMAD1 were significantly 
higher in TNBC samples compared with non-TNBC 
subtypes and normal samples (Figure 4). Moreover, the high 
expression of CENPW and HORMAD1 were significantly 
increased in BC patients with TP53 mutation compared 
with TP53 non-mutation. TP53 is a tumor suppressor 
gene and mutated in approximately 80% of TNBC (7). 
Thus, these genes might involve in tumor development, 
progression, and poor prognosis in TNBC. The mRNA 
expression levels of all downregulated overlapping DEGs 
were all significantly lower in TNBC samples, compared 
with non-TNBC subtypes and normal samples (Figure S2). 
In addition, the low expression of APOD and ZNF703 were 
significantly decreased in patients with TP53 mutation 

http://kmplot.com/analysis
https://cdn.amegroups.cn/static/public/tcr-22-662-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-3.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-662-3.xlsx
https://cdn.amegroups.cn/static/public/TCR-22-662-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-662-Supplementary.pdf
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Figure 2 Identification of DEGs. Venn diagrams of the DEGs upregulated (A) and downregulated (B) in TNBC vs. non TNBC and TNBC 
vs. normal breast tissue. Heat map of the upregulated (C) and downregulated (D) overlapping DEGs. Each column represents samples, 
and each row represents one gene. The color spectrum ranging from green to red represents the range of downregulation or upregulation. 
Functional enrichment analysis of the upregulated (E) and downregulated (F) overlapping DEGs. DEGs, differentially expressed genes; 
TNBC, triple-negative breast cancer; BC, breast cancer. 
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Figure 3 The protein-protein interaction network of the proteins encoded by the 21 upregulated overlapping DEGs and 24 downregulated 
overlapping DEGs. The nodes represent proteins, and the lines between nodes represent protein interactions. DEGs, differentially 
expressed genes. 

Up-regulated DEGs Down-regulated DEGs

Figure 4 mRNA expression of the upregulated key genes. The expression of CENPW and HORMAD1 genes in normal tissues and breast 
cancer tissues based on subclasses (A), and TP53 mutation status (B). Data represent means ± SE. *, P<0.05 between each subtype and normal;  
#, P<0.05 between TP53 mutant and TP53 non-mutant status.
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(Figure 5). 
Then, survival analysis based on gene expression 

levels was performed using the KM plotter to predict the 
prognostic value of all key genes. The available data of 
TNBC samples on the KM plotter platform was divided 

into high and low expression groups according to the 
median mRNA level of each gene. Key genes, including 
CENPW, HORMAD1, APOD, PIP, and ZNF703, were 
identified by association with poor OS. Our results showed 
that high expression of CENPW and HORMAD1 was 



Translational Cancer Research, Vol 11, No 9 September 2022 3045

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(9):3039-3049 | https://dx.doi.org/10.21037/tcr-22-662

associated with unfavorable OS of TNBC patients. Low 
expression of PIP, APOD, and ZNF703 was related to 
worse OS in TNBC patients (log-rank P<0.05; Figure 6). 
Therefore, we speculate that these key genes could be 
potential biomarkers for TNBC patient prognosis.

Discussion

TNBC is the most clinically challenging subtype of all BCs 
owing to its poor OS rates, and high invasion and rate of 
metastasis. In the absence of hormone receptors in TNBC, 
chemotherapy is still the main adjuvant treatment (9).  
Considering the limited therapeutic options for TNBC and 
its heterogeneous pattern, it remains a very challenging 
disease with the poorest prognosis among the different 
molecular subtypes of BC (6). Thus, exploring new 
genes and pathways associated with TNBC may help 
to understand potential molecular mechanisms and to 
develop medical approaches with optimal precision for 
TNBC patients. Recent advancements in microarray 
and computational analysis tools have provided valuable 
information for the development of reliable biomarkers 

or gene signatures for TNBC diagnosis and prognosis. 
However, the precise gene expression signatures of TNBC 
have not been elucidated. 

In the present study, we identified DEGs in TNBC 
(compared with non-TNBC and normal tissues), to improve 
the understanding of disease development, progression, 
and prognosis. The functional enrichment analyses of all 
upregulated overlapping DEGs revealed that they were 
significantly enriched in the chromosome segregation, cell 
cycle phase transition, cell division, cell-substrate adhesion, 
and negative regulation of catalytic activity pathways. 
The overexpression of genes associated with cell cycle 
regulation is closely related to the proliferation, recurrence, 
and metastasis of cancer. Hence, the pathways involving 
upregulated overlapping DEGs may play an important 
role in TNBC patients. We also analyzed the functional 
enrichment of all downregulated overlapping DEGs. Our 
results demonstrated that downregulation of genes closely 
associated with tissue homeostasis and negative regulation 
of cell population proliferation. They may involve 
important pathways that promote cancer progression.

