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Introduction

Lung cancer is one of the most common malignancies 
worldwide and is responsible for the leading cause of 
cancer-related deaths, accounting for 18% of all cancer 

deaths in 2020 (1). Lung adenocarcinoma (LUAD) accounts 
for 40% of all subtypes of lung cancer (2). Research and 
treatment for LUAD have advanced significantly, but the 
outcomes for LUAD patients remain poor (3). Generally, 
although in tumors with similar clinical and pathological 
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characteristics, there is great heterogeneity in the clinical 
outcomes and therapy responses of patients. In recent years, 
there has been increasing evidence that variations in patient 
genomes contribute significantly to interpatient differences 
in drug response (4,5). Therefore, more and more studies 
are attempting to identify subgroups of tumor patients 
based on their molecular profiles (6,7). In the past decade, 
with the rapid development of high-throughput sequencing, 
gene set has shown great potential in personalized therapy. 
Specific gene set has led to a better understanding of the 
biological phenotypes of cancer than single biomarkers (8). 

Ferroptosis  i s  a  new form of  cel l  death and is 
mainly characterized by iron-dependent lipid peroxide 
accumulation and reactive oxygen species production (9). 
There is growing evidence that ferroptosis is associated 
with many neurodegenerative diseases such as Alzheimer’s 
disease (10), Parkinson’s disease (11), heart disease (12), 
blood diseases (13,14), and immune system disorders (15). 
Also, many types of cancer cells are highly sensitive to 
ferroptosis, including renal cancer (16), breast cancer (17), 
human non-small cell lung cancer, and colorectal cancer 
cells (18). New evidence suggested that ferroptosis was 
inhibited in a variety of tumors, and thus the regulation 
of ferroptosis could be a new approach to cancer  
treatment (19). Ferroptosis elicits therapeutic responses that 
inhibit tumor growth when used experimental reagents, 
approved drugs, ionizing radiation, and cytokines (20). 
Studies have shown that dysregulation of ferroptosis may 
contribute to lung cancer development (21,22). Numerous 
studies have explored the relationship between certain 
ferroptosis-related genes (FRGs) and lung cancer. Lai 
et al. (23) found that glutathione peroxidase 4 (GPX4) 
overexpressed in non-small cell lung cancer (NSCLC) 
tissues and cell lines, and the upregulation of GPX4 
reduced multiple mitochondrial abnormalities which is one 
of the features of ferroptosis and promoted proliferation of 
lung cancer cells. Moreover, cystine/glutamate antiporter 
(SLC7A11), regulating metabolic demand during the 
development of NSCLC, was upregulated in NSCLC tissues 
and was associated with a poorer 5-year survival rate (24).  
Huang et al. (25) found that in LUAD cells (A549 cells), 
p53 activation by erastin exposure induced ferroptosis 
and apoptosis and arrested the cell cycle at the G1 phase, 
thereby inhibited cell proliferation. Therefore, for LUAD, 
targeting ferroptosis may be beneficial to explore more 
effective anticancer therapies.

Abnormal ferroptosis is closely associated with a 
dysregulated immune response. An important study found 

that activation of CD8+ T cells by immunotherapy resulted 
in the release of interferon (IFN)-γ to downregulate the 
expression of SLC3A2 and SLC7A11, which in turn 
enhanced ferroptosis-specific lipid peroxidation (26). 
Therefore, targeting this pathway is beneficial in increasing 
antitumor efficacy. In addition, the interactions among 
ferroptosis, inflammation, and the immune system in 
the tumor microenvironment (TME) influence tumor 
progression. The synergy of ferroptosis and immunity not 
only inhibits primary tumor but also stimulates immune 
responses by combining with immune checkpoint inhibitors 
(ICIs) (27). In conclusion, exploring the integrated 
regulatory network of ferroptosis and immunity in LUAD 
might provide clues to new anti-cancer strategies. 

In this study, the combined signature of ferroptosis- 
and immune-related genes (CSFI) was constructed using 
the Cancer Genome Atlas (TCGA) database. Patients 
with LUAD from the Gene Expression Omnibus 
(GEO) database were applied for the validation set. The 
relationship between CSFI and survival status was explored 
and a nomogram was developed to predict the survival rates 
of LUAD patients. Finally, the immune and ferroptosis 
status of different CSFI subgroups were evaluated to 
guide anti-tumor personalized therapy. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-992/rc).

