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Background: Colon cancer (CC) is one of the most common cancers with high morbidity globally. 
Ubiquitination is involved in the characterization of multiple biological processes, and some ubiquitinated 
enzymes are associated with the prognosis of CC. However, the prognostic model associated with 
ubiquitination-related genes (URGs) for CC is unavailable.
Methods: Gene expression data, somatic mutations, transcriptome profiles, microsatellite instability status 
(MSI) status, and clinical information for CC were obtained from The Cancer Genome Atlas (TCGA) 
dataset. Seven URGs were used for establishing a prognostic prediction model, which was constructed 
and validated in GSE17538. Besides, genomic variance analysis (GSVA) was used to explore further the 
differences in biological pathway activation status between the high-risk and low-risk groups. Finally, the 
single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithm analysis were used to 
characterize the cellular infiltration in the microenvironment.
Results: A seven-URG prognostic signature was established, based on which patients in the training and 
test groups could be divided into high-risk and low-risk groups. The results demonstrated that the model has 
a solid ability to predict the prognosis of CC patients.
Conclusions: We established a prognostic prediction model for CC based on ubiquitination. Then we 
analyzed the genetic characteristics associated with ubiquitination and the tumor microenvironment (TME) 
cell infiltration in CC. These results are worthy of exploring new clinical treatment strategies for CC.
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Introduction

Colon cancer (CC) is one of the most common cancers with 
high morbidity in the world (1), posing a severe threat to 
human health. According to GLOBOCAN 2021 estimates 
of cancer incidence and mortality, CC has the highest 
incidence in Western and Northern Europe, with a slightly 
higher incidence in men than in women (2). Most cases are 
diagnosed at a late stage, leading to a poor prognosis for this 
cancer (3), and the 5-year survival rate for metastatic CC 
patients is below 15% (4). Chemotherapy is one of the most 
frequently used therapies for CC (5), but its drug resistance 
and severe side effects limit its further clinical application (6). 
Therefore, more CC biomarkers with high efficiency and 
sensitivity need to be explored.

Ubiquitination, the post-translational addition of 
ubiquitin proteins to target proteins, controls various 
cellular processes by altering protein stability, localization, 
activity, or interactions (7). Since ubiquitination regulates 
many signaling pathways and is involved in many biological 
processes (8), including substantial modifications of proteins 
that regulate cellular functions, aberrant ubiquitination may 
lead to cancer (9). In breast and ovarian cancer, CUL3-
mediated ubiquitination and degradation of BECN1 could 
promote the proliferation of tumor cells, and the expression 
of CUL3 was related to poor prognosis in patients (10). 
Huang et al. suggested that UBE2O is an attractive 
radiosensitization target for lung cancer treatment. In 
addition, several ubiquitinating enzymes are associated with 
the prognosis of CC (11). NEDD4, a core member of the 
NEDD4 E3 ubiquitin ligase family, is abundantly expressed 
in CC tissues and cells. Its overexpression promotes 
xenograft tumor growth, metastasis, and tumorigenicity 
of primary CC in mouse models (12). Cul4A, an essential 
component of the E3 ubiquitin ligase family, of which 
expression is positively correlated with the prognosis of 
colorectal cancer (13). Evaluation of CUL4A and mutant 
TP53 expression will help predict the prognosis of CC (14). 
In short, tumor ubiquitination may be critical in determining 
the prognosis and oncologic treatment of CC patients.

The role of the ubiquitin-proteasome system in 
tumorigenesis is not only related to tumor metabolic 
regulation (mTORC1/AMPK/AKT) but also to the 
tumor microenvironment (TME) regulation (TLR/

RLR/STING) (15). TME is recognized as a hotbed of 
tumor cells and consists of cell types such as tumor cells, 
endothelial cells, stromal cells, and immune cells and is a 
critical factor in multiple stages of tumor progression (16). 
The role of ubiquitination playing in TME has received 
widespread attention. Guo et al. demonstrated that E3 
ligase NEDD4 mediates ubiquitination and degradation 
of GITR and suppresses T-cell-mediated-killings on 
melanoma cells (17). Zhang et al. suggested activating the 
USP7/hnRNPA1 axis promotes miR-522 secretion by 
cancer-associated fibroblasts (CAFs) and ultimately reduces 
chemosensitivity in gastric cancer (18). Besides, there is 
growing evidence that TME can determine abnormalities in 
tissue function and play an essential role in developing more 
advanced and refractory malignancies (19). Considerable 
studies have shown that tumor-associated stromal cells 
are closely associated with T-cell suppression (20), CC 
cell metastasis (21-24), and drug resistance (25) in CC. 
Considering the importance of ubiquitination and TME in 
tumor progression and prognosis and the tight relationship 
between them, we believe it is crucial to develop and 
validate a CC prognostic model related to ubiquitination 
and assess its correlation with TME. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-607/rc).