Survival analysis revealed that overexpression of CENPW 
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Figure 5 mRNA expression of downregulated key genes. The expression of APOD, PIP, and ZNF703 genes in normal tissues and breast 
cancer tissues based on subclasses (A) and TP53 mutation status (B). Data represent means ± SE. *, P<0.05 between each subtype and normal;  
#, P<0.05 between TP53 mutant and TP53 non-mutant status. SE, standard error.



Bissanum et al. Biomarker of poor prognosis in TNBC3046

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(9):3039-3049 | https://dx.doi.org/10.21037/tcr-22-662

Figure 6 OS analysis of key genes in TNBC patients using Kaplan-Meier plotter. High expression levels of CENPW and HORMAD1 (A) 
and low expression levels of APOD, PIP, and ZNF703 (B) were significantly associated with unfavorable prognosis of TNBC patients. Log-
rank P<0.05 was calculated and considered to indicate a statistically significant difference. DEGs, differentially expressed genes; OS, overall 
survival; TNBC, triple-negative breast cancer.
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and HORMAD1 was associated with poor OS of TNBC 
patients. CENPW is identified as a centromeric component 
and required for chromosome segregation during cell 
division (22). Its overexpression has been reported in various 
human cancers. The expression of CENPW was significantly 
decreased in the ER−PR−HER2+ BC subgroup, but 
was significantly increased in the ER−PR−HER2− BC  
subgroup (23). In our study, we found that CENPW was 
associated with worse OS of TNBC patients. These genes 
are involved in cell division, which is a crucial factor 
supporting cancer growth. Thus, these genes and signaling 
pathways might be potential prognostic biomarkers for 
TNBC. Through the gene expression analysis, previous 
studies revealed that HORMAD1 has a function as an 
oncogene in TNBC (24,25). HORMAD1 is also known as 
cancer testis antigen 46 and might specifically reflect the 
poor prognosis of TNBC. Chen et al. reported that high 
HORMAD1 in TNBC samples has a bad prognosis (24). 
Due to the limited therapeutic options, chemotherapy is 
still mainstay of TNBC treatment. HORMAD1 has been 
reported to play a role in chemotherapeutic drug resistance. 
HORMAD1 silencing increased the sensitivity of TNBC 
cells to docetaxel (25).

The low expression of PIP, APOD, and ZNF703 was 
related to worse OS in TNBC patients. In this study, we 
found the low expression of PIP and APOD in TNBC 
subtype compared to other BC. Our results are consistent 
with previous studies that APOD and PIP were shown to 
be downregulated in TNBC (26-29). PIP plays multiple 
roles in biology, including fertility, immuno-regulation, and 
tumor progression (30). However, the expression of PIP 
in BC still controversy in the difference of its expression 
between normal and BC tissues. ZNF703 is important 
oncogene in BC and its expression was significantly higher 
in estrogen receptor (ER)-positive especially, luminal B than 
ER-negative cancer (31). 

In our study, the high expression of CENPW was 
significantly increased in BC patients with a TP53 mutation. 
TP53 is a tumor suppressor gene that is mutated in 
approximately 80% of the TNBCs (7,28). BC patients with 
TP53 mutations showed shorter recurrence-free survival, 
progression free survival, and OS (32-35). Analysis of DEGs 
in TP53 mutant BCs relative to wild type TP53 BCs showed 
that CENPW, which is cell cycle regulators, was significantly 
overexpressed in mutant TP53 BCs. The poor prognosis of 
TNBC seems to depend on the multi-layered interaction 
between tumor cells, tumor stroma, and the tumor immune 
microenvironment. Previous studies revealed that the level 

of tumor-infiltrating lymphocytes (TILs) was positively 
associated with the good prognosis of TNBC (36-38). 
Thus, the integration of our key gene expression with the 
measurement of TILs may help to develop as a predictor of 
prognosis in TNBC.

In conclusion, in this study, we identified key genes 
and related pathways through bioinformatic analysis of 
DEGs in TNBC patients. Our study found that both up- 
and downregulated overlapping DEGs were correlated 
with tumor progression and poor prognosis. Some were 
associated with worse OS. Thus, these genes may be 
potential candidates for developing essential prognostic 
markers for TNBC patients. However, the main limitations 
of this study is the lack of experimental validation. In vitro 
and in vivo studies are needed to further elucidate the 
functions of these genes, specifically in relation to TNBC 
tumorigenesis and prognosis. Second, the TNBC sample 
size of KM Plotter is small, thus further research with larger 
sample sizes is still required to confirm our findings.
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Supplementary

Figure S1 mRNA expression of up-regulated overlapping DEGs. DEGs, differentially expressed genes. 
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Figure S2 mRNA expression of down-regulated overlapping DEGs. DEGs, differentially expressed genes. 