Methods

Data acquisition

RNA-seq data of 535 LUAD patients and 59 normal 
patients were obtained from TCGA (https://portal.gdc.
cancer.gov/). The corresponding clinical data were acquired 
from UCSC Xena (http://xena.ucsc.edu/). Patients with 
incomplete survival information were excluded from 
further analyses. Meanwhile, mRNA expression data and 
clinical information of 3 LUAD datasets (GSE31210, 
GSE50081, and GSE42127) were downloaded from the 
GEO repository (https://www.ncbi.nlm.nih.gov/geo/). 
The 3 datasets are combined as the validation dataset and 
the “sva” package was applied to remove the batch effect. 
Additionally, 259 FRGs were obtained from the FerrDb 
website (http://www.datjar.com:40013/bt2104/) and 2,483 
immune-related genes (IRGs) were acquired from the 
ImmPort website (https://www.immport.org/) (available 
online: https://cdn.amegroups.cn/static/public/tcr-22-992-

https://tcr.amegroups.com/article/view/10.21037/tcr-22-992/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-992/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/home
https://cdn.amegroups.cn/static/public/tcr-22-992-1.pdf
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1.pdf). These FRGs were classified into three categories 
according to the regulatory effects of FRGs on ferroptosis, 
namely 163 drivers of ferroptosis (DOFs), 84 suppressors of 
ferroptosis (SOFs), and the remaining 12 either promote or 
suppress ferroptosis (Table S1). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Generation of CSFI

To assess the combined effect of ferroptosis and immunity 
on LUAD, CSFI which was composed of key FRGs and 
IRGs was developed. The screening process for these key 
genes was as follows. Firstly, differentially expressed genes 
(DEGs) between tumor samples and normal samples were 
identified by the “limma” package with the absolute values 
of log-fold change (|logFC|) ≥1 and false discovery rate 
(FDR) <0.05. “Venn” package in R was applied to identify 
differentially expressed FRGs and IRGs. Secondly, these 
differentially expressed FRGs and IRGs were used for 
univariate Cox regression to identify prognostic genes. 
FRGs with P<0.05 and IRGs with P<0.01 were regarded 
as prognostic genes. The protein-protein interaction (PPI) 
network of these prognostic genes was constructed through 
the STRING database (https://www.string-db.org/). 
Cytoscape_v3.8.2 was used for visualization. Thirdly, these 
prognostic genes were used to construct the Least Absolute 
Shrinkage and Selection Operator (LASSO)-Cox regression 
model. Finally, several key genes and their coefficients were 
retained through the R package “glmnet”. Meanwhile, 
their expression levels and coefficients were used for 

calculating the values of CSFI, namely 3CSFI = Xi Yi
i

×∑ , 

X: coefficients, Y: values of gene expression). 

Clinical benefit assessment

Then, LUAD patients from TCGA were divided into 
CSFI-high and CSFI-low groups based on the median 
CSFI values. Principal component analysis (PCA) was 
performed to assess the clustering efficacy of CSFI. For 
appraising the sensitivity and specificity of prediction, the 
time-dependent receiver operating characteristic (ROC) 
curves were executed. According to the formula derived 
from the TCGA cohort, the CSFI values of patients in the 
validation cohort were calculated to further validate the 
results from the TCGA cohort. To validate the independent 
prognostic value of CSFI, univariate and multivariate Cox 

regression analyses were performed in the TCGA cohort. 
Last but not least, the nomogram model was constructed 
based on multivariate Cox regression results. Moreover, the 
concordance index (C-index) was calculated and calibration 
curves were plotted to evaluate the performance of the 
nomogram with the “rms” package of R. 

Ferroptosis profile and functional enrichment analyses

SOFs and DOFs validated by human and rat experiments 
were extracted for the construction of the PPI network 
respectively. And Cytoscape software was used to filter 
the top 10 SOFs and DOFs based on degree value. The 
expressions of these genes were compared in different CSFI 
groups.

Gene Ontology (GO) and Kyoto Gene and Genome 
Encyclopedia (KEGG) analyses were carried out to excavate 
the function of DEGs between CSFI-high and CSFI-
low groups by applying the “clusterProfiler” R package. 
Meanwhile, Gene Set Enrichment Analysis (GSEA) was 
performed with the reference gene set (c2.cp.v7.1.symbols.
gmt) to explore pathways significantly enriched in two 
CSFI groups through GSEA (version 4.2.2). Pathways 
with nominal P value <0.05, FDR q-value <0.25, and 
normalized enrichment score (NES) >1 were regarded to be 
significantly enriched.