Methods

Data sources and preprocessing

A total of 2 CC cohorts, TCGA-COAD and GSE17538, 
were recruited from The Cancer Genome Atlas (TCGA) 
database and Gene Expression Omnibus (GEO). We 
downloaded all available data on somatic mutations, 
transcriptome profiles, microsatellite instability status 
(MSI), and clinical information of CC from the TCGA 
database. A total of 399 samples with somatic mutation data 
were analyzed to show the mutation profile of CC. Then, 
survival analysis was performed after obtaining clinical data 
of CC patients from the TCGA database (n=452) and the 
GSE17538 dataset (n=238). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).
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Identification of URGs

A total of 247 URGs with relevance score >10 were 
obtained from the GeneCards database. Then, ten URGs 
sets with M12685, M15079, M15645, M23353, M23636, 
M24394, M24634, M27401, M27742, and M42893 were 
downloaded from GSEA. The 247 genes from GeneCards 
were crossed with each of the ten sets from the GSEA 
database. Finally, 56 genes related to ubiquitination were 
selected for further analysis.

Unsupervised Clustering of 56 URGs

Consensus clustering was performed by the R package 
“ConsensusClusterPlus” to classify CC patients into 
two subgroups based on the expression differences of  
56 URGs (26). The chosen clustering algorithm was 
K-means and the distance metric was Euclidean. In 
addition, we performed the above steps 50 times to ensure 
the stability of the classification.

Construction and validation of the prediction model

To further screen out URGs with high predictive value, 
we performed Cox regression analysis in the combined 
of TCGA and GSE17538, which assess the relationship 
between URGs and survival status. Nine URGs were firstly 
study identified for further analysis with adjusted P<0.005. 
Least absolute shrinkage and selection operator (LASSO) 
regression analysis was performed by the R package 
“glmnet” to identify prognostically relevant URGs and to 
model the risk. Finally, seven genes were selected as the best 
to construct the risk score. The risk scores were calculated 

as following: 
4Risk score = 
i

Xi Yi×∑  (X: coefficients, Y: gene 
expression level). Next, data from the TCGA database was 
used as the training group. It was divided into high-risk and 
low-risk groups based on the median risk score, and Kaplan-
Meier survival analysis was plotted. In addition, receiver 
operating characteristic (ROC) curves for 1, 3, and 6 years 
were generated in R software to calculate the area under the 
ROC curve (AUC) values for each predictor model, further 
to assess the efficiency and accuracy of the model. Data 
from GSE17538 was treated as the test group, and the same 
procedure was performed to validate the prognostic models 
in this group. P<0.05 was considered to be statistically 
significant.

Construction protein-protein interaction (PPI) network

PPI information for 7 URGs was obtained from the 
STRING database; the highest confidence level of 0.400 
was selected (version 11.5, https://string-db.org/, accessed 
data: 2022/5/24).

Expression of 7 URGs in the single cell-type clusters 
identified

The expression of 7URGs in the single cell-type clusters 
identified were obtained from the Human Protein Atlas 
(version 21.0, https://www.proteinatlas.org/, accessed data: 
2022/5/24).

GSVA between high-risk and low-risk groups in the 
training group

To further explore the differences in biological pathway 
activation status between the high-risk and low-risk 
groups in the training group, GSVA enrichment analysis 
was performed using the  R package “GSVA” (27). The 
gene set “c2.cp.kegg.v7.2.symbols” was downloaded from 
the MSigDB database (27). Adjusted P value <0.05 was 
considered statistically significant.

Estimation of immune cell infiltration

The single-sample gene set enrichment analysis (ssGSEA) 
algorithm was used to quantify the relative infiltration of 
28 immune cell types within the TME. The enrichment 
fraction was calculated using ssGSEA represents the 
abundance of immune cells within the TME in each 
sample. The featured gene panels for each distinct 
immune cell were obtained from the study of Charoentong  
et al. (28).

Calculation of TME scores

The ratio of immune/matrix components in the TME of 
each tumor sample was analyzed by R package “estimate”. 
The immune score, matrix score, and estimated score reflect 
the corresponding ratios of the immune component, matrix 
component, and the sum of the two in the TME. Higher 
scores represent a more excellent ratio of immune/stromal 
components in TME.
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Tumor mutation burden (TMB) analysis

Somatic mutation data were processed and analyzed 
using R package “maftools” to explore the mutational 
landscape of CC. TMB was defined as the sum of somatic 
mutations, insertional deletion mutations, coding, and base 
substitutions per million bases.

Statistical analysis

R software (version 4.1.2), SPSS (version 23.0), and R 
studio (version 1.1.463) were used to perform statistical 
analyses. Single-factor analysis was utilized to compare the 
differential expression of genes. Person chi-square test was 
used to assess categorical variables. Kaplan-Meier method 
combined with logit test was used to analyze the overall 
survival (OS) of CC patients. Univariate and multivariate 
Cox regression was used to assess the independent 
prognostic value of the risk model. Wilcoxon test was used 

to analyze immune cell infiltration and immune pathways.

Results

Identifying prognostic-related URGs that were associated 
with CC 

A total of 56 URGs were screened as described in the 
Materials and Methods section. Among the 56 URGs, five 
genes, NEDD4L, PRKN, UBB, UBE2E2, and WWP2, were 
significantly downregulated in tumor samples, while ARIH2, 
BTRC, CDC34, CUL1, NEDD4, OTUB1, RBX1, RNF168, 
RNF8, RPS27A, SKP2, STUB1, TRAF6, UBA1, UBA52, UBA6, 
UBE2B, UBE2C, UBE2D1, UBE2D2, UBE2D3, UBE2D4, 
UBE2E3, UBE2G1, UBE2G2, UBE2H, UBE2J2, UBE2N, 
UBE2R2, UBE2S, UBE2T, UBE2V1, UBE2W, UBE3C, UBR5, 
UCHL3, USP5, USP7, USP8, USP9X, VCP, were remarkably 
upregulated in tumor samples (Figure 1A), indicating the 
potential role of these cryptic URGs in CC development.
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Genetic alterations of URGs in CC

We examined the incidence of somatic mutations and the 
frequency of somatic copy number variations (CNVs) for 
these sample genes. The mutation details for each CC 
sample are shown in the waterfall plot. Among the 399 
samples, USP9X had the highest mutation frequency, 
but only 8%, followed by UBR5, UBA6, USP7, UBE3A, 
NEDD4, CUL1, UBE3C, CUL3, NEDD4L, USP8, USP5, 
VCP, ITCH, BTRC, RNF168, RNF8, STUB1, UBA1, 
WWP2, TRAF6, UBC, UBE2A, UBE2E2, UBE2K, UBE2L3, 
UBE2R2, ARIH2, CDC34, OTUB1, UBB, UBE2J2, AMFR, 
SKP2, UBE2B, UBE2E1, UBE2G1, UBE2T, SKP1, UBA52, 
UBE2E3, UBE2G2, and UBE2W, while the rest did not 
show mutations (Figure 1B). In addition, we found that 
PRKN gene had the highest CNV, followed by UBE2J2, 
BTRC, UBE3A, and other genes. The CNVs of all genes, 
except PRKN, were below 10%, implying that they may not 
play an important role in the biology of CC (Figure 1C).

Biological characteristics and prognosis of each 
ubiquitination-associated subtype

The R package “ConsensusClusterPlus” was used to divide 
patients in the combined TCGA and GSE17538 cohorts 
into two subgroups based on the expression levels of the  
56 URGs. Finally, two different clusters were identified 
using the unsupervised clustering method: 180 cases in 
cluster A and 507 cases in cluster B (Figure 2A). Principal 
component analysis revealed the existence of distinct 
transcriptome profiles between the two clusters (Figure 2B). 
Prognostic analysis of the two clusters showed no significant 
difference in survival between the two clusters (Figure 2C).

GSVA was performed to explore the biological behavior 
of the two clusters. As shown in Figure 2D, cardiac 
muscle contraction, drug metabolism, steroid hormone 
biosynthesis, linoleic acid metabolism, and retinol 
metabolism were significantly enriched in cluster A. Cluster 
B displayed enriched pathways such as non-homologous 
end-joining, cell cycle, Nucleotide excision repair, RNA 
degradation, and spliceosome. Infiltrating lymphocytes 
within TME were subsequently analyzed using the ssGSEA 
algorithm (Figure 2E). Although cluster B showed worse 
survival results, immune cell infiltrates such as activated 
CD4+ T cells, eosinophilna, γδ T cells, immature B cells 
and dendritic cells, mast cells, plasmacytoid dendritic 
cells, regulatory T cells, and type 2 T helper cells were 
significantly enriched. In contrast, only CD56bright natural 

killer cells, monocytes, neutrophils and type 17 T helper 
cells were significantly enriched in cluster A. 