Mutation analysis and evaluation of immune cell 
infiltration

The somatic mutation data of LUAD patients were 
downloaded from the TCGA database. The “maftools” 
package in R was used for analysis and visualization (pipeline: 
mutect2). The expression levels of 6 immune checkpoint 
genes (ICPGs) (CD274, HAVCR2, IDO1, LAG3, PDCD1, 
PDCD1LG2) between CSFI-high and CSFI-low groups 
were compared. Additionally, single-sample gene set 
enrichment analysis (ssGSEA) was employed to calculate 
scores of immune cells and immune-related pathways 
in different CSFI groups by “gsva” packages in R. All 
signatures used in our study were listed in website: https://
cdn.amegroups.cn/static/public/tcr-22-992-2.pdf.

Statistical analysis

Kaplan-Meier (KM) method with the log-rank test was 
employed for comparing the survival status of different 
CSFI groups. Time-dependent ROC curve analyses 

https://cdn.amegroups.cn/static/public/tcr-22-992-1.pdf
https://cdn.amegroups.cn/static/public/TCR-22-992-supplementary.pdf
https://www.string-db.org/
https://cdn.amegroups.cn/static/public/tcr-22-992-2.pdf
https://cdn.amegroups.cn/static/public/tcr-22-992-2.pdf
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Figure 1 Flow diagram of the study design and analysis. LUAD, lung adenocarcinoma; TCGA, the Cancer Genome Atlas; FRGs, 
ferroptosis-related genes; DEGs, differentially expressed genes; IRGs, immune-related genes; CSFI, combined signature of ferroptosis- and 
immune-related genes; GEO, Gene Expression Omnibus.
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were performed using “pROC” using packages in R. The 
“survminer and “survival” were applied for univariate and 
multivariate Cox regression analysis. Mann-Whitney U test 
was used to compare scores of immune cells and immune-
related pathways, and ICPGs expression between CSFI-
high and CSFI-low groups. All statistical analyses were 
carried out with R software (version 4.1.0). A value of 
P<0.05 was considered to be statistically significant. The 
flow diagram is shown in Figure 1.

Results

Construction of CSFI in LUAD

Based on analysis of gene expression differences, 2,671 
genes were regarded as DEGs between tumor and normal 
samples. Among them, 1,628 genes were downregulated 

while 1,043 were upregulated (Figure 2A). As shown in 
Figure 2B,2C, 378 differentially expressed IRGs and 46 
differentially expressed FRGs were identified for performing 
univariate Cox regression analysis. Then, 12 FRGs and 
31 IRGs were proved to be significantly related to the 
prognoses of LUAD patients (all P<0.05) (Figure 2D,2E).  
The expression levels of these prognostic genes are 
presented in Figure 2F. In addition, as shown in Figure 3A,  
there was a strong relationship between prognosis-related 
FRGs and IRGs. Based on these prognostic genes, the 
LASSO regression and multivariate Cox regression were 
performed to construct an eight-gene signature (CSFI) 
model to predict the survival outcomes of LUAD patients 
(Figure 3B,3C). The value of CSFI were computed via 
formula: CSFI = (0.0052 × ANGPTL4 exp.) + (–0.0260 × 
ARRB1 exp.) + (0.0030 × CAV1 exp.) + (0.0063 × CXCL5 
exp.) + (-0.0003 × HLA-DRA exp.) + (-0.0135 × IL33 
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Figure 2 Identification of prognostic genes in LUAD. (A) A volcano plot presenting DEGs between normal and LUAD samples. (B) A 
Venn diagram indicating differentially expressed IRGs. (C) A Venn diagram indicating differentially expressed FRGs. (D) A forest plot of 
prognosis-related FRGs identified by univariate Cox regression. (E) A forest plot of prognosis-related IRGs identified by univariate Cox 
regression. (F) A heatmap showing expressions of the prognostic genes of FRGs and IRGs in tumor samples and normal samples. DEGs, 
differentially expressed genes; IRGs, immune-related genes; FRGs, ferroptosis-related genes; LUAD, lung adenocarcinoma. 
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Figure 3 Construction and validation of CSFI. (A) A PPI network manifesting the relationship between prognosis-related IRGs and FRGs. 
(B,C) The selection of parameter of the LASSO regression model based on the 43 prognosis-related genes. (D) A PCA plot in different 
CSFI groups of training cohort. (E) A plot suggesting the distribution of CSFI values, OSs, and expressions of model genes in the TCGA 
cohort. (F) KM curves of different CSFI groups in TCGA cohort. (G) ROC curves of different CSFI groups in TCGA cohort. (H) A PCA 
plot in different CSFI groups of the validation cohort. (I) KM curves of different CSFI groups in the validation cohort. (J) ROC curves of 
different CSFI groups in the validation cohort. CSFI, combined signature of ferroptosis- and immune-related genes; OS, overall survival;  
AUC, area under curve; CI, confidence interval; PPI, protein-protein interaction; IRGs, immune-related genes; FRGs, ferroptosis-related 
genes; LASSO, Least Absolute Shrinkage and Selection Operator; PCA, principal component analysis; TCGA, the Cancer Genome Atlas; 
KM, Kaplan-Meier; ROC, receiver operating characteristic. 

−8 −7 −6 −5 −4 −3 −2
Log lambda

−8 −7 −6 −5 −4 −3 −2
Log (λ)

0 20
Time, years

0 10
Time, years

P=2e–07

P=0.0045

−5.0 −2.5 0.0 2.5 5.0 7.5
PC1 (18.9%)

0 5
PC1 (30.5%)

LIFR
ARRB1

IL33
CAV1
INHA

CXCL5
ANGPTL4
HLA.DRA

Genes 
expression

1.0
0.5
0.0
−0.5
−1.0

0.0 0.2 0.4 0.6 0.8 1.0
1–Specificities

0.0 0.2 0.4 0.6 0.8 1.0
1–Specificities

Time: AUC (95% CI)

Time: AUC (95% CI)

1: 0.71 (0.78–0.64)
2: 0.70 (0.76–0.64)
3: 0.72 (0.78–0.66)

1: 0.67 (0.79–0.55)
2: 0.60 (0.68–0.53)
3: 0.59 (0.65–0.52)

Group

Group

Group High Low

Group High Low

High
Low

High
Low

High-CSFI
Low-CSFI

High-CSFI
Low-CSFI

CSFI

Status
Alive 
Dead

20

15

10

5

0

75

50

25

0

O
S

, y
ea

rs
C

S
FI

41 39 40 29 24 14 0

CAV1

CECR1

CBLC
HLADRA

HLA-DPA1lNHA

LIFR
ANGPTL4 HLA-DRB1

SEMA4B

CXCL5PTPRC

ARRB1

RXFP1
VIPR1

HLA-DOA

KAL1

HLA-DPB1

BTK

BIRC5CAT

TNFRSF17

ADRB2

IL20RB

CD74

CX3CR1

TLR8

HLA-DQA1

S100P

ITGAL

HLA-DQB1SLC2A1

AURKA

RRM2

TLR4

GABARA
PL1

SLC7A5

GPX2

IL33

CYBB

ENPP2

GCLC

41 40 39 38 38 40 38 33 28 27 24 21 17 11 6 1

C
oe

ffi
ci

en
ts

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce
O

S
O

S

P
C

2 
(1

7.
2%

)

P
C

2 
(1

4.
5%

)

S
en

si
tiv

iti
es

S
en

si
tiv

iti
es

0.00

−0.05

−0.10

−0.15

13.0

12.8

12.6

12.4

12.2

12.0

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

4

2

0

−2

−4

−6

−8

4

2

0

−2

−4

−6

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

A

B

E

H I J

C

F

D

G



Li et al. A combined ferroptosis and immune signature for LUAD3626

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(10):3620-3633 | https://dx.doi.org/10.21037/tcr-22-992

exp.) + (0.0052 × INHA exp.) + (-0.0469 × LIFR exp.). 
Among them, CAV1 and IL33 belonged to FRGs, and 
ANGPTL4, ARRB1, CXCL5, HLA-DRA, IL33, INHA, 
and LIFR were the parts of IRGs. According to the median 
CSFI value, LUAD patients in the TCGA cohort were 
divided into CSFI-high (N=261) and CSFI-low (N=261) 
groups. PCA showed patients of the two groups were 
distinctively clustered (Figure 3D). It indicated that CSFI 
could well distinguish the two CSFI groups. Figure 3E 
presents the distribution of CSFI, overall survival (OS), and 
gene expression levels of eight genes in two groups. KM 
curves revealed that patients in the CSFI-high group have 
poorer prognoses instead of those in the CSFI-low group 
(log-rank P<0.001) (Figure 3F). To appraise the sensitivity 
and specificity of prediction of the CSFI, 1–3-year time-
dependent ROC curves were plotted and area under curve 
(AUC) values were calculated. The 1–3-year survival AUC 
was 0.71, 0.70, and 0.72 respectively (Figure 3G). For the 
validation cohort, CSFI values of LUAD patients were 
calculated based on a formula derived from the TCGA 
cohort. Similarly, two CSFI groups manifested obvious 
separation through PCA analysis (Figure 3H). KM analysis 
indicated that the CSFI-high group had a lower survival 
rate than the CSFI-low group (P=0.0045) (Figure 3I). As 
shown in Figure 3J, the AUCs were 0.67 for 1-year, 0.60 for 
2-year, and 0.59 for 3-year. 