Identification of survival-related URGs in CC

To explore the possible relationship between URGs and 
OS in CC patients, we used univariate Cox analysis to 
select survival-related URGs in the combined TCGA and 
GSE17538 cohorts as an initial screen. A total of 9 OS-
associated URGs (adjusted P value <0.005) were identified. 
Information on Gene Symbol, HR, 95% CI, and P value 
are shown in Table 1. Next, LASSO Cox regression analysis 
was used to identified 7 survival-related genes (UBE2B, 
UBE2E2, UBE2G2, UBE2K, USP7, USP8, USP9X) to 
construct risk model for prognosis according to the λ=0.001 
(Figure 3A,3B), and the corresponding coefficients were 
obtained (as shown in Table 2). The risk score formula was 
as fellow: risk score = (0.003643 * UBE2B exp.) + (0.200524 
* UBE2E2 exp.) + (0.801445 * UBE2G2 exp.) + (−0.54965 * 
UBE2K exp.) + (−0.45943 * USP7 exp.) + (0.241099 * USP8 
exp.) + (−0.0726 * USP9X exp.). These selected genes were 
classified as risky (UBE2B, UBE2E2, USP8, UBE2G2), 
where HR >1 was associated with a poorer prognosis, and 
protective (USP7, UBE2K, USP9X), where HR <1 was 
associated with a better prognosis (Table 2). The analysis 
of PPI network construction can be used to examine the 
interaction between the seven genes involved in the risk 
modeling (Figure 3C). And the correlations between the 
7-URG were displayed in the network diagram (Figure 
3D). The 7-URG expression in the single cell type clusters 
identified was shown in Figure S1. USP8, USP9X, and 
UBE2K have low cell-type specificity. At the same time, 
USP7 is enhanced in early spermatids, UBE2B is enhanced 
in syncytiotrophoblasts, UBE2G2 is enhanced in late 
spermatids, and UBE2E2 is enhanced in oligodendrocytes, 
excitatory neurons. Besides, the expression of 7-URG in the 
single cell-type clusters identified in the colon can be seen 
in Figure S2.

Subsequently, we used 452 CC patients from the TCGA 
database as the training group and 238 patients from 
GSE17538 as the test group. Patients in the training group 
were divided into high-risk and low-risk groups based on 
their risk scores, and the median risk score was set as the 
cut-off point (Figure 4A). As the risk score increased, the 
number of deaths increased, and survival time decreased. 
The Kaplan-Meier curve showed that CC patients with 
high-risk had a worse prognosis than those with low-risk 
(Figure 4B). In addition, the ROC curve demonstrated 

https://cdn.amegroups.cn/static/public/TCR-22-607-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-607-Supplementary.pdf
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significance; PC1, principal component 1; PC2, principal component 2; MDSCs, myeloid-derived suppressor cells; TCGA, The Cancer 
Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

the predictive power of the risk score on prognosis; 
the AUCs were 0.645, 0.678, and 0.621 for 1, 3, and  
6 years, respectively (Figure 4C). We used GSE17538 for 
validation and repeated the above analysis. The same results 
were obtained (Figure 4D,4E). The risk score had good 
prognostic predictive power with AUCs of 0.612, 0.609, 
and 0.662 at 1, 3, and 6 years, respectively (Figure 4F).

Differential biobehavior of high- and low-risk subgroups 
identified by GSVA analysis

Inspired by the ability of the seven-gene signature to 

predict prognosis in the training and test groups, we 
further performed GSVA analysis to explore differences 
in biological pathway activation status between high-risk 
and low-risk groups, aiming to find a more comprehensive 
explanation for prognostic differences between high-risk 
and low-risk groups (Figure 5). Heat maps were used to 
visualize the top 20 biological processes with significant 
differences, ranked according to P value from smallest to 
largest. We found a significant enrichment of activation 
pathways for carcinogenesis in the high-risk group, such as 
glycan metabolism, Dilated cardiomyopathy, ECM-receptor 
interaction, and cytoskeletal regulation, which may provide 
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some perspective on the reasons for the poor prognosis in 
the high-risk group.

The relevance of TME to URGs expression

Different levels of immune infiltration may explain to 
some extent why patients with the same histological type of 
cancer may have different clinical outcomes. We explored 
the correlation between 7 URGs and the level of immune 
infiltration, aiming to reveal the potential mechanisms 
by which seven genetic features affect CC prognosis. 
Interestingly, violin plot analysis showed that the stromal 
cell and immune cell content and the combined content 
were higher in the high-risk group than in the low-risk 
group (Figure 6A). The level of immune cell infiltration in 

the high-risk group, including B cells, activated CD4+ and 
CD8+ T cells, dendritic cells, Eosinophilna were higher 
than those in the low-risk group (P<0.05), while the low-
risk group was enriched with follicular helper T cells (Tfh 
cells) and resting NK cells (P<0.05) (Figure 6B). Recent 
studies have shown that although some tumor tissues 
possess a large number of immune cells, these immune 
cells, such as T-cells, are trapped in the surrounding stroma 
(29-32). Therefore, the activation of stromal cells in the 
TME is considered to be immunosuppressive (33,34). 
Apparently, the high-risk group reflects a TME filled with 
a large number of immunosuppressive cells and stromal 
cells, which is consistent with the poor prognosis. TIMER 
was then applied to assess the correlation between the 
expression levels of the seven URGs and the levels of tumor 

Table 1 Screening URGs related to survival by univariate analysis

Gene symbol
Overall survival

HR 95% CI P value Adjusted P value

BTRC 1.82359 1.148597–2.895256 0.010854 0.004171

UBE2B 1.255957 0.904488–1.744001 0.173633 6.32E-05

UBE2E2 1.275731 1.078707–1.508741 0.004439 0.000363

UBE2G2 1.599679 1.092623–2.342045 0.015719 0.004014

UBE2K 0.712834 0.488272–1.040676 0.079527 0.001678

UBR5 1.216318 0.933420–1.584954 0.1471 0.002319

USP7 0.649282 0.442717–0.952227 0.02707 0.001934

USP8 1.419101 1.026131–1.962563 0.034353 0.00092

USP9X 0.896795 0.690060–1.165466 0.415236 0.002969

URGs, ubiquitination-related genes; HR, hazard ratio; CI, confidence interval.

Table 2 Identification of the specific 7-URG involved in the establishment of the final prognostic model by multivariate analysis

Gene symbol
Overall survival

Coef HR 95% CI P value Adjusted P value

USP7 −0.45943 0.649282 0.442717–0.952227 0.02707 0.001934

UBE2K −0.54965 0.712834 0.488272–1.040676 0.079527 0.001678

USP9X −0.0726 0.896795 0.69006–1.165466 0.415236 0.002969

UBE2B 0.003643 1.255957 0.904488–1.744001 0.173633 6.32E-05

UBE2E2 0.200524 1.275731 1.078707–1.508741 0.004439 0.000363

USP8 0.241099 1.419101 1.026131–1.962563 0.034353 0.00092

UBE2G2 0.801445 1.599679 1.092623–2.342045 0.015719 0.004014

URGs, ubiquitination-related genes; Coef, coefficient; HR, hazard ratio; CI, confidence interval.
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Figure 3 LASSO Cox regression analysis was used to construct the final prediction model. (A) Lambda in the LASSO model; dashed lines 
are drawn at the optimal values using the least criterion. (B) LASSO coefficient profiles of the candidate OS-related URGs with nonzero 
coefficients determined by the optimal lambda. The coefficient profiles are obtained from the logλ sequence. (C) PPI network of the 7-URG. 
(D) LASSO Cox regression obtained for the seven OS-related URGs. LASSO, least absolute shrinkage and selection operator; Lambda, 
selection of the optimal parameter; URGs, ubiquitination-related genes; PPI, protein-protein interaction networks; OS, overall survival.

purity and immune cell infiltration (Figure 6C). Besides, we 
found that resting dendritic cells and CD8+ T cells were 
negatively correlated with risk scores, while neutrophils 
and gamma delta T cells were positively correlated with 
risk scores (Figure 6D-6G). The results showed that gene 
expression has an extremely complex and variable impact 
on the microscopic representation of immune infiltration, 
reflecting the heterogeneity and complexity of the immune 
microenvironment.

Interestingly, as protective types, UBE2K, USP7, and 
USP9X were significantly negatively correlated with T-cell 
infiltration and positively correlated with macrophage 
infiltration. Most of the risky genes showed a trend of 
positive correlation with macrophage infiltration and 
negative correlation with B cells. These findings suggest 
that the seven-gene profile may play an essential role in 
the formation and layout of CC immune infiltrates. Then, 

we analyzed in detail the correlation between risk scores 
and resting dendritic cells, neutrophils, CD8+ T cells, 
and gamma delta T cells. The risk score was negatively 
correlated with resting dendritic cells and CD8+ T cells and 
was positively correlated with neutrophils and gamma delta 
T cells.