Ferroptosis profile and functional enrichment analyses in 
different CSFI groups

To explore the ferroptosis status of patients with different 
CSFI values, the transcriptional changes of 20 SOFs and 
DOFs were studied in the CSFI subgroups of the TCGA 
cohort. It was found that several DOFs, including ANO6, 
ATG7, and IFNG, were downregulated in the CSFI-
high group (P<0.05) (Figure 4A). Moreover, some SOFs, 
including HSF1, HSPB1, NQO1, and SLC7A11, were 
upregulated in the CSFI-high group (P<0.05), while CAV1 
and NFE2L2 were downregulated in CSFI-high group 
(P<0.05) (Figure 4B). From this, it can be speculated that 
there was a ferroptosis-inhibited status in the CSFI-high 
group. According to GO (Figure 4C) and KEGG analyses 
(Figure 4D), DEGs between CSFI-high and CSFI-low 
groups were correlated with chemical homeostasis, alpha-
linolenic acid metabolism, lipopolysaccharide binding, 
transport of vesicle, and other immune responses such 
as antigen processing and presentation. Additionally, 
the results of GSEA showed that genes in the CSFI-low 

group were significantly enriched in ABC transporters in 
lipid homeostasis and phosphatidylinositol metabolism  
(Figure 4E). Therefore, it is more favorable to consider the 
presence of ferroptosis inhibition in the CSFI-high group.

Gene mutation and immune profiles in different CSFI 
groups

Figure 5A showed the gene mutation profiles of different 
CSFI groups in the TCGA cohort. It was found that the 
top 5 genes with the highest mutation frequencies in 
LUAD patients were TP53 (42%), TTN (40%), MUNC16 
(34%), CSMD3 (33%), and RYR2 (31%). And the missense 
mutation was the main type of mutation. Furthermore, it was 
obvious that the mutation frequencies of TP53 in the CSFI-
high group were higher than CSFI-low group. To precisely 
guide immunotherapy, the expressions of 6 ICPGs were 
compared between CSFI-high and -low groups (Figure 5B).  
It was shown that patients in the CSFI-high group had 
lower expressions of HAVCR2 (P<0.0001), IDO1 (P=0.014), 
and PDCD1LG2 (P<0.0001) rather than those in the 
CSFI-low group. In addition, scores of 16 types of immune 
cells and immune-related pathways were compared between 
CSFI-high and -low groups in the TCGA cohort through 
performing ssGSEA. Firstly, because scores of dendritic cells 
(DCs), activated dendritic cells (aDCs), induced dendritic 
cells (iDCs), plasmacytoid dendritic cells (pDCs), B cells, 
CD8+ T cells, Macrophages, Mast cells, Neutrophils, 
T helper (Th) cells, Th1 cells, tumour-infiltrating 
lymphocytes (TILs), and regulatory T cells (Tregs) were 
lower in the CSFI-high group rather than CSFI-low group 
(all P<0.05) (Figure 5C). It was reasonable to assume that 
the CSFI-high group was equipped with lower levels of 
immune cell infiltration. Moreover, it was proved that the 
CSFI-high group had lower activity of immune-related 
pathways. The scores of the other 10 types of immune-
related pathways were lower in CSFI-high patients than 
in CSFI-low patients (all P<0.05) (Figure 5D), excluding 
inflammation promoting, major histocompatibility complex 
(MHC) class I, and parainflammation.