Differences in tumor mutation profiles and MSI status 
between high- and low-risk groups

Mutation details for each CC sample in the high and low-
risk groups are shown separately in the waterfall plot (Figure 
7A,7B), in which we can analyze the different mutation 
types of each gene involved in CC progression. We next 
analyzed the differences in TMB between the high- and 
low-risk groups separately and found that the TMB in the 
low-risk group was smaller than that in the high-risk group 
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Figure 4 Prognostic value assessment of risk scores and prediction models for CC patients based on the training group and test group 
of 7-URGs. (A) Risk score distribution of each patient in the training group; (B) survival analysis of the prediction model for the training 
group, with Kaplan-Meier curves showing the change in survival over time for patients in the high- and low-risk groups; (C) ROC curves of 
the training group prediction model at 1, 3, and 6 years; (D) risk score distribution of each patient in the test group; (E) the survival analysis 
of the test group prediction model with Kaplan-Meier curves shows the change in survival over time for patients in the high- and low-risk 
groups; (F) ROC curves of the Ttest group prediction model at 1, 3, and 6 years. CC, colon cancer; URGs, ubiquitination-related genes; 
ROC, receiver operating characteristic.

(P<0.001) (Figure 7C). In addition, we obtained MSI data 
from the TCGA database. Based on the MSI classification 
method, a total of 78 samples were classified as MSI-High 
(MSI-H), and 344 samples were classified as MSI-low 
(MSI-L)/microsatellite stable (MSS). Samples in the low-
risk group consisted of 70% by MSS, 17% by MSI-L, and 
14% by MSI-H. The high-risk group samples consisted of 
57% by MSS, 18% by MSI-L, and 24% by MSI-H. The 
MSS samples had a lower risk score than MSI-H (P=0.0014) 

(Figure 7D,7E).
Current studies suggest that CRCs with MSI-H have 

a better prognosis than MSS, which seems contradictory 
to our results showing a higher risk score for MSI-H than 
the MSS group (35,36). However, some studies also have 
highlighted that MSI-H patients have a better sensitivity 
to 5-fluorouracil than MSS (37-39), making the prognosis 
of MSI-H patients under 5-fluorouracil therapy potentially 
favorable. In our study, the treatment regimen of TCGA-
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COAD patients was unknown. Furthermore, the data of 
GSE17538 contained a large number of patients without 
adjuvant chemotherapy (40), making the prognosis of 
MSI-H patients in our study not necessarily better than that 
of MSS patients. Therefore, the risk score of MSI may be 
higher than that of MSS. Popat et al. found that although 
some studies reported high survival rates for patients with 
MSI, estimates of the prognostic value of MSI vary widely 
between studies (41). The impact of MSI on the prognosis 
of patients with CC still needs to be further explored.

Discussion

Ubiquitination has recently received wide attention due 
to its significance in normal biological processes (42). 
For example, Huang et al. found that UBE2O promotes 
tumorigenesis and radiation tolerance via facilitating Mxi1 
ubiquitination and degradation, suggesting that UBE2O 
is an attractive radiosensitization target for lung cancer 
treatment (11). Li et al. found that the degradation of 
PDCD4, an essential ubiquitinated substrate of SKP2, can 
promote tumorigenesis and radiation tolerance in breast 
cancer (43). In addition, NEDD4 was shown to trigger 
FOXA1 ubiquitination and promote CC progression (12).

However, a single gene signature is susceptible to multiple 
factors, making it difficult to be a reliable prognostic marker. 

Our study screened 56 URGs from the GeneCards and 
GSEA databases. Then we obtained 452 expression data 
and clinical profiles from the TCGA database. Univariate 
and multivariate Cox regression analyses were performed 
to determine the prognostic value of the 7 URGs (USP7, 
UBE2K, USP9X, UBE2B, UBE2E2, USP8, and UBE2G2) 
for CC patients. Among the seven genes, USP7, USP9X, 
and USP8 are all deubiquitinating enzymes (DUBs). 
Quite a few studies have shown that USP7 promotes 
tumor cell development, progression, and metastasis by 
deubiquitinating the p53 negative regulatory protein 
MDM2, which decreases intracellular levels of p53 (44-47). 
However, USP7 also prevents genetic alterations in various 
ways independent of p53. It promotes telomere maintenance, 
repairs broken double-stranded DNA, and regulates DNA 
damage checkpoint 1-mediated protein stability, which 
may reduce genomic instability and gene amplification, 
leading to tumorigenesis (48,49). These functions 
probably make it a favorable factor in our results (50).  
The crystal structure of USP9X was shown to be close to 
USP7, with a canonical USP-fold comprised of fingers, 
palm, and thumb subdomains, as well as an unusual β-hairpin 
insertion that may have significant effects on its function. 
Therefore, we speculate that the structural similarity 
between USP9X and USP7 may have led to their functional 
similarity, ultimately making them together as favorable 
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Figure 6 Immune cell infiltration and transcriptome characteristics of the TME in the high-risk and low-risk groups. (A) Violin plot showing 
TME scores for high and low-risk groups. (B) Abundance of each infiltrating immune cell in the high and low-risk groups was determined 
by Kruskal-Wallis test. (C) Heat map showing the correlation of each infiltrating immune cell with 7-URG, with red representing positive 
correlation and blue representing negative correlation. (D) Scatter plots showing the correlation between risk scores and Resting Dendritic 
cells. (E) Scatter plots showing the correlation between risk scores and Neutrophils. (F) Scatter plots showing the correlation between risk 
scores and CD8+ T cells. (G) Scatter plots showing the correlation between risk scores and Gamma Delta T cells. *P<0.05; ***P<0.01; **P<0.01; 
***P<0.001. MDSCs, myeloid-derived suppressor cells; TME, the tumor microenvironment; ns, no significance.