Identification of independent prognostic value of the CSFI

Firstly, for the TCGA cohort, stage and CSFI were proved 
to be risk factors for the prognosis of LUAD (P<0.001) 
by univariate Cox analysis (Figure 6A). Subsequently, after 
multivariate Cox analysis, stage and CSFI [hazard ratio 
(HR) =2.0, 95% confidence interval (CI): 1.5–2.7, P<0.001] 
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Figure 4 Ferroptosis profiles and enriched pathways in the different CSFI groups of the TCGA cohort. (A) Comparison of the expressions 
of 10 DOFs between CSFI-high and CSFI-low groups. (B) Comparison of the expressions of 10 SOFs between CSFI-high and CSFI-
low groups. *, P<0.05; **, P<0.01; ***, P<0.001. (C) A bubble diagram showing GO enrichment (the bigger bubble means the more genes 
enriched, and the increasing depth of blue means the differences were more obvious). (D) A loop graph indicating KEGG enrichment. (E) 
GSEA of different CSFI groups. CSFI, combined signature of ferroptosis- and immune-related genes; TCGA, the Cancer Genome Atlas; 
DOFs, drivers of ferroptosis; SOFs, suppressors of ferroptosis; GO, Gene Ontology; KEGG, Kyoto Gene and Genome Encyclopedia; 
GSEA, Gene Set Enrichment Analysis.
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Figure 5 Gene mutation and immune profiles in TCGA cohort. (A) Oncoplot of the mutated genes in TCGA cohort. (B) A heatmap 
manifesting expressions of 6 ICPGs in CSFI-high and -low groups. (C) Box plots suggesting scores of immune cells in two CSFI groups. 
(D) Box plots suggesting scores of immune-related pathways in two CSFI groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001. CSFI, combined 
signature of ferroptosis- and immune-related genes; TCGA, the Cancer Genome Atlas; ICPGs, immune checkpoint genes.
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Figure 6 Identification of independent prognostic value of the CSFI. (A,B) Forest plots from the univariate and multivariate Cox regression 
analyses in the training cohort. (C,D) Forest plots from the univariate and multivariate Cox regression analyses in the validation cohort. 
(E) Nomogram for predicting 1–3 years OS rate of training cohort. (F) Calibration plots of the nomogram. *, P<0.05; ***, P<0.001. CI, 
confidence interval; CSFI, combined signature of ferroptosis- and immune-related genes; OS, overall survival.
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were still prognostic predictors (Figure 6B). Then, in the 
validation cohort, age, stage, and CSFI (HR =1.6, 95% 
CI: 1.11–2.3, P=0.011) were independent risk factors 
by employing univariate (Figure 6C) and multivariate 
(Figure 6D) Cox regression analyses. Last but not least, 
a nomogram was constructed for predicting the survival 
rates (Figure 6E). The C-index of model was 0.73 (95% CI: 
0.69–0.77, P<0.001). The calibration plots suggested that 
the model appeared good predictive validity in 2- and 3-year 
survival rates (Figure 6F).

Discussion

In the past decade, patients with LUAD have seen some 
improvement in the quality of their survival, all thanks to 
targeted therapies and immunotherapy. However, only a 
small percentage of patients could get effective treatment 
from targeted therapies and immunotherapy. Therefore, 
it is necessary and urgent to explore new anti-cancer 
therapies to benefit more patients. In recent years, the 
development of anti-cancer therapies targeting specific 
molecular profile alterations or phenotypic characteristics 
has become an emerging trend. This treatment is based on 
molecular markers and provides personalized treatment 
for every patient (5,8,28). For example, in one study, seven 
pyroptosis-related genes were used to classify patients 
with ovarian cancer into high- and low-risk groups. And 
ultimately it was found that patients in the high-risk group 
had a state of immunosuppression (29). Moreover, the 
hypoxia-immune signature which was composed of ten 
hypoxia-related or immune-related genes divided patients 
with triple-negative breast cancer into two subgroups. It 
was proved that immunotherapy may be more effective 
in patients in the hypoxia low/immune high group (7). 
A growing number of studies are now confirming the 
interaction between ferroptosis and immunity in tumors 
(20,26,30). On the one hand, CD8+ T cells released 
IFN-γ, which can activate the JAK1-STAT1 signaling 
pathway. And at last induced ferroptosis in tumor cells by 
regulating the expression of SLC7A11 and SLC3A2. In 
addition, transforming growth factor β1 (TGF-β1) released 
by macrophages regulated FRG expressions by activating 
small mothers against decapentaplegic (SMAD) protein-
mediated signaling pathways. On the other hand, the 
release of damage-associated molecular patterns (DAMPs) 
from ferroptosis cancer cells affected the function of innate 
immune cells in TME (20).

Considering the close relationship between the immune 

system and ferroptosis, CSFI was constructed based on 
IRGs and FRGs in this study. According to the training 
and validation cohort, the OSs of patients in the CSFI-
high group were significantly shorter than those in the 
CSFI-low group. In addition, combining the expressions 
of some SOFs and DOFs, it can be speculated that CSFI-
high patients had a state of ferroptosis inhibition. In this 
study, the expressions of several DOFs (ANO6, ATG7, and 
IFNG), which can contribute to ferroptosis in cancer cells 
were significantly downregulated in the CSFI-high group 
(31-33). In addition, some SOFs, including HSF1, HSPB1, 
NQO1, and SLC7A11, were upregulated in the CSFI-high 
group. SLC7A11, a well-defined inhibitor of ferroptosis, is 
a key pathway for many tumor suppressor genes to inhibit 
tumor formation. For instance, BAP1 and p53 inhibited 
SLC7A11 to induce ferroptosis, while KEAP1 prevented 
NRF2 from activating SLC7A11 (34-36). An important 
finding showed that YTHDC2, which can serve as a 
ferroptosis inducer targeted system XC