factors. Although USP8 is a DUB, it was classified as a risky 
factor in our study, which may be related to its remodeling 
of TME. It has been suggested that inhibition of USP8 

increases PD-L1 protein abundance and activates NF-κB 
signaling to trigger innate immune responses and MHC-I 
expression. Combining USP8 inhibitors with PD-1/PD-
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L1 blockers inhibited tumor growth and improved survival 
in CC mouse model (51). Conversely, high levels of USP8 
may lead to T cell dysfunction, consistent with our results 
that USP8 is a risky factor and its expression is negatively 
correlated with CD8+ T cells (51,52). UBE2B, UBE2G2, 
UBE2E2 and UBE2K are all E2 ubiquitin-conjugating 
enzymes and E2s are classified into four different types (53). 
Studies have suggested that downregulation of UBE2B, also 
known as Rad6B, attenuates the expression of cancer stem 

cell markers (54-57). Rad6B protein promotes proliferation 
and invasion of normal human hepatocytes and has been 
associated with tumorigenesis and platinum resistance in 
breast cancer (58-60) and ovarian cancer (61). Meanwhile, 
Menezes et al. identified deleterious in Blastic Plasmacytoid 
Dendritic Cell Neoplasm UBE2G2 mutation (62). These 
findings are consistent with our results that UBE2B and 
UBE2G2 are risky factors. UBE2E2 is a class II E2 whose 
effects in tumors are currently unknown. UBE2K, a class III 
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(B) The waterfall plot shows the mutation status of each gene in each CC sample in the high-risk groups. The left panel shows the genes 
sorted by mutation frequency, and the mutation frequencies are listed in the right panel. (C) TMB of TCGA database samples in the high- 
and low-risk groups. (D) Composition ratios of MSS, MSI-L, and MSI-H in the high-risk and low-risk groups. (E) Risk scores of MSS, 
MSI-L, and MSI-H in the three groups. TMB, Tumor Mutation Burden; MSI, microsatellite instability status; CC, colon cancer; TCGA, 
The Cancer Genome Atlas; MSS, microsatellite stable; MSI, microsatellite instability status; MSI-L, MSI-low; MSI-H, MSI-high.
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E2, is a favorable factor containing a unique C-terminal. 
It has been demonstrated that UBE2K is involved in 
mediating polyglutamine aggregate formation and cell 
death (63). This indicates the importance of ubiquitination 
for cellular clearance or storage of toxic proteins beyond 
the proteasome itself, possibly qualifying it as a favorable 
factor. Subsequent survival analysis showed that the high-
risk group was associated with a poorer prognosis, which 
was validated by GSE17538.

In addition, through GSVA analysis, we found that the 
high-risk group was significantly enriched for oncogenic 
activation pathways such as Dilated cardiomyopathy, Glycan 
metabolism, ECM-receptor interaction and Cytoskeletal 
regulation, which provides a more comprehensive 
explanation for its poor prognosis. ARC is an anti-apoptotic 
protein abundant in cardiomyocytes and plays an important 
role in mediating apoptosis in dilated cardiomyopathy (64). 
Foo et al. found that ARC degradation is dependent on the 
p53-induced ubiquitin E3 ligase MDM2 (65), which USP7 
can deubiquitinate (66). Therefore, we suggest that USP7 
is involved in the development of dilated cardiomyopathy 
through the p53/MDM2 pathway. Although the relationship 
between Glycan metabolism (67), ECM-receptor interaction 
(68-71), Cytoskeletal regulation (72), and 7-URG has not 
been investigated, ubiquitination is involved in regulating 
cellular functions by these three pathways. Meanwhile, 
increasing studies have suggested that these three pathways 
are closely related to tumor growth and metastasis (73-75), 
so we speculate that 7-URG is related to the three pathways 
regulating tumor cell function. These findings suggest that 
the 7-URG risk model has a powerful ability to predict the 
prognosis of CC patients and may have implications for 
clinical treatment decisions.