- for the treatment 
of LUAD (37). Then, the low expressions of NRF2 and 
NQO1 predicted better survival outcomes in NSCLC 
patients (38). Furthermore, Sun et al. (39) found that the 
inhibition of the HSF1-HSPB1 pathway increased the anti-
cancer activity of erastin. And cells were more susceptible 
to ferroptosis if the HSBP1-HSF1 pathway was inhibited 
when cancer cells contained high levels of iron and HSPB1. 
In NSCLC, researchers found that the knockdown of HSF1 
during co-treatment with erastin and celastrol inhibited 
HSP to increase cell death. The combined treatment of 
HSF1 inhibition and chemotherapy might be a new target 
for NSCLC treatment (40). In this study, the upregulation 
of HSF1, HSPB1, NQO1, and SLC7A11 means that 
patients from the CSFI-high group might be equipped with 
strong ferroptosis resistance and the function of ferroptosis 
inducers might be diminished. This is also the reason for 
the poor prognosis. Therefore, the therapy by combining 
ferroptosis inducers and targeting SLC7A11, HSF1, and 
HSPB1 might result in better outcomes in the CSFI-
high group. Moreover, it has been found that there was 
an interaction between lipid metabolism and ferroptosis 
in the development and progression of cancer (41).  
The lipid metabolism is closely related to ferroptosis (42).  
Based on GSEA analysis, genes in the CSFI-low group 
were significantly enriched in ABC transporters in lipid 
homeostasis and phosphatidylinositol metabolism. GO 
and KEGG analyses also manifested DEGs between 
different CSFI groups enriched in some pathways, such 
as lipopolysaccharide binding, chemical homeostasis, and 



Translational Cancer Research, Vol 11, No 10 October 2022 3631

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(10):3620-3633 | https://dx.doi.org/10.21037/tcr-22-992

alpha-linolenic acid metabolism. It indicated that the CSFI-
low group was likely to be sensitive to ferroptosis inducers.

LUAD patients with high CSFI values appeared immune 
suppressive state. ssGSEA analysis results showed that 
scores of several dendritic cells, mast cells, B cells, CD8+ T 
cells, macrophages, neutrophils, Th1 cells, TILs, and Tregs 
were lower in CSFI-high group patients. Scientific evidence 
suggested that mast cells, B cells, CD8 + T cells, and TILs 
were related to the good prognosis of lung cancer (43-45). 
There were also studies showing that DCs and Th1 cells 
induce antitumor immunity in lung cancer patients (46,47). 
Additionally, although macrophages promote tumor growth 
and are associated with poor prognosis in most advanced 
tumors, there is growing evidence that anti-tumor immune 
responses are greatly enhanced by the appropriate activation 
of macrophages (48). And neutrophils exert pro- or anti-
tumor effects, depending on different subpopulations (49). 
Moreover, in NSCLC, Tregs were positively associated 
with tumor metastasis and poor survival (50). However, 
research published in “Nature Immunology” found that 
Type 1 Treg enhanced immune response (51). In this study, 
the level of Treg was higher in CSFI-low group patients 
with better prognoses. Consequently, it is necessary to 
identify the Treg isoforms that play a role in LUAD. In 
summary, it could be concluded that the poor prognoses of 
patients in the CSFI-high group might be due to impaired 
immune function and poor anti-tumor immune response. 
A previous study found that NSCLC patients generated a 
significant and durable response to ICIs’ treatment (52). By 
analyzing the expression of ICPGs in both groups, it could 
be hypothesized that immunotherapies against HAVCR2, 
IDO1, and PDL2 were effective on patients of the CSFI-
low group. 

TP53 encodes p53 protein and thus exerts tumor-
suppressive effects (53). TP53 mutation occurs most 
frequently and is often associated with a worse prognosis 
in a variety of human cancers, including LUAD (54). 
In this study, the frequencies of TP53 mutation were 
higher in patients with higher CSFI values. In particular, 
abnormal p53 contributes to immune escape, resulting in 
an immunosuppressive microenvironment (55). It has been 
shown that TP53 mutation could lead to reduced immunity 
in LUAD patients (56). As a result, higher frequencies of 
TP53 mutation in patients in the CSFI-high group might 
have contributed to the immunosuppressed state of these 
patients.

More and more studies are exploring the association 
between ferroptosis and immunity, but there was no study 

that combined FRGs with IRGs to construct a model to 
predict OSs in LUAD patients. In this study, the prognoses 
of LUAD patients were more accurately predicted by the 
nomogram constructed based on tumor stage and CSFI. 
And based on the LASSO-cox model, more targeted 
treatment directions were provided for patients in both 
CSFI subgroups. However, this study is still based on 
retrospective data, and the predictive value of the model 
requires prospective studies for multiple validations.