Few existing studies have focused on the relationship 
between tumor ubiquitination and the TME (15,76). Our 
results showed that infiltration of both stromal cells and 
immune cells (especially immunosuppressive cells) was 
significantly higher in the high-risk group than in the 
low-risk group. Furthermore, we uncovered a correlation 
between each immune cell and 7-URG expression. Notably, 
we found CD8+ T cells correlated with both 7-URG 
expression, especially with three risky genes, UBE2B, 
UBE2E2, and USP8, in a significant negative correlation 
(P<0.001). Then, we found that CD8+ T cells were 
negatively correlated with risk score (P=0.014). All these 
results are consistent with CD8+ T cells being considered 
immune promoting. However, we found that the prognosis 
was worse in the high-risk group, in which CD8+ T cells 

were highly expressed. That may be related to its high 
stromal cell expression. Recent studies have revealed that 
stromal cell activation in TME is immunosuppressive and 
that several stromal cell types are considered to have a 
powerful effect on cancer (33,34). Yu et al. proposed that 
CAF-driven CD73 is a novel immune checkpoint that 
reduces the killing effect of CD8+ T cells with decreased 
IFN-γ production (77). Doedens et al. demonstrated that 
tumor-associated macrophages impede T-cell activation 
by enriching the hypoxic TME, leading to an enhanced 
tumor progression (78). Furthermore, non-classical stem 
cell-promoting functions of nerves may mediate cancer 
malignancy in gastrointestinal, pancreatic, and prostate 
cancers (79-83). Promotion of extracellular matrix and 
protease secretion by CAFs may facilitate aggressive growth 
of CC cells (84-88). Thus, we conclude that stromal cell 
activation is associated with a poorer tumor prognosis. 
Meanwhile, quite a few researches have implicated that 
ubiquitination is intimately associated with stromal cell 
activation. Zhang et al. demonstrated that cisplatin and 
paclitaxel could promote the secretion of miR-522 from 
CAFs by activating the USP7/hnRNPA1 axis, leading to the 
reduction of lipid reactive oxygen species accumulation in 
cancer cells, and ultimately to the chemotherapy sensitivity 
decreased (18). That is consistent with our findings that 
USP7 is a protective gene. Besides, Gao et al. demonstrated 
that USP7 is essential for endometrial stromal cell 
metaphase in mice (89). In summary, we hypothesize that 
stromal cell activation is associated with a poorer prognosis 
of CC and URGs are involved in this process. 

Our study identified and analyzed URGs associated 
with prognosis in patients with CC. Then, a risk score 
model related to the prognosis of CC was developed with 
7-URG, which showed satisfactory predictive performance. 
However, there are some limitations in our study. First, 
the clinical data from GSE17538 are incomplete such as 
cancer staging and therapy, which might provide clues on 
biomarker of treatment. Second, specific mechanisms by 
which URGs affect stromal cell activation in the TME are 
lacking. The relationship between ubiquitination levels 
and TME is only a preliminary study, and the specific 
mechanisms of action and regulatory relationships need 
further investigation.

In conclusion, we developed and validated prognosis-
related prediction models with 7-URG of CC patients 
for the first time. Higher the risk score of CC patients is, 
shorter the survival period. We also revealed that tumor 
ubiquitination was closely associated with stromal cell 



Translational Cancer Research, Vol 11, No 10 October 2022 3737

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(10):3724-3740 | https://dx.doi.org/10.21037/tcr-22-607

activation in TME. These results may be enlightening for 
breaking the bottleneck of CC treatment.

Conclusions

We formed a seven-gene signature prognostic model based 
on the expression of USP7, UBE2K, USP9X, UBE2B, 
UBE2E2, USP8, and UBE2G2 in CC, which has excellent 
predictive power for patient prognosis. Meanwhile, this 
work revealed the relationship between ubiquitination and 
stromal cell activation in TME. These results provide a 
new direction for developing new CC-targeted drugs and 
optimization of immunotherapy.
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Supplementary

Figure S1 RNA expression in the single cell type clusters identified. (A) USP7 expression in the single cell type clusters identified. (B) USP8 expression in the single cell type 
clusters identified. (C) USP9X expression in the single cell type clusters identified. (D) UBE2B expression in the single cell type clusters identified. (E) UBE2E2 expression in the 
single cell type clusters identified. (F) UBE2G2 expression in the single cell type clusters identified. (G) UBE2K expression in the single cell type clusters identified.
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Figure S2 RNA expression in the single cell type in the colon. (A) USP7 expression in the single cell type in the colon. (B) USP8 expression in the single cell type in the colon. 
(C) USP9X expression in the single cell type in the colon. (D) UBE2B expression in the single cell type in the colon. (E) UBE2E2 expression in the single cell type in the colon. (F) 
UBE2G2 expression in the single cell type in the colon. (G) UBE2K expression in the single cell type in the colon.