Conclusions

In conclusion, the CSFI constructed in this study could 
predict the prognoses of LUAD patients robustly and 
provide targeted treatment directions based on the 
phenotypic characteristics of different subgroups of patients. 
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Table S1 A list of ferroptosis-related genes. DOFs, drivers of 
ferroptosis; SOFs, suppressors of ferroptosis; both, either promote 
or suppress ferroptosis.

DOFs SOFs both

RPL8 SLC7A11 VDAC2

IREB2 GPX4 TP53

ATP5MC3 AKR1C1 TFRC

CS AKR1C2 HMOX1

EMC2 AKR1C3 ELAVL1

ACSF2 RB1 HIF1A

NOX1 HSPB1 SESN2

CYBB HSF1 SLC3A2

NOX3 GCLC CBS

NOX4 NFE2L2 ATF4

NOX5 SQSTM1 SLC40A1

DUOX1 NQO1

DUOX2 FTH1

G6PD MUC1

PGD MT1G

PIK3CA CISD1

FLT3 FANCD2

SCP2 FTMT

ACSL4 HSPA5

LPCAT3 HELLS

NRAS SCD

KRAS FADS2

HRAS SRC

TF STAT3

TFR2 PML

SLC38A1 MTOR

SLC1A5 NFS1

GLS2 TP63

GOT1 CDKN1A

CARS1 MIR137

ALOX5 ENPP2

KEAP1 FH

ATG5 CISD2

ATG7 MIR9-1

Table S1 (continued)

Table S1 (continued)

DOFs SOFs both

NCOA4 MIR9-2

ALOX12 MIR9-3

ALOX12B ISCU

ALOX15 ACSL3

ALOX15B OTUB1

ALOXE3 CD44

PHKG2 LINC00336

ACO1 BRD4

G6PDX PRDX6

ULK1 MIR17

ATG3 NF2

ATG4D ARNTL

BECN1 JUN

MAP1LC3A CA9

GABARAPL2 TMBIM4

GABARAPL1 PLIN2

ATG16L1 MIR212

WIPI1 Fer1HCH

WIPI2 AIFM2

SNX4 LAMP2

ATG13 ZFP36

ULK2 PROM2

SAT1 CHMP5

EGFR CHMP6

MAPK3 CAV1

MAPK1 GCH1

BID SNORA16A

ZEB1 RGS4

DPP4 BLOC1S5-TXNDC5

CDKN2A LOC390705

PEBP1 MAFG

SOCS1 HAMP

CDO1 STEAP3

MYB DRD4

MAPK8 SLC2A1

Table S1 (continued)

Table S1 (continued)

DOFs SOFs both

MAPK9 SLC2A3

CHAC1 SLC2A6

MAPK14 SLC2A8

LINC00472 SLC2A12

PRKAA2 GLUT13

PRKAA1 SLC2A14

BAP1 TFAP2C

ABCC1 SP1

MIR6852 STMN1

ACVR1B RRM2

TGFBR1 CAPG

EPAS1 HNF4A

HILPDA NGB

IFNG GABPB1

ANO6 AURKA

LPIN1

HMGB1

TNFAIP3

TLR4

ATF3

ATM

YY1AP1

EGLN2

MIOX

TAZ

MTDH

IDH1

SIRT1

FBXW7

PANX1

DNAJB6

BACH1

LONP1

PTGS2

DUSP1

Table S1 (continued)

Table S1 (continued)

DOFs SOFs both

NOS2

NCF2

MT3

UBC

ALB

TXNRD1

SRXN1

GPX2

BNIP3

OXSR1

SELENOS

ANGPTL7

DDIT4

LOC284561

ASNS

TSC22D3

DDIT3

JDP2

SLC1A4

PCK2

TXNIP

VLDLR

GPT2

PSAT1

LURAP1L

SLC7A5

HERPUD1

XBP1

ZNF419

KLHL24

TRIB3

ZFP69B

ATP6V1G2

VEGFA

GDF15

Table S1 (continued)

Table S1 (continued)

DOFs SOFs both

TUBE1

ARRDC3

CEBPG

EIF2S1

KIM-1

IL6

CXCL2

RELA

HSD17B11

AGPAT3

SETD1B

FTL

IL33

DRD5

MAP3K5

EIF2AK4

HBA1

NNMT

PLIN4

HIC1

YWHAE

MIR4715

RIPK1

PRDX1

MIR30B
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